Chemistry & Biology, Volume 19

Supplemental Information

Polyketide Proofreading

by an Acyltransferase-like Enzyme

Katja Jensen, Holger Niederkrüger, Katrin Zimmermann, Anna L. Vagstad, Jana Moldenhauer, Nicole Brendel, Sarah Frank, Petra Pöplau, Christoph Kohlhaas, Craig A. Townsend, Marco Oldiges, Christian Hertweck, and Jörn Piel

Inventory of Supplemental Information

Supplemental Figure 1, Related to Figure 2. HPLC traces of crude extracts of *B. amyloliquefaciens* JM54-2 (bacillaene TE deletion mutant) in comparison to JM157-54 (TE/baeB double mutant).

Supplemental Figure 2, Related to Figure 4. Acyltransfer assay using PedD, radiolabeled malonyl-CoA, and two integrated ACPs of the multimodular psymberin PKS.

Supplemental Figure 3, Related to Figure 5. SDS-PAGE analysis of purified PedC used for the hydrolysis assays.

Supplemental Figure 4, Related to Figure 5. Rate versus substrate concentration for the hydrolysis of 3-hydroxybutyryl-SNAC by PedC.

Supplemental Table 1, Related to Supplemental Experimental Procedures. Constructs and their respective antibiotic resistance cassettes, additives, inducer and expression strains.

Supplemental Table 2, Related to Supplemental Experimental Procedures. Sequence of PCR primers used for cloning of obtained constructs.

Supplemental information for **Polyketide Proofreading by an Acyltransferase-Like Enzyme**

Katja Jensen,¹ Holger Niederkrüger,¹ Katrin Zimmermann,¹ Anna L. Vagstad,² Jana

Moldenhauer,¹ Nicole Brendel,³ Sarah Frank,¹ Petra Pöplau,¹ Christoph Kohlhaas,¹ Craig A.

Townsend,² Marco Oldiges,⁴ Christian Hertweck,³ Jörn Piel^{1,*}

Supplemental Figure 1, related to Figure 2: HPLC traces of crude extracts of *B. amyloliquefaciens* JM54-2 (bacillaene TE deletion mutant) in comparison to JM157-54 (TE/*baeB* double mutant). Compounds were identified by LC-HRMS and LC-NMR analysis (Moldenhauer, et al., 2007; Moldenhauer, et al., 2010). In JM157-54 extracts only small amounts of compounds **11** and **13** could be detected.

Supplemental Figure 2, related to Figure 4. Acyltransfer assay using PedD, radiolabeled malonyl-CoA, and two integrated ACPs of the multimodular psymberin PKS. **A:** SDS-PAGE analysis of assays containing the ACP of PsyA, module 3. Lane 1, PedD only; lane 2a, *holo*-ACP; lane 2b, PedD + *holo*-ACP; lane 3a, *apo*-ACP; lane 3b, PedD + *apo*-ACP. All assays containing the ACP of PsyD, module 1. Lane 1a, *holo*-ACP; lane 1b, PedD + *holo*-ACP; lane 2a, *apo*-ACP; lane 2b, PedD + *apo*-ACP; lane 3, PedD; lane 4a, *holo*-ACP; lane 4b, PedD + *holo*-ACP, lane 5a, *apo*-ACP; lane 5b, PedD + *apo*-ACP. For assays of lanes 4a to 5b, the ACP was concentrated 10× using Vivaspin ultrafiltration columns (molecular weight cut-off 5000). **D:** Autoradiogram of the same gel. All assays contained [2⁻¹⁴C]-malonyl-CoA.

Supplemental Figure 3, related to Figure 5. SDS-PAGE analysis of purified PedC used for the hydrolysis assays. Samples were stained with Coomassie brilliant blue for visualization. Lane 1, molecular weight marker; lane 2: purified PedC with GroEL after affinity chromatography.

Supplemental Figure 4, related to Figure 5. Rate versus substrate concentration for the hydrolysis of 3-hydroxybutyryl-SNAC (5) by PedC. Calculated kinetic parameters are $K_m = 88.48\pm27.97$ mM, $k_{cat} = 76.48 \text{ min}^{-1}$, $v_{max} = 0.01912\pm0.0041$ mM min $^{-1}$, and $k_{cat}/K_m = 14.41 \text{ M}^{-1}\text{s}^{-1}$.

construct	plasmid	additive	inducer	expression host
PedC (C-terminal strep tag)	pHN38 + pGro7	arabinose (0.5 mg mL ⁻¹)	anhydrotetracycline (200 ng mL ⁻¹)	E. coli BL21DE3
PedC (N-terminal MBP tag)	рН66	glucose monohydrate (2 g L ⁻¹)	IPTG (1 mM)	<i>E. coli</i> BL21DE3
PedC (C-terminal His ₆ tag)	pET-pedC + pG-Tf2	tetracycline (50 ng mL ⁻¹)	IPTG (1 mM)	<i>E. coli</i> BL21-Gold(DE3)
PedD (N-terminal His ₈ tag)	pKZ178	-	IPTG (0.5 mM)	<i>E. coli</i> BL21DE3
GroES/L	pGro7	arabinose (0.5 mg mL ⁻¹)	-	<i>E. coli</i> BL21DE3
RhiG and mutants (N-terminal His ₆ tag)	pNB121, pNB146, pNB147	-	IPTG (0.5 mM)	<i>E. coli</i> BL21DE3
PsyD-ACP1 (N-terminal His ₈ tag)	pHN66, pHN78	-	IPTG (0.75 mM)	<i>E. coli</i> BL21DE3
PsyA-ACP3 (N-terminal His ₈ tag)	pHN60, pHN77	-	IPTG (0.75 mM)	<i>E. coli</i> BL21DE3
PedN (N-terminal His ₈ tag)	pKZ124, pKZ161	-	IPTG (0.4 mM)	<i>E. coli</i> BL21DE3
PedI3 (N-terminal His ₈ tag)	pKZ123, pKZ176	-	IPTG (1 mM)	<i>E. coli</i> Rosetta gami 2 (DE3)
BaeB (N-terminal His ₈ tag)	pKJ7	-	IPTG (0.5 mM)	pLysS <i>E. coli</i> BL21DE3

Supplemental Table 1. Constructs and their respective antibiotic resistance cassettes, additives, inducer and expression strains.

Primer name	Sequence (5'-3')
FP-cat-BamHI	AAAGGATCCGACAGCTTATCATCGGCAATA
RP-cat-XbaI	AAATCTAGAGGCGTAGAGGATCTGGAGC
RP-H-vor-Promotor-XbaI	AAATCTAGATTTCTCCATCTCATACGTACTGTGGTG
FP-H-vor-Promotor-NotI	AAAGCGGCCGCCATCCGATTACGTTTATCGAAATTACG
RP-nach-BaeB-2-KpnI	AAAGGTACCAGAAGGCGGTCAAATGGATCA
FP-nach-BaeB-2-ApaI	AAAGGGCCCGTTCTATCTAACTAGCTTTTCTTTTGAGG
RP-Promotor-ApaI	AAAGGGCCCTGTCACCATTCCCATTTAAAAGAT
FP-Promotor-BamHI	AAAGGATCCTAACAACGTTTATGTGAGACTAAACC
FP-erm-XbaI	AAA TCTAGA CGAGGAATTTGTATCGATAAGAAATAG
RP-erm-ApaI	AAAGGGCCCATAATAGGAATTGAAGTTAAATTAGATGCT
BaeB_low-GC_pHis8-3_for	GGATCC ATGGATCATACATATGAAGTGCATCAA
BaeB_low-GC_pHis8-3_rev	AAGCTTTTACTTAAAATGAAACAGCCCTTTTTG
pedC_FP	ATGGTA GGTCTC AAATGAAAGACTTGCAAAATATACAGAACAC
pedC RP	ATGGTA GGTCTC AGCGCTACGTTGGTCGAGTTCGAGCAGA
pedC-5	GATACATATGAAAGACTTGCAAAATATACAGAAC
pedC-3	GATTCTCGAGACGTTGGTCGAGTTCGAGC
pedD_FP	AAAGAATTCAAATCGTACCTTTTTCCCGGG
pedD_RP	AAA AAGCTT TCACCACACCTTTTCAACTAAA
ped I3_pRSETf	AAAAGATCTGAGCAGAAGGTA TATGCGGTCATT
pedI3_pRSETr	AAAAGATCTTCATATCAGGCTCCGTACGTACTG
pedN_pRSETf	AAA AGATCT ATCCGCGAACGCATTTTCAATGTGATTGCGAGA AATACGCTTGAAGTCCTT
pedN_pRSETr	AAAAGATCTTCACTGTACATACTGGCTGAG
PsyA-ACP3 for	GGATCCACGTCGAGCGGGGGAACTTGCGACAGTGG
PsyA-ACP3 rev	CGGCCGTTAAACGCATACCGCTTCGAGCTGCTGCGC
PsyD-ACP1 for	GGATCCACTTCGTCGCCAAAGGGCAATCTGACCG

Supplemental Table 2: Sequence of PCR primers used for cloning of obtained constructs. Introduced restriction sites are marked with bold letters.

PsyD-ACP1 rev	CGGCCGTCAAGGTATACACGCTTCGATGTGGGCAGCCAA
Expr_tAT_F	GAATTCAGGACGAAATCTATGCCGTA
Expr_tAT_R	AAGCTTTACGATCAGCGGCTTTGTT

Supplemental References

Moldenhauer, J., Chen, X.H., Borriss, R., and Piel, J. (2007). Biosynthesis of the antibiotic bacillaene, the product of a giant polyketide synthase complex of the trans-AT family. Angewandte Chemie, International Edition in English 46, 8195-8197.

Moldenhauer, J., Götz, D.C.G., Albert, C.R., Bischof, S.K., Schneider, K., Süssmuth, R.D., Engeser, M., Gross, H., Bringmann, G., and Piel, J. (2010). The final steps of bacillaene biosynthesis in *Bacillus amyloliquefaciens* FZB42: Direct evidence for beta,gamma-dehydration by a *trans*-acyltransferase polyketide synthase. Angew. Chem. Int. Ed. 49, 1465-1467.