Discovery of Small Molecule Kappa Opioid Receptor Agonist and Antagonist Chemotypes through a HTS and Hit Refinement Strategy

Kevin J. Frankowski^a, Michael P. Hedrick^b, Palak Gosalia, Kelin Li^a, Shenghua Shi^b, David A. Whipple^a, Partha Ghosh^a, Thomas E. Prisinzano^a, Frank J. Schoenen^a, Ying Su^b, S. Vasile^b, Eduard Sergienko^b, Wilson Gray^b, Santosh Hariharan^b, Loribelle Milan^b, Susanne Heynen-Genel^b, Arianna Mangravita-Novo^c, Michael Vicchiarelli^c, Layton H. Smith^c, John M. Streicher^e, Marc G. Caron^d, Lawrence S. Barak^d, Laura M. Bohn^e, Thomas D.Y. Chung^b and Jeffrey Aubé^a*

^a University of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, KS 66047; ^b Conrad Prebys Center for Chemical Genomics at Sanford-Burnham Medical Research Institute, La Jolla, CA 92037; ^c Conrad Prebys Center for Chemical Genomics at Sanford-Burnham Medical Research Institute at Lake Nona, Orlando, FL 32827, ^dDepartment of Cell Biology, Duke University, Durham, NC 27710; ^e Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458

Supporting Information Contents:

PDSP binding data (numerical K _i values)	S-2
General experimental details	S-2
Summary of assays and corresponding PubChem assay identification numbers	S-3
Assay protocols	S-4
Synthesis of agonist Chemotype I compounds 1{n}	S-7
NMR spectra for Chemotype I compounds and new synthetic intermediates	S-14
Synthesis of agonist Chemotype II compounds 2{n}	S-21
NMR spectra for Chemotype II compounds and new synthetic intermediates	S-35
Synthesis of antagonist Chemotype III compounds 3{n}	S-46
NMR spectra for Chemotype III compounds and new synthetic intermediates	S-99
Synthesis of antagonist Chemotype IV compounds 4{n}	S-175
NMR spectra for Chemotype IV compounds and new synthetic intermediates	S-198
References	S-227

СМРD	5ht1a	5ht1b	5ht1d	5ht1e	5ht2a	Sht2b	5ht2c	5ht3	Sht5a	5ht6	5ht7	Alpha1A	Alpha1B	Alpha1D	Alpha2A	Alpha2B	Alpha2C	Beta1	Beta2	Beta3	BZP Rat Brain Site	D1
1{1}																						
2{8}					3,788	1,237			4,986							5,525	9,601			7,312		1,796
3{1}	8,577				3,332	598	4,112		5,442		1,990					1,451	957					
3{ <i>39</i> }					2,884	2,269																
4{4}			702			1,922										5,525	9,601					
CMPD	D2	D3	D4	DS	DAT	DOR	GabaA	H	H2	H3	H4	KOR	M1	M2	M3	M4	M5	MOR	NET	SERT	Sigma 1	Sigma 2
1{1}						1,277						0.6						564				
2{8}				7,018	ND	5,351						2.4					4,418	1,900	5,870			2,905
3{1}		1,234			2,550	1,088		961	4,162			50.4	278	80	284	196	3,726	306	349		379	2,136
3{ <i>39</i> }					2,584			9,854				68	4,170	146	361	325	1,905	2,446			642	1,523
4{4}	1,346	250			ND	1,443		454.1	3502			129					6,397	1,585	685	5,326		

PDSP Binding Data (numerical K_i values)

Key: Green = primary screen missed or Ki > 10,000 nM; ND = not determined

Binding assay protocols are available free of charge via the internet at:

http://pdsp.med.unc.edu/UNC-CH%20Protocol%20Book.pdf

General Experimental Details

All chemicals were used as purchased from commercial suppliers. Methylene chloride, acetonitrile, toluene, ethyl ether and THF were dried by being passed through two packed columns of anhydrous, neutral alumina prior to use.

Parallel syntheses were performed on the Bohdan Miniblock XT parallel solution phase synthesizer obtained from Mettler-Toledo Auto Chem. Automated weighing was performed using the Bohdan Balance Automator (Mettler-Toledo Auto Chem). Parallel evaporation was performed on the GeneVac EZ-2 plus evaporator system. ¹H and ¹³C NMR spectra were recorded on a Bruker AM 400 spectrometer (operating at 400 and 100 MHz respectively) in CDCl₃ with 0.03% TMS as an internal standard, unless otherwise specified. Chemical shifts are reported in parts per million (ppm) downfield from TMS. ¹³C multiplicities were determined

with the aid of an APT pulse sequence, differentiating the signals for methyl and methyne carbons as "d" from methylene and quarternary carbons as "u". The infrared (IR) spectra were acquired as thin films using a universal ATR sampling accessory on a PerkinElmer Spectrum 100 FT-IR spectrometer and the absorbtion frequencies are reported in cm⁻¹. Melting points were determined on a Stanford Research Systems Optimelt automated melting point system interfaced through a PC and are uncorrected. Microwave syntheses were conducted in a Biotage Initiator constant temperature microwave synthesizer.

HPLC/MS analysis was carried out with gradient elution (5% CH₃CN to 100% CH₃CN) on an Agilent 1200 RRLC with a photodiode array UV detector and an Agilent 6224 TOF mass spectrometer (also used to produce high resolution mass spectra). Purification was carried out by Mass Directed Fractionation with gradient elution (a narrow CH₃CN gradient was chosen based on the retention time of the target from LCMS analysis of the crude sample) on an Agilent 1200 instrument with photodiode array detector, an Agilent 6120 quadrupole mass spectrometer, and a HTPAL LEAP autosampler. Fractions were triggered using an MS and UV threshold determined by HPLC/MS analysis of the crude sample. One of two column/mobile phase conditions were chosen for both analysis and purification to promote the targets neutral state (0.02% formic acid with Waters Atlantis T3 5um, 19 x 150mm; or pH 9.8 NH₄OH with Waters XBridge C18 5µm, 19 x 150mm).

Summary of Assays and Corresponding PubChem Assay Identification (AID) Numbers

Table 1. Listing of agonist assays and PubChem AID numbers for this project										
PubChemBioAssay Name	AIDs	Probe Type	Assay Type	Assay Format	Assay Detection & well format					

Summary of small molecule agonists of the kappa opioid receptor via a luminescent beta-arrestin assay [Summary]	1786	Agonist	Summary	N/A	N/A
uHTS identification of small molecule agonists of the kappa opioid receptor via a luminescent beta-arrestin assay [Confirmatory]	1777	Agonist	Primary	Cell-based	Luminescence -DiscoveRx β-arrestin & 1536
SAR analysis of small molecule agonists of the kappa opioid receptor via a luminescent beta-arrestin assay [Confirmatory]	2284	Agonist	SAR	Cell-based	Luminescence -DiscoveRx β-arrestin & 1536
HTS Dose response counterscreen for assays utilizing the enzyme, ß- galactosidase [Confirmatory]	1966	Agonist	Counterscreen	Biochemical	Luminescence &1536
HTS Image-Based Screen for Selective Agonists of the KOR Receptor [Confirmatory]	2133	Agonist	Alternate	Cell-based	HCS – Transfluor & 384
HTS Image-Based Screen for Agonists of the MOR Receptor [Confirmatory]	2344	Agonist	Selectivity	Cell-based	HCS – Transfluor & 384
HTS Image-Based Screen for Agonists of the DOR Receptor [Confirmatory]	2343	Agonist	Selectivity	Cell-based	HCS – Transfluor & 384
SAR analysis of Agonists of the Kappa Opioid Receptor (KOR) using an Image-Based Assay [Confirmatory]	2359	Agonist	Alternate	Cell-based	HCS – Transfluor & 384
SAR Analysis of Agonists of the MOR Receptor using an Image-Based Assay [Confirmatory]	2352	Agonist	Selectivity	Cell-based	HCS – Transfluor & 384
SAR Analysis of Agonists of the DOR Receptor using an Image-Based Assay [Confirmatory]	2370	Agonist	Selectivity	Cell-based	HCS – Transfluor & 384

Assay Protocols (for additional details, view the individual AID on the PubChem portal)

KOR β -Arrestin assay protocol

For the performance of the KOR β-Arrestin assay, the OPRK1 β-Arrestin cell line was obtained from DiscoveRx. The KOR β-Arrestin assay utilized a protocol that was modified from the original DiscoveRx PathHunterTM protocol provided with the cell line. On day one, 500 cells of the OPRK1 β-Arrestin cell line, grown in MEM supplemented with 10% hiFBS, 1X Pen/Strep/Glu, 125 µg/mL Hygromycin, and 250 µg/mL Geneticin are plated in 5 µL of assay media containing Opti-MEM Medium supplemented with 1% hiFBS, 1X Pen/Strep/Glu, 125 µg/mL Hygromycin, and 250 µg/mL Geneticin in each well of a white, 1536-well, tissue culture treated, assay plate. Assay plates are then incubated overnight at 37 °C, 5% CO₂, and 100% humidity. Following the overnight incubation, varying volumes of test compounds in DMSO are transferred to test compound wells to achieve appropriate test concentrations and range. DMSO is transferred to control wells and test compound wells to equalize DMSO concentrations (< 1.0%). For the agonist assay, immediately following test compound and DMSO transfers, 1 μ L of assay media containing 6 µM of dynorphin A (1 uM final) is dispensed to the positive control wells and 1 µL of assay media only is dispensed to test compound and negative control wells. For the antagonist assay, 1 μ L of assay media is added to the positive control wells, while 1 μ L of 240 nM dynorphin A (40 nM final = EC_{80}) is added to all test compound and negative control wells. Assay plates are then incubated at room temperature for 90 minutes, followed by the addition of 2.5 µL of DiscoveRx detection reagent. Plates are incubated for an additional 60 minutes then read on a PerkinElmer Envision plate reader using a luminescent protocol. EC₅₀ values were calculated based on relative luminescence using CBIS software (ChemInnovations) employing a sigmoidal dose-response equation via non-linear regression.

High content imaging ß-arrestin translocation assay protocols

S-5

Three U2OS (Human Osteosarcoma) cell lines stably expressing the β -arrestin GFP and the GPCR target of interest, KOR, DOR and MOR receptors, were utilized in the performance of the HCS secondary assays. On day one, 9000 cells are plated in 45 µL of media containing MEM with L-glutamine, Pen-strep, 10% Fetal Bovine Serum and selection antibiotics – 200 µg/mL G418 and 100ug/mL Zeocin into black, clear bottom, 384-well, tissue culture treated assay plates. Plates are then incubated overnight at 37 °C, 5% CO₂, and 100% humidity. Following the overnight incubation, the media is aspirated from each well of the assay plate and replaced with 45 µL of the same media minus fetal bovine serum. Varying volumes of test compounds in DMSO are transferred to test compound wells to achieve appropriate test concentrations and range. DMSO is transferred to control wells and test compound wells to equalize DMSO concentrations (< 1.0%). For the agonist assays, 5 μ L of the positive control ligand in MEM is immediately transferred to the positive control wells. Into the negative control wells, is transferred 5 µL of MEM only. For the antagonist assays, 5 µL of MEM is added to positive control wells, while 5 µL control ligand in MEM is transferred to the test compound and negative control wells to achieve an EC₈₀ final assay concentration. For the KOR, DOR, and MOR HCS assays respectively, dynorphin A is utilized at 1 μ M, SNC80 at 100 nM, and DAMGO at 1 µM as final assay concentrations. Plates were then incubated for 45 minutes at 37 °C and 5% CO₂ prior to being fixed with 4% paraformaldehyde and the cell nuclei stained with 100 ng/mL DAPI. Image acquisition was performed on an Opera QEHS (Perkin Elmer) using a 40×0.6 NA air objective with the GFP and DAPI signals acquired via 488 nm laser excitation and 540/70 nm emission filters, and 365 nm Xenon lamp excitation and 450/50 nm emission filters, respectively. Image analysis was performed using the Acapella Spot Detection Algorithm. EC₅₀ values were calculated based on the number of concentrated fluorescent spots per cell using

CBIS software employing a sigmoidal dose-response equation through non-linear regression.

More specific protocol information can be referenced via the NCBI PubChem web portal -

http://pubchem.ncbi.nlm.nih.gov/

Synthesis of Agonist Chemotype I Compounds 1{n}

Compounds 1{1} to 1{9} are available as milligram quantity dry powder samples from several commercial vendors of screening compounds.

Scheme 1. Representative synthetic sequence^a.

^a Reagents and conditions: (a) cyclohexylamine, DIC, HOBt, MeCN, microwave irradiation 100 °C, 10 min (73% yield); (b) TFA:CH₂Cl₂ (1:1), rt, 14 h (99% yield); (c) thiophene-2-carboxaldehyde, NaBH(OAc)₃, DCE (84% yield); (d) picolynyl chloride, Et₃N, CH₂Cl₂ (86% yield).

tert-Butyl (1-(cyclohexylcarbamoyl)cyclohexyl)carbamate. A microwave vial (2-5 mL rated capacity) was charged with 1-((tert-butoxycarbonyl)amino)cyclohexanecarboxylic acid¹ (142 mg, 0.58 mmol), cyclohexylamine (75 mg, 0.76 mmol, 1.3 equiv.), HOBt (89 mg, 0.58 mmol,

1.0 equiv.) and diisopropylcarbodiimide (96 mg, 0.76 mmol, 1.3 equiv.) in MeCN (3 mL). The reaction vial was heated in a microwave reactor at 100 °C for 10 min then cooled to rt. The reaction mixture was dissolved in MeOH (4 mL), adsorbed onto Celite and chromatographed to yield the amide product as a white solid (139 mg, 0.43 mmol, 73% yield). R_f = 0.70 (EtOAc:hexanes 1:1); mp = 197-198 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.13-1.19 (complex, 3 H), 1.28-1.45 (complex, 7 H), 1.45 (s, 9 H), 1.61-1.65 (complex, 4 H), 1.84-1.96 (complex, 6 H), 3.74 (m, 1 H), 4.72 (br s, 1 H), 6.72 (br s, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ d 28.2, 47.6; u 21.3, 24.5, 25.1, 25.5, 32.2, 32.8, 59.3, 154.8, 173.6; IR (neat) 3336, 3305, 2931, 2854, 1689, 1641 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₈H₃₃N₂O₃ ([M+H]⁺), 325.2491, found 325.2498.

1-Amino-N-cyclohexylcyclohexanecarboxamide. tert-Butyl (1-

(cyclohexylcarbamoyl)cyclohexyl)carbamate (123 mg, 0.38 mmol) was dissolved in a mixture of trifluoroacetic acid (2 mL) and CH₂Cl₂ (2 mL) and stirred at rt for 14 h. The solvents were removed in vacuo and the residue partitioned between saturated aqueous NaHCO₃ (5 mL) and CH₂Cl₂ (3 × 8 mL). The combined organics were dried with Na₂SO₃ and evaporated to yield the deprotected product as a white solid (84 mg, 0.37 mmol, 99% yield), which was used as obtained in the next step. R_f = 0.31 (EtOAc:hexanes 1:1); mp = 98-101 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.11-1.46 (complex, 10 H), 1.57-1.72 (complex, 6 H), 1.86 (dd, *J* = 3.6, 12.8 Hz, 2 H), 1.99 (dt, *J* = 4.0, 13.2 Hz, 2 H), 3.69 (m, 1 H), 7.71 (br s, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ d 47.4; u 21.2 (× 2), 24.7 (× 2), 25.1 (× 2), 25.5 (× 2), 33.0 (× 2), 34.6 (× 2), 56.9, 176.8; IR (neat) 3383,

3320, 2929, 2852, 1613 cm⁻¹; HRMS (ESI) *m*/*z* calcd for $C_{13}H_{25}N_2O$ ([M+H]⁺), 225.1967, found 225.1977.

N-Cyclohexyl-1-((thiophen-2-ylmethyl)amino)cyclohexanecarboxamide. To a solution of 1amino-*N*-cyclohexylcyclohexanecarboxamide (84 mg, 0.374 mmol) and thiophene-2carboxaldehyde (84 mg, 0.749 mmol, 2.0 equiv.) in dichloroethane (5 mL) was added sodium triacetoxyborohydride (238 mg, 1.12 mmol, 3.0 equiv.). The reaction was stirred at rt for 16 h and partitioned between aqueous NaOH (1 N, 10 mL) and CH₂Cl₂ (3 × 10 mL). The combined organics were dried with Na₂SO₃, adsorbed onto Celite and chromatographed to afford the reductive amination product as a light orange oil (101 mg, 0.314 mmol, 84% yield). R_f = 0.72 (EtOAc:hexanes 1:1); ¹H NMR (400 MHz, CDCl₃) δ 1.11-1.22 (complex, 3 H), 1.32-1.42 (complex, 7 H), 1.57-1.71 (complex, 5 H), 3.68-3.75 (m, 1 H), 3.76 (s, 2 H), 6.94 (dd, *J* = 0.8, 3.2 Hz, 1 H), 6.98 (dd, *J* = 3.2, 5.2 Hz, 1 H), 7.25 (dd, *J* = 1.2, 4.8 Hz, 1 H), 7.54 (br s, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ d 47.5, 124.3, 124.4, 126.7; u 21.5 (× 2), 24.7 (× 2), 25.1, 25.6, 31.8 (× 2), 33.1 (× 2), 42.2, 61.0, 144.2, 175.2; IR (neat) 3345, 2928, 2853, 1644 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₈H₂₉N₂OS ([M+H]⁺), 321.2001, found 321.2007.

N-(1-(Cyclohexylcarbamoyl)cyclohexyl)-N-(thiophen-2-vlmethyl)picolinamide 1{1}. To a solution of N-cyclohexyl-1-((thiophen-2-ylmethyl)amino)cyclohexanecarboxamide (93 mg. 0.290 mmol) and triethylamine (117 mg, 1.16 mmol, 4.0 equiv.) in CH₂Cl₂ (5 mL) was added picolinoyl chloride hydrochloride (103 mg, 0.58 mmol, 2.0 equiv.). The reaction was stirred at rt for 18 h and partitioned between saturated aqueous NaHCO₃ and CH₂Cl₂ (3×8 mL). The combined organics were dried with Na₂SO₃, adsorbed onto Celite and chromatographed to afford the bisamide product as an off-white solid (106 mg, 0.249 mmol, 86% yield). $R_f = 0.36$ (EtOAc:hexanes 1:1); mp = 102-110 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.06-1.22 (m, 3 H), 1.28-1.38 (m, 2 H), 1.42-1.83 (complex, 11 H), 2.14-2.26 (m, 4 H), 3.66 (m, 1 H), 4.98 (s, 2 H), 6.78 (d, J = 2.8 Hz, 1 H), 6.83 (t, J = 4.4 Hz, 1 H), 6.95 (br s, 1 H), 7.14 (d, J = 5.2 Hz, 1 H), 7.33 (dd, J = 0.8, 4.8 Hz, 1 H), 7.59 (d, J = 8.0 Hz, 1 H), 7.75 (dt, J = 1.6, 7.6 Hz, 1 H), 8.57 (d, J = 1.6, 7.6 Hz, 1 H), 7.59 (d, J = 1.6, 7.6 Hz, 1 H), 8.57 (d, J = 1.6, 8.6 Hz, 1 H), 8.57 (d, J = 1.6, 8.6 Hz, 1 H), 8.57 (d, J = 1.6, 8.6 Hz, 1 H), 8.57 (d, J = 1.6, 8.6 Hz, 1 H), 8.57 (d, J = 1.6, 8.6 Hz, 1 H), 8.57 (d, J = 1.6, 8.6 Hz, 1 H), 8.57 (d, J = 1.6, 8.6 Hz, 1 H), 8.57 (d, J = 1.6, 8.6 Hz, 1 H), 8.57 (d, J = 1.6, 8.6 Hz, 1 H), 8.57 (d, J = 1.6, 8.6 Hz, 1 H), 8.57 (d, J = 1.6, 8.6 Hz, 1 H), 8.57 (d, J = 1.6, 8.6 Hz, 1 H), 8.57 (d, J = 1.6, 8.6 Hz, 1 H), 8.57 (d, J = 1.6, 8.6 Hz, 1 H), 8.57 (d, J = 1.6, 8.6 Hz, 1 H), 8.57 (d, J = 1.6, 8.6 Hz, 1 H), 8.57 (d, J = 1.6, 8.6 Hz, 1 H), 8.57 (d, J = 1.6, 8.6 Hz, 1 H), 8.57 (d, J = 1.6, 8.6 Hz, 1 H), 8.57 (d, J = 1.6, 8.6 Hz, 1 H), 8.6 = 4.8 Hz, 1 H; ¹³C (100 MHz, CDCl₃) δ d (CH, CH₃) 47.9, 124.2, 124.7, 125.2, 126.4, 126.5, 137.0, 147.9; u (C, CH₂) 22.4 (× 2), 24.6 (× 2), 25.5, 25.6, 32.7 (× 2), 33.0 (× 2), 44.8, 66.8, 141.8, 155.0, 171.6, 172.7; IR (neat) 2928, 2854, 1655 cm⁻¹; HRMS (ESI) *m/z* calcd for $C_{24}H_{32}N_{3}O_{2}S$ ([M+H]⁺), 426.2215, found 426.2207.

tert-Butyl (2-(cyclohexylamino)-2-oxoethyl)carbamate . A microwave vial (2-5 mL rated capacity) was charged with *N*-Boc glycine² (245 mg, 1.40 mmol), cyclohexylamine (180 mg, 1.82 mmol, 1.3 equiv.), HOBt (214 mg, 1.40 mmol, 1.0 equiv.) and diisopropylcarbodiimide (229 mg, 1.82 mmol, 1.3 equiv.) in MeCN (3 mL). The reaction vial was heated in a microwave reactor at 100 °C for 10 min then cooled to rt. The reaction mixture was dissolved in MeOH (4 mL), adsorbed onto Celite and chromatographed to yield the previously reported amide product³ as a sticky, colorless oil (213 mg, 0.832 mmol, 60% yield). R_f = 0.52 (EtOAc:hexanes 1:1); ¹H NMR (400 MHz, CDCl₃) δ 1.18-1.22 (complex, 3 H), 1.29-1.40 (m, 2 H), 1.45 (s, 9 H), 1.61 (m, 1 H), 1.71 (td, *J* = 3.6, 13.2 Hz, 2 H), 1.88 (m, 2 H), 3.72-3.77 (complex, 3 H), 5.70 (br s, 1 H), 6.56 (br s, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ d 28.1, 48.0; u 24.6, 25.3, 32.7, 44.3, 79.7, 156.1, 168.4; IR (neat) 3308, 2931, 2856, 1701, 1649 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₃H₂₅N₂O₃ ([M+H]⁺), 257.1865, found 257.1860.

2-Amino-*N***-cyclohexylacetamide**. The above amide, *tert*-butyl (2-(cyclohexylamino)-2oxoethyl)carbamate (213 mg, 0.83 mmol), was dissolved in a mixture of trifluoroacetic acid (2 mL) and CH_2Cl_2 (3 mL) and stirred at rt for 14 h. The solvents were removed in vacuo to yield the previously reported deprotected product⁴ as the crude trifluoroacetate salt, which was used as obtained in the next reaction.

N-Cyclohexyl-2-((thiophen-2-ylmethyl)amino)acetamide . To a solution of the crude 2-amino-*N*-cyclohexylacetamide above (343 mg, 1.27 mmol) and thiophene-2-carboxaldehyde (142 mg, 1.27 mmol, 1.0 equiv.) in DMF (15 mL) was added sodium cyanoborohydride (160 mg, 2.54 mmol, 2.0 equiv.) then AcOH (0.15 mL, 2.54 mmol, 2.0 equiv.). The reaction was stirred at rt for 16 h and partitioned between saturated, aqueous NaHCO₃ (50 mL) and CH₂Cl₂ (3 × 15 mL). The combined organics were dried with Na₂SO₃, adsorbed onto Celite and chromatographed to afford the reductive amination product as a colorless oil (99 mg, 0.392 mmol, 31% yield). R_f = 0.11 (EtOAc:hexanes 3:2); ¹H NMR (400 MHz, CDCl₃) δ 1.11-1.22 (complex, 3 H), 1.13-1.27 (complex, 3 H), 1.32-1.43 (m, 2 H), 1.60 (td, *J* = 4.0, 12.8 Hz, 1 H), 1.71 (td, *J* = 4.0, 13.6 Hz, 2 H), 1.87 (m, 2 H), 3.29 (s, 2 H), 3.78 (m, 1 H), 3.96 (s, 2 H), 6.92 (m, 1 H), 6.95 (m, 1 H), 7.15 (br s, 1 H), 7.23 (d, *J* = 4.8 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ d 47.4, 124.6, 125.2, 126.7; u 24.6(× 2), 25.4, 33.0 (× 2), 48.2, 51.6, 143.0170.0; IR (neat) 3311, 2928, 2853, 1644 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₃H₂₁N₂OS ([M+H]⁺), 253.1375, found 253.1385.

N-(2-(Cyclohexylamino)-2-oxoethyl)-*N*-(thiophen-2-ylmethyl)picolinamide $1{10}$. To a solution of *N*-cyclohexyl-2-((thiophen-2-ylmethyl)amino)acetamide (99 mg, 0.392 mmol) and triethylamine (159 mg, 1.57 mmol, 4.0 equiv.) in CH₂Cl₂ (5 mL) was added picolinoyl chloride

hydrochloride (140 mg, 0.785 mmol, 2.0 equiv.). The reaction was stirred at rt for 18 h and partitioned between saturated aqueous NaHCO₃ and CH₂Cl₂ (3 × 8 mL). The combined organics were dried with Na₂SO₃, adsorbed onto Celite and chromatographed to afford the bisamide product as an off-white solid (77 mg, 0.215 mmol, 55% yield). R_f = 0.43 (EtOAc:hexanes 3:1); mp = 140-143 °C; ¹H NMR (400 MHz, CD₃OD) δ 1.15-1.40 (complex, 5 H), 1.61-1.89 (complex, 5 H), 3.65 (td, *J* = 6.8, 45.6 Hz, 1 H), 4.10 (s, 2 H), 4.96 (s, 2 H), 6.99 (m, 1 H), 7.09 (m, 1 H), 7.39 (d, *J* = 4.8 Hz, 1 H), 7.53 (m, 1 H), 7.78 (t, *J* = 8.0 Hz, 1 H), 7.97 (m, 1 H), 8.62 (dd, *J* = 4.4, 52.0 Hz, 1 H); ¹³C (100 MHz, CD₃OD) δ d (CH, CH₃) 49.9, 125.5, 126.7, 127.5, 127.8, 129.1, 139.1, 149.3; u (C, CH₂) 26.1, 26.2, 26.7, 33.7, 33.8, 46.7, 52.4, 139.9, 154.6, 169.8, 171.1; IR (neat) 3301, 2930, 2854, 1635 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₉H₂₃N₃O₂S ([M+H]⁺), 358.1589, found 358.1580.

NMR Spectra for Chemotype I Compounds and New Synthetic Intermediates

Synthesis of Agonist Chemotype II Compounds 2{n}

Compounds $2\{1\}$, $2\{3\}$ and $2\{5\}$ to $2\{7\}$ are available as milligram quantity dry powder samples from several commercial vendors of screening compounds.

Scheme 2. Representative synthetic sequence^a.

^a Reagents and conditions: (a) MeCN (74% yield); (b) NaOH, water, reflux (96% yield); (c) 3,4dichlorobenzyl chloride, K₂CO₃, acetone (77% yield).

Scaffold synthesis.

N-(Furan-2-ylmethyl)-2-picolinoylhydrazinecarbothioamide. 2-Picolynyl hydrazide (410 mg, 2.99 mmol) and furfuryl isothiocyanate (416 mg, 2.99 mmol) in MeCN (15 mL) were stirred for 16 h at rt. The reaction mixture was filtered, the precipitate washed with additional MeCN ($3 \times 10 \text{ mL}$) and dried under vacuum to afford the thioamide as an off-white solid (610 mg, 2.21 mmol, 74% yield), which was used without further purification. Mp = 167-169 °C; ¹H NMR

(DMSO-d6) δ 4.67 (d, J = 4.8 Hz, 2 H), 6.27 (d, J = 2.8 Hz, 1 H), 6.38 (dd, J = 2.0, 3.2 Hz, 1 H), 7.54 (s, 1 H), 8.02 (m, 2 H), 8.45 (br s, 1 H), 8.66 (d, J = 4.4 Hz, 1 H), 9.52 (br s, 1 H), 10.61 (s, 1 H); ¹³C NMR (DMSO-d6) δ d 107.0, 110.4, 122.5, 126.9, 137.6, 141.7, 148.4; u 40.6, 149.3, 152.1, 181.8, 202.5; IR (neat) 3135, 1673, 1533, 1500, 1465 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₂H₁₃N₄O₂S ([M+H]⁺), 277.0759, found 277.0761.

4-(Furan-2-ylmethyl)-3-(pyridin-2-yl)-1*H***-1,2,4-triazole-5(4***H***)-thione**. To a slurry of the above thioamide (530 mg, 1.92 mmol) in water (25 mL) was added NaOH (4.00 g, 100 mmol). The reaction was heated at reflux for 2 h, the starting thioamide dissolved promptly upon warming. The reaction was cooled to rt, diluted with aqueous HCl (1 N, 20 mL) and acidified to pH = 6 with concentrated HCl. The solid precipitate was filtered, washed with water (2 × 15 mL) and dried under vacuum to afford the thione as a white solid (478 mg, 1.85 mmol, 96% yield), which was used without further purification. Mp = 181-186 °C; ¹H NMR (DMSO-d6) δ 5.87 (s, 2 H), 6.12 (d, *J* = 1.2 Hz, 1 H), 6.27 (dd, *J* = 0.8, 2.8 Hz, 1 H), 7.45 (s, 1 H), 7.55 (m, 1 H), 7.97 (m, 2 H), 8.73 (d, *J* = 4.8 Hz, 1 H); ¹³C NMR (DMSO-d6) δ d 108.5, 110.4, 122.9, 125.3, 137.8, 142.6, 149.1; u 41.0, 145.7, 148.3, 149.2, 168.6; IR (neat) 3021, 2894, 2766, 1585, 1550, 1502, 1463 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₂H₁₁N₄OS ([M+H]⁺), 259.0654, found 259.0642.

N-(Thiophen-2-ylmethyl)-2-picolinoylhydrazinecarbothioamide. 2-Picolynyl hydrazide (883 mg, 6.44 mmol) and thiophene isothiocyanate (1,000 mg, 6.44 mmol) in MeCN (20 mL) were stirred for 16 h at rt. The reaction mixture was filtered, the precipitate washed with additional MeCN (3×10 mL) and dried under vacuum to afford the thioamide as an off-white solid (1,642 mg, 5.62 mmol, 87% yield), which was used without further purification. Mp = 175-178 °C; ¹H NMR (DMSO-d6) δ 4.84 (d, J = 6.0 Hz, 2 H), 6.93 (m, 1 H), 7.00 (m, 1 H), 7.36 (dd, J = 1.2, 4.8 Hz, 1 H), 7.63 (m, 1 H), 8.03 (m, 2 H), 8.56 (br s, 1 H), 8.66 (d, J = 4.8 Hz, 1 H), 9.50 (br s, 1 H), 10.60 (s, 1 H); ¹³C NMR (DMSO-d6) δ d 122.5, 124.9, 125.8, 126.2, 126.9, 137.6, 148.4; u 42.1, 141.9, 149.3, 181.4, 198.3; IR (neat) 3141, 1672, 1527, 1499, 1466 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₂H₁₃N₄OS₂ ([M+H]⁺), 293.0531, found 293.0516.

4-(Thiophene-2-ylmethyl)-3-(pyridin-2-yl)-1*H***-1,2,4-triazole-5(4***H***)-thione**. To a slurry of the above thioamide (602 mg, 2.06 mmol) in water (25 mL) was added NaOH (4.00 g, 100 mmol). The reaction was heated at reflux for 2 h, the starting thioamide dissolving promptly upon warming. The reaction was cooled to rt, diluted with aqueous HCl (1 N, 20 mL) and acidified to pH = 6 with concentrated HCl. The solid precipitate was filtered, washed with water (2 × 15 mL) and dried under vacuum to afford the thione as a white solid (530 mg, 1.93 mmol, 94% yield), which was used without further purification. Mp = 229-231 °C; ¹H NMR (DMSO-d6) δ 6.02 (s, 2 H), 6.87 (dd, *J* = 3.2, 4.8 Hz, 1 H), 7.09 (d, *J* = 2.4 Hz, 1 H), 7.34 (dd, *J* = 0.8, 5.2 Hz, 1 H), 7.59 (q, *J* = 4.4 Hz, 1 H), 7.99 (d, *J* = 4.4 Hz, 2 H), 8.80 (d, *J* = 4.8 Hz, 1 H), 14.2 (br s, 1 H), 10.60 (s, 1 H); ¹³C NMR (DMSO-d6) δ d 122.8, 125.5, 126.3, 126.5, 128.1, 138.0, 149.0; u 42.3, 137.8, 145.5, 147.8, 168.3; IR (neat) 3019, 2896, 1584, 1549, 1501, 1462 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₂H₁₁N₄S₂ ([M+H]⁺), 275.0475, found 275.0412.

General procedure for the synthesis of series 2 analogs from thiones and benzyl halides.

The thione scaffold (0.1 to 0.3 mmol), K_2CO_3 (2 equiv) and the benzyl halide (1.2 equiv) were combined in acetone (15 mL/mmol substrate) and stirred in a sealed vial. After 15 h, the solvent was removed and the residue washed with CH_2Cl_2 (2 × 3 mL) and filtered. The combined filtrates were evaporated down and either chromatographed on silica or purified by massdirected, reverse phase preparative HPLC.

2-(5-((2,4-Dichlorobenzyl)thio)-4-(thiophen-2-ylmethyl)-4H-1,2,4-triazol-3-yl)pyridine 2*{2}*. (CID 44601469) Following the general procedure above and purification by silica gel chromatography, thiophene thione (65 mg, 0.24 mmol) and 2,4-dichlorobenzyl chloride (56 mg, 0.28 mmol) afforded the product as an off-white solid (78 mg, 0.18 mmol, 76% yield). Mp = 127-128 °C; R_f = 0.28 (1:1 Hexanes: EtOAc); ¹H NMR (CDCl₃) δ 4.56 (s, 2 H), 5.91 (s, 2 H), 6.83 (dd, *J* = 3.6, 4.8 Hz, 1 H), 6.97 (d, *J* = 3.2 Hz, 1 H), 7.11 (dd, *J* = 2.4, 4.4 Hz, 1 H), 7.13 (dd, *J* = 1.2, 5.6 Hz, 1 H), 7.34 (m, 1 H), 7.37 (d, *J* = 2.0 Hz, 1 H), 7.43 (d, *J* = 8.4 Hz, 1 H), 7.81 (dt, *J* = 1.6, 8.0 Hz, 1 H), 8.29 (d, *J* = 8.0 Hz, 1 H), 8.66 (d, *J* = 4.0 Hz, 1 H); ¹³C NMR (CDCl₃) δ d 123.1, 124.2, 126.3, 126.4, 127.2, 127.6, 129.4, 132.2, 137.0, 148.5; u 34.9, 43.6, 133.3, 134.3, 134.8, 137.6, 147.5, 152.1, 152.4; IR (neat) 3060, 1587, 1565, 1467 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₉H₁₅Cl₂N₄S₂ ([M+H]⁺), 433.0115, found 433.0108.

2-(5-((4-Bromobenzyl)thio)-4-(thiophen-2-ylmethyl)-4H-1,2,4-triazol-3-yl)pyridine 2{4}.

(CID 44601472) Following the general procedure above and purification by silica gel chromatography, thiophene thione (65 mg, 0.24 mmol) and 4-bromobenzyl bromide (71 mg, 0.28 mmol) afforded the product as a pale yellow solid (56 mg, 0.13 mmol, 53% yield). Mp = 99-101 °C; R_f = 0.23 (1:1 Hexanes: EtOAc); ¹H NMR (CDCl₃) δ 4.44 (s, 2 H), 5.92 (s, 2 H), 6.85 (dd, *J* = 3.6, 4.8 Hz, 1 H), 6.97 (d, *J* = 2.8 Hz, 1 H), 7.16 (d, *J* = 5.2 Hz, 1 H), 7.27 (d, *J* = 8.4 Hz, 2 H), 7.35 (dd, *J* = 4.8, 7.6 Hz, 1 H), 7.41 (d, *J* = 8.4 Hz, 2 H), 7.82 (dt, *J* = 2.0, 8.0 Hz, 1 H), 8.30 (d, *J* = 8.0 Hz, 1 H), 8.67 (d, *J* = 4.4 Hz, 1 H); ¹³C NMR (CDCl₃) δ d 123.2, 124.2, 126.3, 126.4, 127.6, 130.8 (× 2), 131.7 (× 2), 137.0, 148.5; u 37.3, 43.6, 121.7, 135.8, 137.7, 147.6, 152.2, 152.3; IR (neat) 3053, 1589, 1569, 1487 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₉H₁₆BrN₄S₂ ([M+H]⁺), 443.0000, found 442.9994.

2-(5-(3,4-Dichlorobenzylthio)-4-(furan-2-ylmethyl)-4H-1,2,4-triazol-3-yl)pyridine 2{8}.

(CID44601470). Following the general procedure above and purification by silica gel chromatography, furan thione (93 mg, 0.36 mmol) and 3,4-dichlorobenzyl chloride (84 mg, 0.43 mmol) afforded the product as an off-white solid (116 mg, 0.28 mmol, 77% yield). $R_f = 0.24$ (1:1 Hexanes: EtOAc); ¹H NMR (acetone-d6) δ 4.54 (s, 2 H), 5.91 (s, 2 H), 6.24 (d, J = 2.8 Hz, 1 H), 6.29 (dd, J = 2.0, 3.2 Hz, 1 H), 7.40-7.51 (complex, 4 H), 7.70 (d, J = 2.0 Hz, 1 H), 7.96 (dt, J = 1.6, 7.6 Hz, 1 H), 8.24 (d, J = 8.0 Hz, 1 H), 8.72 (d, J = 4.4 Hz, 1 H); ¹³C NMR (acetone-d6) δ d 109.7, 111.3, 123.7, 125.2, 130.1, 131.4, 132.0, 138.2, 143.8, 149.7; u 36.7, 42.7, 131.7, 132.5, 139.7, 148.8, 150.3, 152.8, 153.4; IR (neat) 1701, 1589, 1463, 1446 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₉H₁₅Cl₂N₄OS ([M+H]⁺), 417.0344, found 417.0353.

2-(5-((3,4-Dichlorobenzyl)thio)-4-(thiophen-2-ylmethyl)-4H-1,2,4-triazol-3-yl)pyridine 2*{9}*. (CID 44601475) Following the general procedure above and purification by silica gel chromatography, thiophene thione (65 mg, 0.24 mmol) and 2,4-dichlorobenzyl chloride (56 mg, 0.28 mmol) afforded the product as an off-white solid (92 mg, 0.21 mmol, 90% yield). Mp = 162-163 °C; $R_f = 0.24$ (1:1 Hexanes: EtOAc); ¹H NMR (CDCl₃) δ 4.42 (s, 2 H), 5.93 (s, 2 H), 6.85 (dd, J = 3.6, 4.8 Hz, 1 H), 6.98 (d, J = 2.4 Hz, 1 H), 7.15 (dd, J = 0.8, 4.8 Hz, 1 H), 7.23 (dd, J = 1.6, 8.0 Hz, 1 H), 7.33 (m, 2 H), 7.48 (d, J = 2.0 Hz, 1 H), 7.80 (dt, J = 1.6, 8.0 Hz, 1 H), 8.66 (d, J = 3.6 Hz, 1 H); ¹³C NMR (CDCl₃) δ d 123.2, 124.3, 126.4, 126.5, 127.7, 128.6, 130.6, 131.0, 137.1, 148.6; u 36.6, 43.8, 131.9, 132.6, 137.7, 147.6 (× 2), 152.0, 152.5; IR (neat) 3052, 1589, 1568, 1463 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₉H₁₅Cl₂N₄S₂ ([M+H]⁺), 433.0115, found 433.0108.

2-(4-(Furan-2-ylmethyl)-5-((4-methylbenzyl)thio)-*4H***-1,2,4-triazol-3-yl)pyridine 2***{10}.* (CID 44601474) Following the general procedure above and purification by silica gel chromatography, furan thione (60 mg, 0.23 mmol) and 4-methylbenzyl bromide (51 mg, 0.28 mmol) afforded the product as a white solid (54 mg, 0.15 mmol, 65% yield). Mp = 102-104 °C; R_{*f*} = 0.26 (1:1 Hexanes: EtOAc); ¹H NMR (CDCl₃) δ 2.32 (s, 3 H), 4.46 (s, 2 H), 5.80 (s, 2 H), 6.10 (d, *J* = 2.8 Hz, 1 H), 6.19 (m, 1 H), 7.11 (d, *J* = 7.6 Hz, 2 H), 7.23 (d, *J* = 1.2 Hz, 1 H), 7.27 (d, *J* = 8.0 Hz, 2 H), 7.32 (ddd, *J* = 0.8, 4.8, 7.6 Hz, 1 H), 7.80 (dt, *J* = 1.6, 8.0 Hz, 1 H), 8.27 (d, *J* = 8.4 Hz, 2 H), 8.63 (d, *J* = 4.4 Hz, 1 H); ¹³C NMR (CDCl₃) δ d 21.1, 108.8, 110.3, 123.3, 124.0, 129.0 (× 2), 129.3 (× 2), 136.9, 142.5, 148.5; u 38.1, 41.8, 133.4, 137.5, 147.8, 149.1, 152.5, 153.0; IR (neat) 2924, 1589, 1514 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₀H₁₉N₄OS ([M+H]⁺), 363.1280, found 363.1281.

2-(5-((4-Methylbenzyl)thio)-4-(thiophen-2-ylmethyl)-4H-1,2,4-triazol-3-yl)pyridine 2{11}.

(CID 44601473) Following the general procedure above and purification by silica gel chromatography, thiophene thione (65 mg, 0.24 mmol) and 4-methylbenzyl bromide (53 mg, 0.28 mmol) afforded the product as an off-white solid (79 mg, 0.21 mmol, 88% yield). Mp = 97-99 °C; $R_f = 0.23$ (1:1 Hexanes: EtOAc); ¹H NMR (CDCl₃) δ 2.31 (s, 3 H), 4.46 (s, 2 H), 5.89 (s, 2 H), 6.83 (dd, J = 3.6, 4.8 Hz, 1 H), 6.98 (d, J = 3.2 Hz, 1 H), 7.10 (d, J = 8.0 Hz, 2 H), 7.13 (d, J = 4.8 Hz, 1 H), 7.27 (d, J = 8.0 Hz, 2 H), 7.32 (dd, J = 4.8, 6.8 Hz, 1 H), 7.79 (dt, J = 1.6, 8.0 Hz, 1 H), 8.30 (d, J = 7.6 Hz, 1 H), 8.65 (d, J = 4.4 Hz, 1 H); ¹³C NMR (CDCl₃) δ d 21.1, 123.1, 124.0, 126.2, 126.3, 127.6, 129.0 (× 2), 129.3 (× 2), 136.9, 148.4; u 38.0, 43.5, 133.3, 137.5, 137.8, 147.7, 152.1, 152.7; IR (neat) 3050, 2920, 1589, 1514 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₀H₁₉N₄S₂ ([M+H]⁺), 379.1051, found 379.1053.

2-(4-(Furan-2-ylmethyl)-5-((4-methoxybenzyl)thio)-*4H***-1,2,4-triazol-3-yl)pyridine** 2*{12}.* (CID 2562032) Following the general procedure above and purification by silica gel chromatography, furan thione (57 mg, 0.22 mmol) and 4-methoxybenzyl chloride (42 mg, 0.27 mmol) afforded the product as a white solid (81 mg, 0.21 mmol, 97% yield). Mp = 76-79 °C; R_{*f*} = 0.20 (1:1 Hexanes: EtOAc); ¹H NMR (CDCl₃) δ 3.76 (s, 3 H), 4.44 (s, 2 H), 5.78 (s, 2 H), 6.10 (d, *J* = 2.8 Hz, 1 H), 6.18 (dd, *J* = 2.0, 3.2 Hz, 1 H), 6.82 (d, *J* = 8.8 Hz, 2 H), 7.21 (d, *J* = 1.2 Hz, 1 H), 7.30 (m, 3 H), 7.78 (dt, *J* = 1.2, 7.6 Hz, 1 H), 8.26 (d, *J* = 8.0 Hz, 2 H), 8.62 (d, *J* = 4.0 Hz, 1 H); ¹³C NMR (CDCl₃) δ d 55.1, 108.8, 110.2, 114.0 (× 2), 123.2, 123.9, 125.2, 130.2 (× 2), 136.8, 142.4, 148.4; u 37.9, 41.7, 128.4, 147.7, 149.0, 152.4, 152.9, 159.1; IR (neat) 2934, 2836, 1609, 1589, 1511 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₀H₁₉N₄O₂S ([M+H]⁺), 379.1229, found 379.1203.

2-(5-((4-Methoxybenzyl)thio)-4-(thiophen-2-ylmethyl)-4H-1,2,4-triazol-3-yl)pyridine 2*{13}*. (CID 44601471) Following the general procedure above and purification by silica gel chromatography, thiophene thione (65 mg, 0.24 mmol) and 4-methoxybenzyl bromide (57 mg, 0.28 mmol) afforded the product as an off-white solid (82 mg, 0.21 mmol, 88% yield). Mp = 91-93 °C; R_f = 0.25 (1:1 Hexanes: EtOAc); ¹H NMR (CDCl₃) δ 3.77 (s, 3 H), 4.45 (s, 2 H), 5.89 (s, 2 H), 6.84 (complex, 3 H), 6.98 (d, *J* = 3.2 Hz, 1 H), 7.14 (d, *J* = 4.4 Hz, 1 H), 7.30 (d, *J* = 8.8 Hz, 2 H), 7.34 (d, *J* = 5.6 Hz, 1 H), 7.80 (dt, *J* = 1.2, 8.0 Hz, 1 H), 8.30 (d, *J* = 8.0 Hz, 1 H), 8.67 (d, *J* = 4.4 Hz, 1 H); ¹³C NMR (CDCl₃) δ d 55.2, 114.0 (× 2), 123.1, 124.1, 126.2, 126.4, 127.6, 130.3(× 2), 137.0, 148.4; u 37.9, 43.5, 128.4, 137.9, 147.7, 152.1, 152.7, 159.1; IR (neat) 2934, 1609, 1588, 1511, cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₀H₁₉N₄OS₂ ([M+H]⁺), 395.1000, found 395.0994.

2-(5-(Benzylthio)-4-(furan-2-ylmethyl)-4*H***-1,2,4-triazol-3-yl)pyridine 2***{14}***. (CID 44601466) Following the general procedure above and purification by silica gel chromatography, furan thione (60 mg, 0.23 mmol) and benzyl bromide (47 mg, 0.28 mmol) afforded the product as a white solid (56 mg, 0.16 mmol, 70% yield). Mp = 105-106 °C; R_f = 0.19 (1:1 Hexanes: EtOAc); ¹H NMR (CDCl₃) \delta 4.48 (s, 2 H), 5.78 (s, 2 H), 6.10 (d,** *J* **= 2.8 Hz, 1 H), 6.18 (dd,** *J* **= 2.4, 3.2 Hz, 1 H), 7.22-7.39 (complex, 7 H), 7.78 (dt,** *J* **= 1.6, 8.0 Hz, 1 H), 8.27 (d,** *J* **= 8.0 Hz, 2 H), 8.62 (d,** *J* **= 4.4 Hz, 1 H); ¹³C NMR (CDCl₃) \delta d 108.8, 110.3, 123.3, 124.0, 127.7, 128.6 (× 2), 129.0 (× 2), 136.9, 142.5, 148.4; u 38.3, 41.7, 136.5, 147.7, 149.0, 152.5, 152.8; IR (neat) 3029, 1589, 1496 cm⁻¹; HRMS (ESI)** *m/z* **calcd for C₁₉H₁₇N₄OS ([M+H]⁺), 349.1123, found 349.1127.**

2-(5-(Benzylthio)-4-(thiophen-2-ylmethyl)-4H-1,2,4-triazol-3-yl)pyridine 2{15}. (CID

44601467) Following the general procedure above and purification by silica gel chromatography, thiophene thione (65 mg, 0.24 mmol) and benzyl bromide (49 mg, 0.28 mmol) afforded the product as an off-white solid (72 mg, 0.20 mmol, 83% yield). Mp = 107-109 °C; R_f = 0.25 (1:1 Hexanes: EtOAc); ¹H NMR (CDCl₃) δ 4.49 (s, 2 H), 5.89 (s, 2 H), 6.84 (t, *J* = 4.0 Hz, 1 H), 6.99 (m, 1 H), 7.14 (d, *J* = 3.2 Hz, 1 H), 7.26-7.39 (complex, 6 H), 7.81 (t, *J* = 7.2 Hz, 1 H), 8.31 (d, *J* = 8.0 Hz, 2 H), 8.66 (m, 1 H); ¹³C NMR (CDCl₃) δ d 123.2, 124.1, 126.2, 126.4, 127.6, 127.7, 128.6 (× 2), 129.1 (× 2), 137.0, 148.4; u 38.3, 43.5, 136.5, 137.8, 147.7, 152.2, 152.6; IR (neat) 3060, 1588, 1462 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₉H₁₇N₄S₂ ([M+H]⁺), 365.0895, found 365.0893.

2-(5-((2,4-Difluorobenzyl)thio)-4-(thiophen-2-ylmethyl)-4*H*-1,2,4-triazol-3-yl)pyridine

2*{16}*. (CID 44601468) Following the general procedure above and purification by silica gel chromatography, thiophene thione (65 mg, 0.24 mmol) and 2,4-difluorobenzyl bromide (59 mg,

0.28 mmol) afforded the product as a light yellow solid (68 mg, 0.17 mmol, 72% yield). Mp = 122-124 °C; $R_f = 0.29$ (1:1 Hexanes: EtOAc); ¹H NMR (CDCl₃) δ 4.49 (s, 2 H), 5.93 (s, 2 H), 6.74-6.85 (complex, 3 H), 6.92 (dd, J = 1.2, 3.2 Hz, 1 H), 7.14 (dd, J = 1.2, 4.8 Hz, 1 H), 7.34 (dd, J = 5.2, 6.8 Hz, 1 H), 7.43 (dt, J = 6.4, 8.8 Hz, 1 H), 7.81 (dt, J = 1.6, 8.0 Hz, 1 H), 8.30 (d, J = 8.4 Hz, 1 H), 8.67 (s, 1 H); ¹³C NMR (CDCl₃) δ d 103.9 (t, J = 25 Hz), 111.2 (d, J = 25 Hz), 123.1, 124.2, 126.3, 126.4, 127.6, 132.2, 137.0, 148.4; u 30.5, 43.6, 120.0, 120.1, 137.6, 147.5, 152.3, 160.5 (dd, J = 12, 172 Hz), 162.9 (dd, J = 12, 167 Hz); IR (neat) 3053, 1617, 1603, 1589, 1502 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₉H₁₅F₂N₄S₂ ([M+H]⁺), 401.0706, found 401.0704.

Peak #	RT	Height	Height %	Area	Area %	Area Sum %	Width
1	2.888	67.5	7.47	98.15	7.46	6.94	0.023
2	3.125	903.64	100	1316.28	100	93.06	0.023

NMR spectra for Chemotype II compounds and new synthetic intermediates.

Synthesis of Antagonist Chemotype III Compounds 3{n}.

Compounds $3\{1\}$, $3\{2\}$ and $3\{3\}$ are available as milligram quantity dry powder samples from several commercial vendors of screening compounds.

Scheme 3. Representative synthetic sequence^a.

^a Reagents and conditions: (a) *p*-toluenesulfonyl chloride, Na₂CO₃, water (66 % yield); (b) thionyl chloride, 65 °C (quant.); (c) chloroacetonitrile, KI, K₂CO₃, MeCN (93 % yield); (d) LiAlH₄, ether (62 % yield); (e) Et₃N, CH₂Cl₂ (52 % yield).

Chemotype III experimental subsections:

Carboxylic acid scaffold synthesis	S49
Procedure for conversion to the acid chloride	S63
Diamine fragment synthesis: amino nitrile synthesis	S63
Diamine fragment synthesis: amino nitrile reduction	S66
Synthesis of Chemotype III analogs	S69

Carboxylic acid scaffold synthesis.

The sulfonamide carboxylic acid fragments 4-(phenylsulfonamidomethyl)benzoic acid,⁵ 4-((4-methylphenylsulfonamido)methyl)benzoic acid,⁶ 4-((4-

bromophenylsulfonamido)methyl)benzoic acid,⁵ were prepared according to their published protocols.

General sulfonamide synthesis procedure for the synthesis of sulfonamide carboxylic acid

fragments. 4-Methylaminobenzoic acid and the appropriate sulfonyl chloride were reacted according to the protocol of Deng and Mani.⁶ Thus, 4-methylaminobenzoic acid and the appropriate sulfonyl chloride (1.0 equiv.) were suspended in water (30 mL) and the pH maintained at ~ 8 by the addition of saturated Na₂SO₄. After approximately 30 min and following the complete dissolution of reactants, the reaction was acidified slowly with concentrated HCl, the precipitate filtered and washed with water. The product was dried under vacuum and used without further purification.

4-((4-Ethylphenylsulfonamido)methyl)benzoic acid. 4-Ethylphenylsulfonyl chloride (677 mg, 3.31 mmol) was reacted according to the general sulfonamide synthesis procedure to afford the sulfonamidebenzoic acid product (969 mg, 3.03 mmol, 92% yield) as a white solid. Mp = 210-211 °C; ¹H NMR (400 MHz, DMSO-d6) δ 1.20 (t, *J* = 7.2 Hz, 3 H), 2.68 (q, *J* = 7.6 Hz, 2 H), 4.03 (s, 2 H), 7.28 (d, *J* = 8.4 Hz, 2 H), 7.40 (d, *J* = 8.8 Hz, 2 H), 7.71 (d, *J* = 8.4 Hz, 2 H), 7.82 (d, *J* = 8.4 Hz, 2 H), 8.18 (br s, 1 H); ¹³C NMR (101 MHz, DMSO-d6) δ d 15.2, 126.6 (× 2), 127.2 (× 2), 128.5 (× 2), 129.1 (× 2); u 28.0, 45.9, 130.0, 138.0, 141.3, 148.6, 167.8; IR (neat) 3275, 2970, 1672, 1305 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₆H₁₆NO₄S ([M-H]⁻), 318.0800, found 318.0817.

4-((4-Methoxyphenylsulfonamido)methyl)benzoic acid. 4-Methoxyphenylsulfonyl chloride (684 mg, 3.31 mmol) was reacted according to the general sulfonamide synthesis procedure to afford the sulfonamidebenzoic acid product (697 mg, 2.17 mmol, 66% yield) as a white solid. Mp = 161-164 °C; ¹H NMR (400 MHz, DMSO-d6) δ 3.82 (s, 3 H), 4.02 (d, *J* = 6.0 Hz, 2 H), 7.08 (d, *J* = 8.8 Hz, 2 H), 7.35 (d, *J* = 8.1 Hz, 2 H), 7.73 (d, *J* = 8.8 Hz, 2 H), 7.85 (d, *J* = 8.1 Hz, 2 H), 8.12 (t, *J* = 6.3 Hz, 1 H); ¹³C NMR (101 MHz, DMSO-d6) δ d 55.6, 114.3 (× 2), 127.6 (×

2), 128.7 (× 2), 129.2 (× 2); u 45.8, 129.6, 132.3, 142.9, 162.1, 167.1; IR (neat) 3276, 1684, 1594, 1498 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₄H₁₆NO₅S ([M+H]⁺), 322.0749, found 322.0741.

4-((3-Methylphenylsulfonamido)methyl)benzoic acid. 3-Methylphenylsulfonyl chloride (631 mg, 3.31 mmol) was reacted according to the general sulfonamide synthesis procedure to afford the sulfonamidebenzoic acid product (424 mg, 1.39 mmol, 42% yield) as a white solid. Mp = 194-195 °C; ¹H NMR (400 MHz, DMSO-d6) δ 2.35 (s, 3 H), 4.06 (d, *J* = 6.4 Hz, 2 H), 7.35 (d, *J* = 8.4 Hz, 2 H), 7.41-7.47 (m, 2 H), 7.57-7.60 (m, 2 H), 7.84 (d, *J* = 8.4 Hz, 2 H), 8.21 (t, *J* = 6.4 Hz, 1 H); ¹³C NMR (101 MHz, DMSO-d6) δ d 20.8, 123.6, 126.7, 127.5 (× 2), 129.0, 129.2 (× 2), 132.9; u 45.8, 138.8, 140.6, 142.8, 166.2, 167.1; IR (neat) 3260, 1687, 1427, 1325, 1152 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₅H₁₄NO₄S ([M-H]⁻), 304.0644, found 304.0654.

4-((4-Trimethylphenylsulfonamido)methyl)benzoic acid. Mesitylenesulfonyl chloride (724 mg, 3.31 mmol) was reacted according to the general sulfonamide synthesis procedure to afford the sulfonamidebenzoic acid product (823 mg, 2.47 mmol, 75% yield) as a white solid. Mp = 144-146 °C; ¹H NMR (400 MHz, DMSO-d6) δ 2.23 (s, 3 H), 2.53 (s, 6 H), 4.04 (d, *J* = 6.0 Hz, 2 H), 6.96 (s, 2 H), 7.29 (d, *J* = 8.0 Hz, 2 H), 7.79 (d, *J* = 8.0 Hz, 2 H), 8.11 (t, *J* = 6.4 Hz, 1 H); ¹³C NMR (101 MHz, DMSO-d6) δ d 20.3, 22.6, 22.7, 127.4, 129.1, 130.0 (× 2), 131.6; u 45.1,

136.0, 136.7, 138.2 (× 2), 141.4, 143.1, 167.1; IR (neat) 3265, 1691, 1426, 1157 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₇H₁₈NO₄S ([M-H]⁻), 332.0957, found 332.0974.

Methyl 4-((4-propylphenylsulfonamido)methyl)benzoate. Methyl 4-aminomethyl-benzoate hydrochloride (300 mg, 1.44 mmol) and triethylamine (0.46 mL, 3.30 mmol, 2.3 equiv.) were dissolved in CH₂Cl₂ (5 mL) then 4-*n*-propylbenzenesulfonylchloride (0.26 mL, 1.45 mmol) was added and the reaction mixture was stirred for 7 hours. The reaction was neutralized with 2N HCl. The aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with 1N NaOH. The basic, aqueous solution was further extracted with dichloromethane. The combined organic layers were washed with brine, dried over MgSO₄, filtered and evaporated to provide the product as a white solid (465 mg, 1.39 mmol, 93% yield). Rf = 0.85 (EtOAc:hexanes 1:1); mp = 134-138 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.94 (t, *J* = 7.4 Hz, 3 H), 1.56- 1.77 (m, 2 H), 2.65 (t, *J* = 7.6 Hz, 2 H), 3.88 (s, 3 H), 4.18 (d, *J* = 6.4 Hz, 2 H), 5.01 (t, *J* = 6.4 Hz, 1 H), 7.18-7.31 (complex, 4 H), 7.74 (d, *J* = 8.4 Hz, 2 H), 7.90 (d, *J* = 8.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 13.7, 52.2, 127.2, 127.7, 129.2, 129.9; u 24.2, 37.9, 46.9, 127.1, 129.7, 137.0, 141.6, 148.4, 166.7; IR (neat) 1719, 1279, 1156 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₁₈H₂₂NO₄S ([M+H]⁺), 348.1270, found 348.1262.

4-((4-propylphenylsulfonamido)methyl)benzoic acid. 1N NaOH (2 mL, 2.0 mmol, 4.7 equiv.) was added to a solution of methyl 4-((4-*n*-propyl)phenylsulfonamido)methyl)benzoate (150 mg, 0.43 mmol) in THF (2 mL). The resulting reaction mixture was stirred for 16 hours and

concentrated *in vacuo*. Water was added, and the pH adjusted to 1 with concentrated HCl. The precipitated solid was filtered and dried *in vacuo* to afford the product as a white solid (117 mg, 0.35 mmol, 81% yield). Mp = 207-220 °C; ¹H NMR (400 MHz, d₆-DMSO) δ 0.88 (t, *J* = 7.2 Hz, 3 H), 1.50-1.68 (m, 2 H), 2.60 (t, J = 7.6 Hz, 2 H), 4.05 (d, *J* = 6.4 Hz, 2 H), 7.25-7.45 (complex, 4 H), 7.68 (d, *J* = 8.3 Hz, 2 H), 7.81 (d, *J* = 8.2 Hz, 2 H), 8.24 (t, *J* = 6.4 Hz, 1 H), 12.89 (br s, 1 H); ¹³C NMR (100 MHz, d₆-DMSO) δ d 13.5, 126.5, 127.5, 129.0, 129.2; u 23.7, 36.9, 45.7, 129.5, 138.1, 142.8, 147.0, 167.0; IR (neat) 1683, 1318, 1288, 1148 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₁₇H₂₀NO₄S ([M-H]⁺), 332.0957, found 332.0971.

Methyl 4-((4-isopropylphenylsulfonamido)methyl)benzoate. Methyl 4-aminomethyl-benzoate hydrochloride (300 mg, 1.44 mmol) and triethylamine (0.46 mL, 3.30 mmol, 2.3 equiv.) were dissolved in CH₂Cl₂ (5 mL) then 4-isopropylbenzenesulfonylchloride (316 mg, 1.45 mmol) was added and the reaction mixture was stirred for 7 hours. The reaction was neutralized with 2N HCl. The aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with 1N NaOH. The basic, aqueous solution was further extracted with dichloromethane. The combined organic layers were washed with brine, dried over MgSO₄, filtered and evaporated to provide the product as a white solid (381 mg, 1.10 mmol, 74% yield). Rf = 0.70 (EtOAc:hexanes 1:1); mp = 156-158 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.26 (d, *J* = 6.8 Hz, 6 H), 2.90-3.03 (m, 1 H), 3.89 (s, 3 H), 4.20 (d, *J* = 6.4 Hz, 2 H), 4.98 (t, *J* = 6.4 Hz, 1 H), 7.20-7.38 (complex, 4 H), 7.75 (d, *J* = 8.6 Hz, 2 H), 7.91 (d, *J* = 8.6 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 23.7, 34.2,

52.2, 127.3, 127.7, 129.9, 129.9; u 46.9, 129.6, 137.1, 141.5, 154.4, 166.7; IR (neat) 1718, 1279, 1159 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₁₈H₂₂NO₄S ([M+H]⁺), 348.1270, found 348.1258.

4-((4-Isopropylphenylsulfonamido)methyl)benzoic acid. 1N NaOH (2 mL, 2.0 mmol, 4.7 equiv.) was added to a solution of methyl 4-((4-isopropyl)phenylsulfonamido)methyl)benzoate (150 mg, 0.43 mmol) in THF (2 mL). The resulting reaction mixture was stirred for 16 hours and concentrated *in vacuo*. Water was added, and the pH adjusted to 1 with concentrated HCl. The precipitated solid was filtered and dried *in vacuo* to afford the product as a white solid (132 mg, 0.40 mmol, 92% yield). Mp = 243-247 °C; ¹H NMR (400 MHz, d₆-DMSO) δ 1.19 (d, *J* = 6.9 Hz, 6H), 2.93 (dt, *J* = 13.8, 6.9 Hz, 1H), 4.06 (d, *J* = 6.4 Hz, 2H), 7.35 (dd, *J* = 28.7, 8.3 Hz, 4H), 7.72-7.60 (m, 2H), 7.88-7.74 (m, 2H), 8.19 (t, *J* = 6.4 Hz, 1H), 12.87 (br s, 1H); ¹³C NMR (100 MHz, d₆-DMSO) δ d 23.5, 33.3, 126.6, 127.0, 127.5, 129.2; u 45.8, 129.5, 138.2, 142.8, 153.1, 167.1; IR (neat) 1677, 1318, 1280, 1156 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₁₇H₂₀NO₄S ([M-H]⁺), 332.0957, found 332.0971.

4-((4-*n***-Butylphenylsulfonamido)methyl)benzoic acid.** 4-*n*-Butylbenzenesulfonylchloride (794 mg, 3.31 mmol) and 4-(aminomethyl)-benzoic acid (500 mg, 3.31 mmol) in 15 mL of water were reacted according to the general sulfonamide synthesis procedure to afford the desired benzoic acid as a white solid (715 mg, 2.06 mmol, 62 % crude yield). Mp= 214-218 °C; ¹H NMR (400 MHz, DMSO-d6) δ 0.90 (t, *J* = 7.3 Hz, 3 H), 1.20-1.36 (m, 2 H), 1.48-1.62 (m, 2 H), 2.63 (t, *J* = 7.6 Hz, 2 H), 4.06 (d, *J* = 6.4 Hz, 2 H), 7.26-7.40 (complex, 4 H), 7.68 (d, *J* = 8.3 Hz, 2 H), 7.82

(d, J = 8.3 Hz, 2 H), 8.20 (t, J = 6.4 Hz, 1 H), 12.88 (br s, 1 H);¹³C NMR (400 MHz, DMSO-d6) δ d 21.7, 32.7, 34.5, 45.7, 129.5, 138.0, 142.8, 147.26, 167.1; u: 13.7, 126.5, 127.5, 128.9, 129.2; IR (neat) 1676, 1315, 1156 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₁₈H₂₀NO₄S ([M-H]⁺), 346.1113, found 346.1123.

Methyl 4-((4-isobutylphenylsulfonamido)methyl)benzoate. Methyl 4-aminomethyl-benzoate hydrochloride (224 mg, 1.08 mmol) and triethylamine (0.35 mL, 2.51 mmol, 2.3 equiv.) were dissolved in CH₂Cl₂ 5 mL then 4-isobutylbenzenesulfonylchloride (250 mg, 1.07mmol) was added and the reaction mixture was stirred for 7 hours. The reaction was neutralized with 2N HC1. The aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with 1N NaOH. The basic, aqueous solution was further extracted with dichloromethane. The combined organic layers were washed with brine, dried over MgSO₄, filtered and evaporated to provide the product as a white solid 348 mg, 0.963 mmol, 90% yield). Rf = 0.73 (EtOAc:hexanes 1:1); mp = 173-176 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.91 (d, *J* = 6.4 Hz, 6 H), 1.81-1.95 (m, 1 H), 2.53 (d, *J* = 7.2 Hz, 2 H), 3.89 (s, 3 H), 4.21 (d, *J* = 6.4 Hz, 2 H), 5.01 (t, *J* = 6.4 Hz, 1 H), 7.18-7.34 (complex, 4 H), 7.75 (d, *J* = 8.4 Hz, 2 H), 7.98-7.85 (d, *J* = 8.4 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ d 22.3, 30.1, 52.2, 127.0, 127.7, 129.8, 129.9; u 45.2, 46.9, 129.7, 137.1, 141.6, 147.4, 166.7; IR (neat) 1719, 1279, 1156 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₁₉H₂₄NO₄S ([M+H]⁺), 362.1426, found 362.1425.

4-((4-Isobutylphenylsulfonamido)methyl)benzoic acid. 1N NaOH (2 mL, 2.0 mmol, 4.7 equiv.) was added to a solution of methyl 4-((4-isobutylphenylsulfonamido)methyl)benzoate (150 mg, 0.42 mmol) in THF (2 mL). The resulting reaction mixture was stirred for 16 hours and concentrated *in vacuo*. Water was added, and the pH adjusted to 1 with concentrated HCl. The precipitated solid was filtered and dried *in vacuo* to afford the product as a white solid (126 mg, 0.36 mmol, 88% yield). Mp = 225-227 °C; ¹H NMR (400 MHz, d₆-DMSO) δ 0.85 (d, *J* = 6.4 Hz, 6 H), 1.75-1.92 (m, 1 H), 2.51 (d, *J* = 7.2 Hz, 3 H), 4.08 (d, *J* = 6.3 Hz, 2 H), 7.24-7.41 (m, 4 H), 7.68 (d, *J* = 8.3 Hz, 2 H), 7.82 (d, *J* = 8.3 Hz, 2 H), 8.22 (t, *J* = 6.4 Hz, 1 H), 12.88 (br s, 1 H). ¹³C NMR (100 MHz, d₆-DMSO) δ d 22.0, 29. 5, 126.3, 127.5, 129.2, 129.5; u 44.1, 45.7, 129.5, 138.2, 142.8, 146.0, 167.0; IR (neat) 1679, 1310, 1280, 1154 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₁₈H₂₀NO₄S ([M-H]⁺), 346.1113, found 346.1126.

Methyl 4-((4-sec-butylphenylsulfonamido)methyl)benzoate. Methyl 4-aminomethyl-benzoate hydrochloride (224 mg, 1.08 mmol) and triethylamine (0.35 mL, 2.51 mmol, 2.3 equiv.) were dissolved in CH_2Cl_2 5 mL then 4-*sec*-butylbenzenesulfonylchloride (250 mg, 1.07 mmol) was added and the reaction mixture was stirred for 7 hours. The reaction was neutralized with 2N HCl. The aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were washed with 1N NaOH. The basic, aqueous solution was further extracted with dichloromethane. The combined organic layers were washed with brine, dried over MgSO₄, filtered and evaporated to provide the product as a white solid (361 mg, 0.999 mmol, 93% yield). Rf = 0.76

(EtOAc:hexanes 1:1); mp = 154-156 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.81 (t, *J* = 7.4 Hz, 3 H), 1.24 (d, *J* = 6.9 Hz, 3 H), 1.51-1.70 (m, 2 H), 2.57-2.75 (m, 1 H), 3.88 (s, 3 H), 4.21 (d, *J* = 6.4 Hz, 2 H), 4.99 (t, *J* = 6.4 Hz, 1 H), 7.19-7.35 (complex, 4 H), 7.74 (d, J = 8.4 Hz, 2 H), 7.90 (d, J = 8.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 12.1, 21.5, 41.7, 52.2, 127.2, 127.7, 127.9, 129.90; u 30.9, 46.9, 129.7, 137.2, 141.6, 153.4, 166.7 IR (neat) 1718, 1278, 1157 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₁₉H₂₄NO₄S ([M+H]⁺), 362.1426, found 362.1422.

4-((4-sec-Butylphenylsulfonamido)methyl)benzoic acid. 1N NaOH (2 mL, 2.0 mmol, 4.8 equiv.) was added to a solution of methyl 4-((4-*sec*-butylphenylsulfonamido)methyl)benzoate (150 mg, 0.42 mmol) in THF (2 mL). The resulting reaction mixture was stirred for 16 hours and concentrated *in vacuo*. Water was added, and the pH adjusted to 1 with concentrated HCl. The precipitated solid was filtered and dried *in vacuo* to afford the product as a white solid (107 mg, 0.31 mmol, 74% yield). Mp = 226-232 °C; ¹H NMR (400 MHz, d₆-DMSO) δ 0.74 (t, *J* = 7.4 Hz, 3H), 1.17 (d, *J* = 6.9 Hz, 3H), 1.69-1.40 (m, 2H), 2.65 (dd, *J* = 14.1, 7.0 Hz, 1H), 4.08 (d, *J* = 6.4 Hz, 2H), 7.32 (dd, *J* = 13.2, 8.3 Hz, 4H), 7.67 (d, *J* = 8.3 Hz, 2H), 7.79 (d, *J* = 8.3 Hz, 2H), 8.21 (t, *J* = 6.4 Hz, 1H), 12.86 (br s, 1H); ¹³C NMR (100 MHz, d₆- DMSO) δ d 11.9, 21.3, 40.7, 126.5, 127.5, 127.6, 129.1; u 30.2, 45.8, 129.5, 138.3, 142.8, 151.9, 167.0; IR (neat) 1678, 1311, 1280, 1156 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₁₈H₂₀NO₄S ([M-H]⁺), 346.1113, found 346.1126.

Methyl 4-((4-*tert***-butylphenylsulfonamido)methyl)benzoate.** Methyl 4-aminomethyl-benzoate hydrochloride (300 mg, 1.44 mmol) and triethylamine (0.46 mL, 3.30 mmol, 2.3 equiv.) were dissolved in CH₂Cl₂ (5 mL) then 4-*tert*-butylbenzenesulfonylchloride (343 mg, 1.44 mmol) was added and the reaction mixture stirred for 7 hours. The reaction was acidified with 2N HCl. The aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with 1N NaOH. The basic, aqueous solution was further extracted with dichloromethane. The combined organic layers were washed with brine, dried over MgSO₄, filtered and evaporated to provide the product as a white solid (513 mg, 1.42 mmol, 98% yield). Rf = 0.87 (EtOAc:hexanes 1:1); mp = 193-195 °C; ¹H NMR (400 MHz, d₆-DMSO) δ 1.27 (s, 9 H), 3.82 (s, 3 H), 4.08 (d, *J* = 6.4 Hz, 2 H), 7.34 (d, *J* = 8.8 Hz, 2 H), 7.51 (d, *J* = 8.4 Hz, 2 H), 7.66 (m, *J* = 8.8, 2 H), 7.81 (d, *J* = 8.4 Hz, 2 H), 8.23 (t, *J* = 6.5 Hz, 1 H); ¹³C NMR (100 MHz, d₆-DMSO) δ d 30.7, 52.0, 125.9, 126.3, 127.7, 129.0; u 34.7, 45.7, 128.3, 137.9, 143.2, 155.2, 166.0; IR (neat) 1719, 1279, 1160, 1111 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₁₉H₂₄NO₄S ([M+H]⁺), 362.1436, found 362.1426.

4-((4-*tert*-**Butylphenylsulfonamido)methyl)benzoic acid.** 1N NaOH (4 mL, 4.0 mmol, 9.6 equiv.) was added to a solution of methyl 4-((4-*tert*-butylphenylsulfonamido)methyl)benzoate (150 mg, 0.42 mmol) in THF (4 mL). The resulting reaction mixture was stirred for 16 hours and concentrated *in vacuo*. Water was added, and the pH adjusted to 1 with concentrated HCl. The precipitated solid was filtered and dried *in vacuo* to afford the product as a white solid (138 mg, 0.40 mmol, 96% yield). Mp = 272-283 °C; ¹H NMR (400 MHz, d₆-DMSO) δ 1.18-1.35 (m, 9 H), 4.07 (d, *J* = 6.4 Hz, 2 H), 7.31 (d, *J* = 8.3 Hz, 2 H), 7.52 (d, *J* = 8.4 Hz, 2 H), 7.67 (d, *J* = 8.4 Hz, 2 H), 7.79 (d, *J* = 8.3 Hz, 2 H), 8.26 (t, *J* = 6.4 Hz, 1 H), 12.87 (s, 1 H); ¹³C NMR (100 MHz, d₆-DMSO) δ d 30.8, 125.8, 126.3, 127.5, 129.1; u 34.7, 45.8, 129.4, 137.9, 142.7, 155.2, 167.0; IR

(neat) 1683, 1318, 1150 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for $C_{18}H_{21}NO_4S$ ([M-H]⁺), 346.1113, found 346.1128.

Methyl 4-((4-cyclohexylphenylsulfonamido)methyl)benzoate. Methyl 4-aminomethylbenzoate hydrochloride (201 mg, 0.97 mmol) and triethylamine (0.31 mL, 2.2 mmol, 2.3 equiv.) were dissolved in CH₂Cl₂ (5 mL) then 4cyclohexylbenzenesulfonylchloride (250 mg, 1.00 mmol) was added and the reaction mixture stirred for 7 hours. The reaction was acidified with 2N HCl. The aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with 1N NaOH. The basic, aqueous solution was further extracted with dichloromethane. The combined organic layers were washed with brine, dried over MgSO₄, filtered and evaporated to provide the product as a white solid (337 mg, 0.87 mmol, 87% yield). Rf = 0.81 (EtOAc:hexanes 1:1); mp = 189-192 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.17-1.49 (complex, 5 H), 1.70-1.98 (complex, 5 H), 2.47-2.67 (m, 1 H), 3.89 (s, 3 H), 4.20 (d, *J* = 6.4 Hz, 2 H), 4.98 (t, *J* = 6.4 Hz, 1 H), 7.18-7.36 (complex, 4 H), 7.74 (d, *J* = 8.4 Hz, 2 H), 7.90 (d, *J* = 8.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 44.6, 52.2, 127.2, 127.6, 127.7, 129.9; u 26.0, 26.7, 34.1, 46.9, 129.6, 137.1, 141.6, 153.6, 166.7; IR (neat) 1720, 1156 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₂₁H₂₆NO₄S ([M+H]⁺), 388.1583, found 388.1578.

4-((4-*tert***-Butylphenylsulfonamido)methyl)benzoic acid.** 1N NaOH (2 mL, 2.0 mmol, 5.2 equiv.) was added to a solution of methyl 4-((4-cyclohexylphenylsulfonamido)methyl)benzoate

(150 mg, 0.39 mmol) in THF (2 mL). The resulting reaction mixture was stirred for 16 hours and concentrated *in vacuo*. Water was added, and the pH adjusted to 1 with concentrated HCl. The precipitated solid was filtered and dried *in vacuo* to afford the product as a white solid (142 mg, 0.38 mmol, 98% yield). Mp = 238-241 °C; ¹H NMR (400 MHz, d₆-DMSO) δ 1.08-1.51 (complex, 5 H), 1.57-1.94 (complex, 5 H), 2.52-2.64 (m, 1 H), 4.07 (d, *J* = 6.4 Hz, 2 H), 7.35 (complex, 4 H), 7.67 (d, *J* = 8.4 Hz, 2 H), 7.81 (d, *J* = 8.4 Hz, 2 H), 8.24 (t, *J* = 6.4 Hz, 1 H), 12.88 (br s, 1 H); ¹³C NMR (100 MHz, d₆-DMSO) δ d 43.5, 126.6, 127.3, 127.5, 129.1; u 25.4, 26.2, 33.5, 45.8, 129.5, 138.2, 142.8, 152.2, 167.0; IR (neat) 1682, 1156 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₂₀H₂₂NO₄S ([M-H]⁺), 372.1270, found 372.1283.

Methyl 4-(([1,1'-biphenyl]-4-ylsulfonamido)methyl)benzoate. Methyl 4-aminomethylbenzoate hydrochloride (318 mg, 1.58 mmol) and triethylamine (0.50 mL, 3.59 mmol, 2.3 equiv.) were dissolved in CH_2Cl_2 (5 mL) then biphenyl-4-sulfonylchloride (399 mg, 1.579 mmol) was added and the reaction mixture stirred for 7 hours. The reaction was acidified with 2N HCl. The aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were washed with 1N NaOH. The basic, aqueous solution was further extracted with dichloromethane. The combined organic layers were washed with brine, dried over MgSO₄, filtered and evaporated to provide the product as a white solid (497 mg, 1.30 mmol, 83% yield). Rf = 0.76 (EtOAc:hexanes 1:1); mp = 181-185 °C; ¹H NMR (400 MHz, d₆-DMSO) δ 3.81 (s, 3 H), 4.12 (d, J = 6.3 Hz, 2 H), 7.33-7.58 (complex, 5 H), 7.71 (d, J = 7.2 Hz, 2 H), 7.77-7.91 (complex, 6 H),

8.34 (t, J = 6.4 Hz, 1 H); ¹³C NMR (100 MHz, d₆-DMSO) δ d 52.0, 127.0, 127.1, 127.4, 127.8, 128.4, 129.0, 129.1; u 45.8, 128.8, 138.6, 139.4, 143.3, 143.9, 166.0; IR (neat) 1718, 1276, 1157 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₂₁H₂₀NO₄S ([M+H]⁺), 382.1113, found 382.1110.

4-(([1,1'-biphenyl]-4-ylsulfonamido)methyl)benzoic acid. 1N NaOH (4 mL, 4.0 mmol, 10 equiv.) was added to a solution of methyl 4-(([1,1'-biphenyl]-4-ylsulfonamido)methyl)benzoate (150 mg, 0.39 mmol) in THF (4 mL). The resulting reaction mixture was stirred for 16 hours and concentrated *in vacuo*. Water was added, and the pH adjusted to 1 with concentrated HCl. The precipitated solid was filtered and dried *in vacuo* to afford the product as a white solid (131 mg, 0.36 mmol, 91% yield). Mp = 264-269 °C; ¹H NMR (400 MHz, d₆-DMSO) δ 4.10 (d, *J* = 6.3 Hz, 2 H), 7.32-7.56 (complex, 5 H), 7.71 (d, J = 7.2 Hz, 2 H), 7.79-7.91 (complex, 6 H), 8.34 (t, *J* = 6.4 Hz, 1 H), 12.89 (br s, 1 H); ¹³C NMR (100 MHz, d₆-DMSO) δ d 127.1, 127.2, 127.4, 127.6, 128.4, 129.1, 129.2; u 45.8, 129.6, 138.6, 139.4, 142.8, 144.0, 167.1; IR (neat) 1684, 1319, 1150 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₂₀H₁₆NO₄S ([M-H]⁺), 366.0800, found 366.0815.

Methyl 4-((naphthalene-2-sulfonamido)methyl)benzoate. Methyl 4-aminomethyl-benzoate hydrochloride (300 mg, 1.44 mmol) and triethylamine (0.46 mL, 3.30 mmol, 2.3 equiv.) were dissolved in CH₂Cl₂ (5 mL) then 2-napthalenesulfonylchloride (328 mg, 1.45 mmol) was added and the reaction mixture stirred for 7 hours. The reaction was acidified with 2N HCl. The

aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with 1N NaOH. The basic, aqueous solution was further extracted with dichloromethane. The combined organic layers were washed with brine, dried over MgSO₄, filtered and evaporated to provide the product as a white solid (479 mg, 1.35 mmol, 94% yield). Rf = 0.85 (EtOAc:hexanes 1:1); mp = 144-145 °C; ¹H NMR (400 MHz, d₆-DMSO) δ 3.81 (s, 3 H), 4.12 (d, *J* = 6.2 Hz, 2 H), 7.38 (d, *J* = 8.5 Hz, 2 H), 7.59-7.74 (complex, 2 H), 7.75-7.88 (complex, 3 H), 8.02 (d, *J* = 8.0 Hz, 1 H), 8.10 (d, *J* = 8.4 Hz, 2 H), 8.30-8.46 (complex, 2 H); ¹³C NMR (100 MHz, d₆-DMSO) δ d 52.0, 122.2, 127.4, 127.5, 127.7, 127.8, 128.6, 129.0, 129.1, 129.3; u 45.8, 128.3, 131.7, 134.1, 137.6, 143.2, 165.9; IR (neat) 1716, 1316, 1276, 1156 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₁₉H₁₈NO₄S ([M+H]⁺), 356.0957, found 356.0794.

4-((Naphthalene-2-sulfonamido)methyl)benzoic acid. 1N NaOH (2 mL, 2.0 mmol, 4.7 equiv.) was added to a solution of methyl 4-((naphthalene-2-sulfonamido)methyl)benzoate (150 mg, 0.422 mmol) in THF (2 mL). The resulting reaction mixture was stirred for 16 hours and concentrated *in vacuo*. Water was added, and the pH adjusted to 1 with concentrated HCl. The precipitated solid was filtered and dried *in vacuo* to afford the product as a white solid (135 mg, 0.396 mmol, 94% yield). Mp = 247-252 °C; ¹H NMR (400 MHz, d₆-DMSO) δ 4.11 (d, *J* = 6.3 Hz, 2 H), 7.37 (d, *J* = 8.3 Hz, 2 H), 7.63-7.75 (complex, 2 H), 7.77-7.88 (complex, 3 H), 8.04 (d, *J* = 8.0 Hz, 1 H), 8.08-8.20 (complex, 2 H), 8.37 (t, *J* = 6.4 Hz, 1 H), 8.44 (s, 1 H), 12.87 (br s, 1 H). ¹³C NMR (100 MHz, d₆-DMSO) δ d 122.2, 127.4, 127.5, 127.5, 127.8, 128.7, 129.1, 129.2, 129.4; u 45.8, 129.5, 131.7, 134.1, 137.6, 142.8, 167.0; IR (neat) 1686, 1318, 1153 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₁₈H₁₄NO₄S ([M-H]⁺), 340.0644, found 340.0658.

General procedure for the conversion of sulfonamide carboxylic acid fragments to sulfonamide acid chloride fragments. A slurry of the sulfonamide carboxylic acid (1.5 to 3.0 mmol) in thionyl chloride (3.0 mL) was heated at 65 °C for 1 h then cooled to rt. The excess thionyl chloride was blown off under a stream of nitrogen followed by azeotropic codistillation with toluene (2×25 mL). The sulfonamide acid chloride thus obtained was used immediately without further purification.

Diamine fragments:

The diamine fragments N^{1} -benzyl- N^{1} -methylethane-1,2-diamine,⁷ N^{1} -benzyl- N^{1} -ethylethane-1,2-diamine,⁷ N^{1} -benzyl- N^{1} -t-butylethane-1,2-diamine,⁷ N^{1} -dibenzylethane-1,2-diamine,⁷ 2-(isoindolin-2-yl)ethanamine⁸ and 2-(4-phenylpiperazin-1-yl)ethanamine⁹ were prepared according to their published protocols.

General amine alkylation procedure for the synthesis of the aminoacetonitrile precursors. The aminoacetonitrile precursors were synthesized according to the protocol of Ruchelman et al..⁷ Thus, the appropriate secondary amine was combined with chloroacetonitrile (1.1 equiv.), K_2CO_3 (2.0 equiv.) and potassium iodide (1.0 equiv.) in acetonitrile (2.5 mL/ mmol of secondary amine). The reaction was stirred at rt for 13-16 h, diluted with aqueous saturated Na₂CO₃ (50 mL) and extracted with ether (3 × 30 mL). The combined organics were washed with brine and dried with Na₂SO₄. The solvent was removed in vacuo and the residue purified by silica gel chromatography to afford the necessary aminoacetonitrile precursors.

2-(Isopropyl(4-methylbenzyl)amino)acetonitrile. N-Isopropyl(4-methylbenzyl)amine (310 mg, 1.90 mmol) was reacted according to the general amine alkylation procedure to afford the aminonitrile (256 mg, 1.27 mmol, 67% yield) as a colorless oil. $R_f = 0.67$ (EtOAC:hexanes 1:3); ¹H NMR (400 MHz, CDCl₃) δ 1.19 (d, J = 6.4 Hz, 6 H), 2.33 (s, 3 H), 3.01 (sept, J = 6.4 Hz, 1 H), 3.40 (s, 2 H), 3.70 (s, 2 H), 7.13 (d, J = 8.0 Hz, 2 H), 7.22 (d, J = 8.4 Hz, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ d 19.7 (× 2), 21.0, 52.8, 128.7 (× 2), 129.2 (× 2); u 37.9, 33.7, 116.7, 134.8, 137.1; IR (neat) 2970, 1514 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₃H₁₉N₂ ([M+H]⁻), 203.1548, found 203.1545.

2-((4-Bromobenzyl)(isopropyl)amino)acetonitrile. *N*-Isopropyl(4-bromobenzyl)amine (1.00 g, 4.38 mmol) was reacted according to the general amine alkylation procedure to afford the aminonitrile (731 mg, 2.74 mmol, 62% yield) as a colorless oil. $R_f = 0.64$ (EtOAC:hexanes 1:3);

¹H NMR (400 MHz, CDCl₃) δ 1.19 (d, *J* = 6.8 Hz, 6 H), 3.02 (sept, *J* = 6.8 Hz, 1 H), 3.40 (s, 2 H), 3.70 (s, 2 H), 7.22 (d, *J* = 8.4 Hz, 2 H), 7.45 (d, *J* = 8.4 Hz, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ d 19.6 (× 2), 52.9, 130.3 (× 2), 131.6 (× 2); u 37.9, 53.4, 116.5, 121.3, 137.0; IR (neat) 2970, 2830, 1487 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₂H₁₆BrN₂ ([M+H]⁻), 267.0497, found 267.0504.

2-((4-Methoxybenzyl)(isopropyl)amino)acetonitrile. *N*-Isopropyl(4-methoxybenzyl)amine¹⁰ (1.25 g, 6.97 mmol) was reacted according to the general amine alkylation procedure to afford the aminonitrile (1.11 g, 5.08 mmol, 73 % yield) as an amber-colored oil. $R_f = 0.34$ (EtOAC:hexanes 1:9); ¹H NMR (400 MHz, CDCl₃) δ 1.23 (d, *J* = 6.6 Hz, 6 H), 3.04 (sept, *J* = 6.6 Hz, 1 H), 3.43 (s, 2 H), 3.71 (s, 2 H), 3.83 (s, 3 H), 6.89 (d, *J* = 8.5 Hz, 2 H), 7.29 (d, *J* = 8.5 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 19.9, 52.9, 55.3, 114.0 (× 2), 130.0 (× 2); u 37.8, 53.5, 116.8, 129.9, 159.1 IR (neat) 1511, 1247 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₃H₂₂N₂ ([M+H]⁻), 219.1497, found 219.1522.

2-((4-Benzyl)(cyclopentyl)amino)acetonitrile. *N*-benzyl-*N*-cyclopentylamine (500 mg, 2.85 mmol) was reacted according to the general amine alkylation procedure to afford the aminonitrile (506 mg, 2.43 mmol, 83 % yield) as a colorless oil. R_f = 0.89 (EtOAc:hexanes 1:1);¹H NMR (CDCl₃) δ 1.45-1.60 (m, 2 H), 1.64-1.75 (m, 2 H), 1.75-1.87 (m, 2 H), 1.98-2.10

(m, 2 H), 3.04 (tt, J = 6.9, 6.8 Hz, 1 H), 3.44 (s, 2 H), 3.73 (s, 2 H) 7.29-7.40 (complex, 5 H); ¹³C NMR (CDCl₃) δ d 64.1, 127.7, 128.6, 129.0; u 23.9, 31.5, 40.3, 56.8, 115.2, 137.6; IR (neat) 2956, 1354 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₁₄H₂₀N₂ ([M+H]⁺), 215.1548, found 203.1538.

2-(4-Phenylpiperidin-1-yl)acetonitrile. 4-Phenylpiperidine (500 mg, 3.10 mmol) was reacted according to the general amine alkylation procedure to afford the aminonitrile (518 mg, 2.59 mmol, 83 % yield) as a white solid. Mp = 99-101 °C; $R_f = 0.67$ (EtOAc:hexanes 1:1);¹H NMR (CDCl₃) 1.74-2.01 (complex, 4 H), 2.45-2.65 (complex, 3 H), 2.87-3.04 (m, 2 H), 3.60 (s, 2 H), 7.17-7.42 (complex, 5 H); ¹³C NMR (100 MHz, CDCl₃) δ d 41.5, 126.4, 126.8, 128.5; u 33.1, 46.5, 52.9, 114.8, 145.6; IR (neat) 2809, 1453 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₁₃H₁₇N₂ ([M+H]⁺), 201.1392, found 201.1383.

General reduction procedure for the synthesis of the diamine fragments. The diamine fragments were synthesized according to the protocol of Ruchelman et al..⁸ Thus, to a solution of the appropriate aminoacetonitrile precursor in THF or ether was added lithium aluminum hydride (3.5 M solution in THF, 1.1 equiv.). The reaction was stirred for 13-16 h, carefully quenched with EtOAc then water, acidified with aqueous HCl (2 M) and extracted with EtOAc (3 × 30 mL). The pH of the aqueous layer was adjusted to > 8 with aqueous NaOH (2 M) and extracted with EtOAc (3 × 30 mL). The combined organics were dried with Na₂SO₄ and the solvent removed in vacuo to afford the diamine fragments which were used without further purification.

N^1 -Isopropyl- N^1 -(4-methylbenzyl)ethane-1,2-diamine. 2-(Isopropyl(4-

methylbenzyl)amino)acetonitrile (213 mg, 1.05 mmol) was reacted according to the general reduction procedure in THF to afford the diamine (188 mg, 0.91 mmol, 87% yield) as a light yellow oil. $R_f = 0.63$ (10% MeOH, 1 % Et₃N in CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 1.01 (d, J = 6.4 Hz, 6 H), 2.32 (s, 3 H), 2.47 (t, J = 5.6 Hz, 2 H), 2.61 (t, J = 6.0 Hz, 2 H), 2.92(sept, J = 6.4 Hz, 1 H), 3.51 (s, 2 H), 7.09 (d, J = 8.0 Hz, 2 H), 7.21 (d, J = 8.4 Hz, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ d 17.8 (× 2), 21.0, 49.6, 128.3 (× 2), 128.8 (× 2); u 40.1, 52.0, 54.0, 136.0, 138.0; IR (neat) 2964, 1659 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₃H₂₃N₂ ([M+H]⁺), 207.1861, found 207.1870.

N^{1} -(4-Bromobenzyl)- N^{1} -isopropylethane-1,2-diamine. 2-((4-

Bromobenzyl)(isopropyl)amino)acetonitrile (459 mg, 1.72 mmol) was reacted according to the general reduction procedure in ether to afford the diamine (384 mg, 1.42 mmol, 82% yield) as a light yellow oil. $R_f = 0.62$ (10% MeOH, 1 % Et₃N in CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 1.01 (d, J = 6.4 Hz, 6 H), 2.47 (t, J = 6.0 Hz , 2 H), 2.61 (t, J = 6.0 Hz , 2 H), 2.89 (sept, J = 6.4 Hz, 1 H), 3.50 (s, 2 H), 7.21 (d, J = 8.8 Hz, 2 H), 7.41 (d, J = 8.4 Hz, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ d 17.8 (× 2), 49.8, 130.0 (× 2), 131.1 (× 2); u 40.2, 52.3, 53.7, 120.2, 140.3; IR (neat) 2963, 1485 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₂H₂₀BrN₂ ([M+H]⁺), 271.0810, found 271.0827.

N^{1} -(4-Methoxybenzyl)- N^{1} -isopropylethane-1,2-diamine. 2-((4-

Methoxybenzyl)(isopropyl)amino)acetonitrile (898 mg, 4.11 mmol) was reacted according to the general reduction procedure in ether to afford the diamine (835 mg, 3.76 mmol, 91% yield) as a colorless oil. $R_f = 0.19$ (1:25:75 Et₃N:acetone:CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 1.04 (d, J = 6.8 Hz, 6 H), 2.44-2.68 (m, 3 H), 2.86-3.00 (m, 2 H), 3.50 (s, 2 H), 3.79 (s, 3 H), 6.84 (d, J = 8.4 Hz, 2 H), 7.23 (d, J = 8.4 Hz, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ d 17.9 (× 2), 49.9, 55.3, 113.8 (× 2), 129.6 (× 2); u 39.6, 50.9, 53.8, 132.6, 158.5; IR (neat) 2963, 1508, 1246 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₃H₂₃N₂O ([M+H]⁺), 223.1810, found 223.1822.

N^{1} -(4-Methoxybenzyl)- N^{1} -cyclopentylethane-1,2-diamine. 2-((4-2-

(Benzyl(cyclopentyl)amino)acetonitrile (410 mg, 1.91 mmol) was reacted according to the general reduction procedure in ether to afford the diamine (418 mg, 1.91 mmol, quantiative crude yield) as a yellow oil. $R_f = 0.23$ (1:25:75 Et₃N:acetone:CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 1.40-1.56 (m, 4 H), 1.57-1.70 (m, 2 H), 1.71-1.85 (m, 2 H), 2.62 (t, J = 5.6 Hz, 2 H), 2.69 (t, J = 5.6 Hz, 2 H), 3.13-3.21 (m, 1 H), 3.63 (s, J = 6.0 Hz, 2 H), 7.15-7.44 (m, 5 H). ¹³C NMR (400 MHz, CDCl₃) δ d 58.3, 121.7, 123.1, 123.3, u 19.0, 23.4, 34.1, 47.6, 51.5, 135.1; IR (neat) 2952, 2868, 1452 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₁₄H₂₃N₂ ([M+H]⁺), 219.1861, found 219.1846.

*N*¹-(4-Methoxybenzyl)-*N*¹-cyclopentylethane-1,2-diamine. 2-(4-Phenylpiperidin-1yl)acetonitrile (400 mg, 2.00mmol) was reacted according to the general reduction procedure in THF to afford the previously reported diamine¹¹ (mg, 1.919 mmol, 96 % crude yield) as an amber oil, which was used without further purification. $R_f = 0.29$ (1:25:75 Et₃N:acetone:CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 1.73-1.96 (m, 4 H), 2.05-2.22 (m, 2 H), 2.43-2.62 (complex, 3 H), 2.85 (t, *J* = 6.3 Hz, 2 H), 2.98-3.14 (m, 2 H), 7.16-7.40 (complex, 5 H); ¹³C NMR (100 MHz, CDCl₃) δ d 42.7, 126.1, 127.0, 128.4; u 33.1, 38.9, 54.6, 61.5, 146.3; IR (neat) 2933, 1666 1452 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₁₃H₂₁N₂ ([M+H]⁺), 205.1705, found 205.1701.

General procedure for the coupling of the sulfonamide acid chloride and diamine

fragments. The sulfonamide acid chloride fragment (1.0 equiv.) was added to a solution of the diamine fragment (1.0 equiv.) and triethylamine (2.5 equiv.) in CH_2Cl_2 (3 mL) and stirred at rt 14 – 18 h. The reaction was diluted with saturated aqueous NaHCO₃ (2 mL) and all solvents evaporated in vacuo. The residue was extracted with MeOH (3 × 5 mL) and the combined methanol extracts evaporated in vacuo. The crude product was purified by preparative reverse phase HPLC purification to afford the pure sulfonamide amide products.

N-(2-(Benzyl(isopropyl)amino)ethyl)-4-((4-methylphenylsulfonamido)methyl)benzamide 3{*1*} (CID03342390). 4-((4-Methylphenylsulfonamido)methyl)benzoyl chloride (120 mg, 0.37 mmol) and N^{1} -benzyl- N^{1} -isopropylethane-1,2-diamine (71 mg, 0.37 mmol) were reacted according to the general procedure to afford the product as a white solid (92 mg, 0.19 mmol, 52% yield). R_f = 0.21 (EtOAc:hexanes 1:1); mp = 131-133 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.07 (d, *J* = 6.8 Hz, 6 H), 2.42 (s, 3 H), 2.67 (t, *J* = 6.0 Hz, 2 H), 3.00 (sept, *J* = 6.8 Hz, 1 H), 3.34 (q, *J* = 5.2 Hz, 2 H), 3.55 (s, 2 H), 4.14 (s, 2 H), 5.34 (br s, 1 H), 6.56 (br s, 1 H), 7.21-7.31 (complex, 9 H), 7.45 (d, *J* = 8.0 Hz, 2 H), 7.77 (d, *J* = 8.4 Hz, 2 H). ¹³C (100 MHz, CDCl₃) δ d (CH, CH₃) 18.0, 21.5, 49.7, 126.9, 127.0, 127.1, 127.7, 128.4, 128.5, 129.7; u (C, CH₂) 37.5, 46.8, 47.8, 53.6, 134.0, 136.9, 139.8, 140.7, 143.5, 166.6; IR (neat) 2964, 1639, 1156 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₇H₃₃N₃O₃S ([M+H]⁺), 480.2315, found 480.2316.

N-(2-(Benzyl(isopropyl)amino)ethyl)-4-((3-methylphenylsulfonamido)methyl)benzamide 3{4}(CID44608030). 4-((3-Methylphenylsulfonamido)methyl)benzoyl chloride (60 mg, 0.19 mmol) and N^1 -benzyl- N^1 -isopropylethane-1,2-diamine (36 mg, 0.19 mmol) were reacted according to the general procedure to afford the product as a tan solid (50 mg, 0.10 mmol, 56% yield). Mp = 112-114 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.07 (d, *J* = 6.8 Hz, 6 H), 2.39 (s, 3 H), 2.66 (t, J = 5.6 Hz, 2 H), 3.00 (sept, J = 6.8 Hz, 1 H), 3.34 (m, 2 H), 3.55 (s, 2 H), 4.15 (s, 2 H), 5.62 (br s, 1 H), 6.58 (br s, 1 H), 7.19-7.22 (complex, 3 H), 7.25-7.31 (complex, 6 H), 7.37 (m, 2 H), 7.44 (d, J = 7.6 Hz, 2 H), 7.68 (m, 2 H). ¹³C (100 MHz, CDCl₃) δ d (CH, CH₃) 18.0 (× 2), 21.3, 49.6, 124.1, 127.0(× 2), 127.4, 127.7 (× 2), 128.4 (× 2), 128.5 (× 2), 128.9, 133.4; u (C, CH₂) 37.5, 46.8, 47.7, 53.6, 133.9, 139.3, 139.8, 139.9, 140.6, 166.7; IR (neat) 2964, 1638, 1152 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₇H₃₄N₃O₃S ([M+H]⁺), 480.2315, found 480.2315.

N-(2-(Benzyl(isopropyl)amino)ethyl)-4-((4-ethylphenylsulfonamido)methyl)benzamide 3{5} (CID44601476). 4-((4-Ethylphenylsulfonamido)methyl)benzoyl chloride (68 mg, 0.20 mmol) and N^{l} -benzyl- N^{l} -isopropylethane-1,2-diamine (38 mg, 0.20 mmol) were reacted according to the general procedure to afford the product as a white solid (58 mg, 0.12 mmol, 59% yield). mp = 90-92 °C; ¹H NMR (400 MHz, CD₃OD) δ 1.06 (d, *J* = 6.8 Hz, 6 H), 1.23 (t, *J* = 7.6 Hz, 3 H), 2.65-2.73 (m, 4 H), 3.00 (sept, *J* = 6.8 Hz, 1 H), 3.34 (t, *J* = 6.8 Hz, 2 H), 3.62 (s, 2 H), 4.11 (s, 2 H), 7.17-7.35 (complex, 9 H), 7.60 (d, *J* = 8.0 Hz, 2 H), 7.72 (d, *J* = 8.0 Hz, 2 H); ¹³C NMR (101 MHz, CD₃OD) δ d 15.9, 18.4 (× 2), 51.4, 128.0, 128.3 (× 2), 128.4 (× 2), 129.0 (× 2), 129.4 (× 2), 129.7 (× 2), 129.9 (× 2); u 29.8, 40.0, 47.6, 49.7, 55.5, 134.8, 139.5, 142.2, 142.7, 151.0, 169.6; IR (neat) 2965, 1637, 1449, 1159 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₈H₃₆N₃O₃S ([M+H]⁺), 494.2477, found 494.2471.

N-(2-(Benzyl(isopropyl)amino)ethyl)-4-((4-methoxyphenylsulfonamido)methyl)benzamide 3{6} (CID44620904). 4-((4-Methoxyphenylsulfonamido)methyl)benzoyl chloride (63 mg, 0.19 mmol) and N^{1} -benzyl- N^{1} -isopropylethane-1,2-diamine (36 mg, 0.19 mmol) were reacted according to the general procedure to afford the product as an off white solid (58 mg, 0.12mmol, 63% yield). Mp = 124-125 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.07 (d, *J* = 6.8 Hz, 6 H), 2.67 (t, *J* = 6.6 Hz, 2 H), 3.00 (sept, *J* = 6.8 Hz, 1 H), 3.34 (m, 2 H), 3.55 (s, 2 H), 3.85 (s, 3 H), 4.13 (d, *J* = 5.2 Hz, 2 H), 5.38 (br s, 1 H), 6.57 (br s, 1 H), 6.95 (d, *J* = 8.8 Hz, 2 H) 7.21-7.28 (complex, 7 H), 7.45 (d, *J* = 8.4 Hz, 2 H), 7.81 (d, *J* = 9.2 Hz, 2 H); ¹³C (100 MHz, CDCl₃) δ d (CH, CH₃) 18.0 (× 2), 49.6, 55.6, 114.2 (× 2), 127.0, 127.1 (× 2), 127.7 (× 2), 128.5 (× 2), 129.2 (× 2); u (C, CH₂) 37.5, 46.7, 47.8, 53.6, 131.5, 134.0, 139.8, 140.7, 162.9, 166.6; IR (neat) 2964, 1639, 1496, 1152 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₇H₃₄N₃O₄S ([M+H]⁺), 496.2270, found 496.2261.

N-(2-(Benzyl(isopropyl)amino)ethyl)-4-((4-bromophenylsulfonamido)methyl)benzamide $3{7}$ (CID44620910). 4-((4-Bromophenylsulfonamido)methyl)benzoyl chloride (72 mg, 0.19 mmol) and N^1 -benzyl- N^1 -isopropylethane-1,2-diamine (36 mg, 0.19 mmol) were reacted according to the general procedure to afford the product as a white solid (60 mg, 0.11 mmol,

60% yield). mp = 149-150 °C; ¹H NMR (400 MHz, CD₃OD) δ 1.07 (d, *J* = 6.4 Hz, 6 H), 2.27 (t, *J* = 6.0 Hz, 2 H), 3.00 (sept, *J* = 6.4 Hz, 1 H), 3.32 (m, 2 H), 3.55 (s, 2 H), 4.13 (s, 2 H), 5.97 (br s, 1 H), 6.58 (br s, 1 H), 7.17-7.30 (complex, 7 H), 7.37 (d, *J* = 7.6 Hz, 2 H), 7.61 (d, *J* = 8.8 Hz, 2 H), 7.75 (d, *J* = 8.8 Hz, 2 H); ¹³C NMR (101 MHz, CD₃OD) δ d 18.0 (× 2), 49.7, 126.9, 127.0 (× 2), 127.7 (× 2), 128.4 (× 2), 128.5(× 2), 128.6 (× 2), 132.3 (× 2); u 37.5, 46.8, 47.8, 49.7, 53.6, 127.5, 133.9, 139.2, 139.6, 140.7, 166.8; IR (neat) 3376, 3109, 2848, 1637 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₆H₃₁BrN₃O₃S ([M+H+isotope (+2)]⁺), 546.1249, found 546.1238.

N-(2-(Benzyl(isopropyl)amino)ethyl)-4-((4-propylphenylsulfonamido)methyl)benzamide 3{8} (CID45115590). 4-((4-*n*-propylphenylsulfonamido)methyl)benzoyl chloride (104 mg, 0.29 mmol) and N^{1} -benzyl- N^{1} -isopropylethane-1,2-diamine (57 mg, 0.29 mmol) were reacted according to the general procedure to afford the product as a white solid (69 mg, 0.1359 mmol., 47% yield). Mp = 138-139 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.95 (t, *J* = 7.3 Hz, 3 H), 1.07 (d, *J* = 6.6 Hz, 6 H), 1.57-1.76 (m, 2 H), 2.62-2.72 (complex, 4 H), 2.96-3.06 (m, 1 H), 3.35 (dt, *J* = 6.4, 5.6 Hz, 2 H), 3.56 (s, 2 H), 4.18 (d, *J* = 5.4 Hz, 2 H), 4.96 (br s, 1 H), 6.55 (br s, 1 H), 7.18-7.36 (complex, 9 H), 7.51 (d, *J* = 8.4 Hz, 2 H), 7.79 (d, *J* = 8.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 13.8, 18.1, 49.8, 127.0, 127.2, 127.2, 127.8, 128.5, 128.6, 129.2; u 24.3, 37.5, 37.9, 46.9, 47.9, 53.7, 134.3, 137.2, 139.8, 140.8, 148.4, 166.6; IR (neat) 1638, 1326, 1154 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₂₉H₃₈N₃O₃S ([M+H]⁺), 508.2634, found 508.2623.

N-(2-(Benzyl(isopropyl)amino)ethyl)-4-((4-*iso*-propylphenylsulfonamido)methyl)benzamide 3{9} (CID45479162). 4-((4-*iso*-propylphenylsulfonamido)methyl)benzoyl chloride (117 mg, 0.33 mmol) and N^{1} -benzyl- N^{1} -isopropylethane-1,2-diamine (64 mg, 0.333 mmol) were reacted according to the general procedure to afford the product as a white solid (101 mg, 0.1989 mmol., 60% yield). Mp = 122-125 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.07 (d, *J* = 6.6 Hz, 6 H), 1.27 (d, *J* = 6.9 Hz, 6 H), 2.64-2.73 (m, 2 H), 2.92-3.07 (complex, 2 H), 3.35 (dt, *J* = 6.4, 5.6 Hz, 2 H), 3.56 (s, 2 H), 4.18 (d, *J* = 6.1 Hz, 2 H), 5.08 (t, *J* = 6.2 Hz, 1H), 6.55 (br s, 1H), 7.19-7.32 (complex, 7 H), 7.35 (d, *J* = 8.0 Hz, 2 H), 7.50 (d, *J* = 8.0 Hz, 2 H), 7.79 (d, *J* = 8.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 18.0, 23.7, 34.3, 49.7, 127.1, 127.2, 127.3, 127.4, 127.8, 128.5, 128.6; u 37.5, 46.9, 47.8, 53.7, 134.3, 137.2, 139.8, 140.7, 154.4, 166.6; IR (neat) 1639, 1324, 1161 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₂₉H₃₈N₃O₃S ([M+H]⁺), 508.2634, found 508.2627.

N-(2-(Benzyl(isopropyl)amino)ethyl)-4-((4-butylphenylsulfonamido)methyl)benzamide 3{10} (CID45115593). 4-((4-butylphenylsulfonamido)methyl)benzoyl chloride (107 mg, 0.29 mmol) and N^1 -benzyl- N^1 -isopropylethane-1,2-diamine (56 mg, 0.29 mmol) were reacted according to the general procedure to afford the product as a viscous oil (13 mg, 0.025 mmol, 9%
yield). ¹H NMR (400 MHz, CDCl₃) δ 0.95 (t, *J* = 7.4 Hz, 3 H), 1.08 (d, *J* = 6.8 Hz, 6 H), 1.31-1.44 (m, 2 H), 1.57-1.68 (m, 2 H), 2.65-2.75 (complex, 4 H), 2.97-3.09 (m, 1 H), 3.36 (dt, *J* = 6.4 Hz, 5.6 Hz, 2 H), 3.57 (s, 2 H), 4.20 (d, *J* = 6.1 Hz, 2 H), 4.82 (t, *J* = 6.2 Hz, 1 H), 6.56 (br s, 1 H), 7.19-7.41 (complex, 9 H), 7.53 (d, *J* = 8.4 Hz, 2 H), 7.80 (d, *J* = 8.4 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ d 14.0, 18.1, 49.7, 127.1, 127.2, 127.2, 127.8, 128.5, 128.6, 129.2; u 22.4, 33.2, 35.6, 37.5, 47.0, 47.9, 53.8, 134.1, 134.3, 139.7, 140.7, 166.9; IR (neat) 1639, 1327, 1156 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₃₀H₄₀N₃O₃S ([M+H]⁺), 522.2790, found 522.2778.

N-(2-(Benzyl(isopropyl)amino)ethyl)-4-((4-isobutylphenylsulfonamido)methyl)benzamide 3*{11}* (CID45115591). 4-((4-isobutylphenylsulfonamido)methyl)benzoyl chloride (114 mg, 0.31 mmol) and N^1 -benzyl- N^1 -isopropylethane-1,2-diamine (60 mg, 0.31 mmol) were reacted according to the general procedure to afford the product as a white solid (76 mg, 0.15 mmol, 47% yield). Mp = 107-113 °C.¹H NMR (400 MHz, CDCl₃) δ 0.91 (d, *J* = 6.8 Hz, 6 H), 1.07 (d, *J* = 6.6 Hz, 6 H), 1.82-1.98 (m, 1 H), 2.55 (d, *J* = 7.2 Hz, 2 H), 2.68 (t, *J* = 5.6 Hz, 2 H), 2.95-3.07 (m, 1 H), 3.35 (dt, *J* = 6.4, 5.6 Hz, 2 H), 3.56 (s, 2 H), 4.19 (d, *J* = 6.2 Hz, 2 H), 4.97 (t, *J* = 6.3 Hz, 1 H), 6.54 (br s, 1 H), 7.18 – 7.34 (complex, 9 H), 7.51 (d, *J* = 8.4 Hz, 2 H), 7.79 (d, *J* = 2H). ¹³C NMR (100 MHz, CDCl₃) δ d 18.1, 22.3, 30.2, 49.7, 127.0, 127.0, 127.2, 127.8, 128.5, 128.6, 129.9; 37.5, 45.2, 46.9, 47.8, 53.7, 134.2, 137.2, 139.7, 140.7, 147.4, 166.6; IR (neat) 1638, 1326, 1156 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₃₀H₄₀N₃O₃S ([M+H]⁺), 522.2790, found 522.2780.

N-(2-(Benzyl(isopropyl)amino)ethyl)-4-((4-*sec*-butylphenylsulfonamido)methyl)benzamide 3{12} (CID45115586). 4-((4-*sec*-butylphenylsulfonamido)methyl)benzoyl chloride (84 mg, 0.23 mmol) and N^{1} -benzyl- N^{1} -isopropylethane-1,2-diamine (44 mg, 0.23 mmol) were reacted according to the general procedure to afford the product as a white solid (24 mg, 0.046 mmol, 20% yield). Mp = 106-110 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.82 (t, *J* = 7.4 Hz, 3 H), 1.07 (d, *J* = 6.6 Hz, 6 H), 1.25 (d, *J* = 6.8 Hz, 3 H), 1.56-1.67 (complex, 2 H), 2.63-2.73 (complex, 3 H), 2.94-3.08 (m, 1 H), 3.35 (dt, *J* = 6.4, 5.6 Hz, 2 H), 3.56 (s, 2 H), 4.20 (br s, 2 H), 4.88 (br s, 1 H), 6.54 (br s, 1H), 7.17-7.36 (complex, 9 H), 7.51 (d, J = 8.4 Hz, 2 H), 7.80 (d, 2H); ¹³C NMR (100 MHz, CDCl₃) δ d 12.2, 18.1, 21.6, 41.8, 49.7, 127.1, 127.2, 127.8, 127.8, 127.9, 128.5, 128.6; u 30.9, 37.5, 46.9, 47.8, 53.6, 134.3, 137.2, 139.8, 140.8, 153.4, 166.6; IR (neat) 1639, 1327, 1161 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₃₀H₄₀N₃O₃S ([M+H]⁺), 522.2790, found 522.2782.

N-(2-(Benzyl(isopropyl)amino)ethyl)-4-((4-*tert*-butylphenylsulfonamido)methyl)benzamide 3{13} (CID45115588). 4-((4-*tert*-butylphenylsulfonamido)methyl)benzoyl chloride (124 mg, 0.34 mmol) and N^1 -benzyl- N^1 -isopropylethane-1,2-diamine (65 mg, 0.34 mmol) were reacted according to the general procedure to afford the product as a white solid (84 mg, 0.16 mmol,

48% yield). Mp = 143-147 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.07 (d, *J* = 6.6 Hz, 6 H), 1.34 (s, 9 H), 2.68 (t, *J* = 5.6 Hz, 2 H), 2.94-3.90 (m, 1 H), 3.35 (dt, *J* = 6.4, 5.6 Hz, 2 H), 3.56 (s, 2 H), 4.19 (d, *J* = 6.3 Hz, 2 H), 4.98 (t, *J* = 6.3 Hz, 1 H), 6.55 (br s, 1 H), 7.18-7.34 (complex, 7 H), 7.48-7.54 (complex, 4 H), 7.80 (d, *J* = 8.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 18.1, 31.1, 49.7, 126.2, 127.0, 127.1, 127.2, 127.8, 128.5, 128.6; u 29.6, 37.5, 46.9, 47.8, 53.7, 134.3, 136.8, 139.8, 140.8, 156.7, 166.6; IR (neat) 1639, 1327, 1161 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₃₀H₄₀N₃O₃S ([M+H]⁺), 522.2790, found 522.2781.

N-(2-(Benzyl(isopropyl)amino)ethyl)-4-((4-

cyclohexylphenylsulfonamido)methyl)benzamide 3{14} (CID45115594). 4-((4-

Cyclohexylphenylsulfonamido)methyl)benzoyl chloride (141 mg, 0.36 mmol) and N^{1} -benzyl- N^{1} isopropylethane-1,2-diamine (69 mg, 0.36 mmol) were reacted according to the general procedure to afford the product as a white solid (84 mg, 0.15 mmol, 43% yield). Mp = 120-128 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.07 (d, *J* = 6.6 Hz, 6 H), 1.32 – 1.48 (m, 4 H), 1.70 – 1.80 (m, 2 H), 1.81-1.90 (m, 4 H), 2.52-2.59 (m, 1 H), 2.67 (t, *J* = 5.6 Hz, 2 H), 2.95-3.06 (m, 1 H), 3.34 (dt, *J* = 6.4, 5.6 Hz, 2 H), 3.55 (s, 2 H), 4.17 (d, *J* = 6.0 Hz, 2 H), 5.22 (t, *J* = 6.1 Hz, 1 H), 6.55 (br s, 1 H), 7.19-7.35 (complex, 9 H), 7.49 (d, *J* = 8.4 Hz, 2 H), 7.78 (d, *J* = 8.4 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) d 18.1, 44.6, 49.7, 127.1, 127.2, 127.2, 127.6, 127.8, 128.5, 128.6; u 26.0, 26.7, 34.2, 37.5, 46.9, 47.9, 53.7, 134.2, 137.2, 139.9, 140.8, 153.5, 166.6; IR (neat) 2926, 1641, 1319, 1157 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₃₂H₄₂N₃O₃S ([M+H]⁺), 548.2947, found 548.2938.

4-(([1,1'-Biphenyl]-4-ylsulfonamido)methyl)-*N*-(**2-benzyl(isopropyl)amino)ethyl)benzamide 3***[15]* (CID45115592). 4-(([1,1'-Biphenyl]-4-ylsulfonamido)methyl)benzoyl chloride (116 mg, 0.30 mmol) and N¹-benzyl-N¹-isopropylethane-1,2-diamine (58 mg, 0.30 mmol) were reacted according to the general procedure to afford the product as a white solid (39 mg, 0.072 mmol, 24% yield). Mp = 128-131 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.07 (d, *J* = 6.6 Hz, 6 H), 2.67 (t, *J* = 5.6 Hz, 2 H), 2.96-3.06 (m, 1 H), 3.35 (dt, *J* = 6.4 Hz, 5.6 Hz, 2 H), 3.56 (s, 2 H), 4.24 (d, *J* = 5.2 Hz, 2 H), 5.25 (br, 1 H), 6.55 (br, 1 H), 7.19-7.33 (complex, 7 H), 7.40-7.56 (complex, 5 H), 7.58-7.65 (m, 2 H), 7.72 (d, *J* = 8.8 Hz, 2 H), 7.95 (d, *J* = 8.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 18.0, 49.7, 127.0, 127.2, 127.3, 127.7, 127.8, 127.9, 128.5, 128.6, 129.1; u 37.5, 47.0, 47.8, 53.7, 134.3, 138.5, 139.3, 139.7, 140.7, 145.8, 166.6; IR (neat) 1639, 1328, 1156 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₃₂H₃₆N₃O₃S ([M+H]⁺), 542.2477, found 542.2467.

N-(2-(Benzyl(isopropyl)amino)ethyl)-4-((naphthalene-2-sulfonamido)methyl)benzamide 3{16} (CID45115585). 4-((Naphthalene-1-sulfonamido)methyl)benzoyl chloride (122 mg, 0.34

mmol) and N^{1} -benzyl- N^{1} -isopropylethane-1,2-diamine (66 mg, 0.34mmol) were reacted according to the general procedure to afford the product as a white solid (39 mg, 0.072 mmol, 24% yield). Mp = 124-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.06 (d, *J* = 6.6 Hz, 6 H), 2.66 (t, *J* = 5.6 Hz, 2 H), 2.95-3.05 (m, 1 H), 3.33 (dt, *J* = 6.4, 5.6 Hz, 2 H), 3.55 (s, 2 H), 4.21 (d, *J* = 5.8 Hz, 2 H), 5.23 (t, *J* = 5.7 Hz, 1 H), 6.49 (br s, 1 H), 7.16 – 7.33 (complex, 7 H), 7.46 (d, *J* = 8.0 Hz, 2 H), 7.57-7.70 (m, 2 H), 8.02-7.82 (m, 4H), 8.45 (d, *J* = 1.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ d 18.0, 49.7, 122.3, 127.0, 127.2, 127.7, 127.8, 128.0, 128.5, 128.5, 128.6, 128.9, 129.3, 129.6; u 37.5, 47.0, 47.8, 53.7, 132.2, 134.3, 134.9, 136.7, 139.7, 140.8, 166.6; IR (neat) 1638, 1326, 1154 cm⁻¹; HRMS (APCI/ES) *m*/*z* calcd for C₃₀H₃₄N₃O₃S ([M+H]⁺), 516.2321, found 516.2312.

N-(2-((4-Methylbenzyl)(isopropyl)amino)ethyl)-4-((4-methylphenylsulfonamido)methyl)benzamide 3{17}(CID44620902). 4-((4-Methylphenylsulfonamido)methyl)benzoyl chloride (30 mg, 0.093 mmol) and N^1 -isopropyl- N^1 -(4-methylbenzyl)ethane-1,2-diamine (19 mg, 0.093 mmol) were reacted according to the general procedure to afford the product as a tan solid (10 mg, 0.02 mmol, 21% yield). Mp = 110-112 °C; ¹H NMR (500 MHz, CDCl₃) δ 1.07 (d, *J* = 7.0 Hz, 6 H), 2.31 (s, 3 H), 2.45 (s, 3 H), 2.67 (t, *J* = 5.5 Hz, 2 H), 3.01 (sept, *J* = 6.5 Hz, 1 H), 3.35 (q, *J* = 5.5 Hz, 2 H), 3.52 (s, 2 H), 4.19 (d, *J* = 6.0 Hz, 2 H), 4.70 (br s, 1 H), 6.60 (br s, 1 H), 7.09 (d, *J* = 8.0 Hz, 2 H), 7.18 (d, *J* = 8.0 Hz, 2 H), 7.27 (m, 2 H), 7.33 (d, *J* = 8.0 Hz, 2 H), 7.55 (d, *J* = 8.0 Hz, 2 H), 7.78 (d, *J* = 8.5 Hz, 2 H); ¹³C (125 MHz, CDCl₃) δ d (CH, CH₃) 18.2 (× 2), 21.4, 21.8, 49.8, 127.4 (× 2), 127.5 (× 2), 128.0 (× 2), 128..8 (× 2), 129.4 (× 2), 130.1 (× 2); u (C, CH₂) 37.7, 47.1, 47.8, 53.5, 134.6, 136.9, 137.0, 137.8, 139.8, 144.0, 166.7; IR (neat) 2964, 1640, 1154 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₈H₃₆N₃O₃S ([M+H]⁺), 494.2477, found 494.2470.

N-(2-(Isopropyl(4-methylbenzyl)amino)ethyl)-4-((3-methylphenylsulfonamido)methyl)benzamide 3{*18*} (CID44608029). 4-((3-Methylphenylsulfonamido)methyl)benzoyl chloride (60 mg, 0.19 mmol) and N^1 -isopropyl- N^1 -benzylethane-1,2-diamine (38 mg, 0.19 mmol) were reacted according to the general procedure to afford the product as a tan solid (51 mg, 0.10 mmol, 56% yield). Mp = 138-139 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.06 (d, *J* = 6.8 Hz, 6 H), 2.30 (s, 3 H), 2.39 (s, 3 H), 2.65 (t, *J* = 5.6 Hz, 2 H), 2.99 (sept, *J* = 6.8 Hz, 1 H), 3.34 (m, 2 H), 3.51 (s, 2 H), 4.16 (s, 2 H), 5.53 (br s, 1 H), 6.61 (br s, 1 H), 7.07 (d, *J* = 7.6 Hz, 2 H), 7.17 (d, *J* = 8.4 Hz, 2 H), 7.23 (d, *J* = 8.4 Hz, 2 H), 7.38 (m, 2 H), 7.46 (d, *J* = 8.4 Hz, 2 H), 7.68 (m, 2 H); ¹³C (100 MHz, CDCl₃) δ d (CH, CH₃) 18.0 (× 2), 21.1, 21.3, 49.6, 124.1, 127.0 (× 2), 127.4, 127.7 (× 2), 128.5 (× 2), 128.9, 129.1 (× 2), 133.4; u (C, CH₂) 37.5, 46.8, 47.6, 53.3, 134.0, 136.5, 137.5, 139.3, 139.8 (× 2), 166.6; IR (neat) 2965, 1639, 1152 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₈H₃₆N₃O₃S ([M+H]⁺), 494.2477, found 494.2472.

S-78

4-((4-Ethylphenylsulfonamido)methyl)-N-(2-(isopropyl(4-methylbenzyl)amino)ethyl)-

benzamide 3*{19}* (CID44608031). 4-((4-Ethylphenylsulfonamido)methyl)benzoyl chloride (60 mg, 0.19 mmol) and N^1 -isopropyl- N^1 -(4-methylbenzyl)ethane-1,2-diamine (38 mg, 0.19 mmol) were reacted according to the general procedure to afford the product as an off-white solid (47 mg, 0.09 mmol, 50% yield). Mp = 103-104 °C; ¹H NMR (400 MHz, CD₃OD) δ 1.06 (d, *J* = 6.8 Hz, 6 H), 1.26 (t, *J* = 7.2 Hz, 3 H), 2.30 (s, 3 H), 2.65 (t, *J* = 5.6 Hz, 2 H), 2.72 (q, *J* = 7.2 Hz, 2 H), 2.99 (sept, *J* = 6.8 Hz, 1 H), 3.34 (m, 2 H), 3.51 (s, 2 H), 4.16 (s, 2 H), 5.43 (br s, 1 H), 6.61 (br s, 1 H), 7.07 (d, *J* = 7.6 Hz, 2 H), 7.17 (d, *J* = 8.0 Hz, 2 H), 7.23 (d, *J* = 8.4 Hz, 2 H), 7.31 (d, *J* = 7.6 Hz, 2 H), 7.46 (d, *J* = 7.6 Hz, 2 H), 7.79 (d, *J* = 8.8 Hz, 2 H); ¹³C NMR (101 MHz, CD₃OD) δ d 15.1, 18.0 (× 2), 21.1, 49.5, 127.1 (× 2), 127.2 (× 2), 127.7 (× 2), 128.5 (× 2), 128.6 (× 2), 129.1 (× 2); u 28.8, 37.5, 46.8, 47.6, 53.3, 134.0, 136.5, 137.1, 137.5, 139.8, 149.6, 166.6; IR (neat) 2966, 1640, 1157 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₉H₃₈N₃O₃S ([M+H]⁺), 508.2634, found 508.2631.

N-(2-((4-Bromobenzyl)(isopropyl)amino)ethyl)-4-((4-methylphenylsulfonamido)methyl)benzamide 3{*20*} (CID 44620907). 4-((4-Methylphenylsulfonamido)methyl)benzoyl chloride (318 mg, 0.98 mmol) and N^1 -(4-bromobenzyl)- N^1 -isopropylethane-1,2-diamine (266 mg, 0.98 mmol) were reacted according to the general procedure to afford the product as a white solid (248 mg, 0.44 mmol, 45% yield). Mp = 97-100 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.05 (d, *J* = 6.4 Hz, 6 H), 2.41 (s, 3 H), 2.64 (t, *J* = 5.6 Hz, 2 H), 2.96 (sept, *J* = 6.4 Hz, 1 H), 3.34 (m, 2 H), 3.55 (s, 2 H), 3.49 (s, 2 H), 4.12 (s, 2 H), 5.71 (br s, 1 H), 6.53 (br s, 1 H), 7.15 (d, J = 8.8 Hz, 2 H), 7.23 (d, J = 8.4 Hz, 2 H), 7.28 (d, J = 8.4 Hz, 2 H), 7.34 (d, J = 8.4 Hz, 2 H), 7.45 (d, J = 8.0 Hz, 2 H), 7.77 (d, J = 8.4 Hz, 2 H). ¹³C (100 MHz, CDCl₃) δ d (CH, CH₃) 17.9 (× 2), 21.4, 49.7, 126.9 (× 2), 127.0 (× 2), 127.7 (× 2), 129.6 (× 2), 130.2 (× 2), 131.4 (× 2); u (C, CH₂) 37.6, 46.7, 47.9, 53.0, 120.5, 133.7, 136.9, 139.7, 140.0, 143.4, 166.8; IR (neat) 2965, 1639, 1157 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₇H₃₃BrN₃O₃S ([M+H + isotope]⁺), 560.1406, found 560.1400.

4-((4-Ethylphenylsulfonamido)methyl)-*N***-(2-(isopropyl(4-bromobenzyl)amino)ethyl)**benzamide 3*{21}* (CID44608037). 4-((4-Ethylphenylsulfonamido)methyl)benzoyl chloride (60 mg, 0.19 mmol) and *N*¹-(4-bromobenzyl)-*N*¹- isopropylethane-1,2-diamine (50 mg, 0.19 mmol) were reacted according to the general procedure to afford the product as an off-white solid (41 mg, 0.07 mmol, 39% yield). Mp = 106-111 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.06 (d, *J* = 6.8 Hz, 6 H), 1.26 (t, *J* = 7.2 Hz, 3 H), 2.65 (t, *J* = 5.6 Hz, 2 H), 2.72 (q, *J* = 7.6 Hz, 2 H), 2.97 (sept, *J* = 6.8 Hz, 1 H), 3.35 (m, 2 H), 3.50 (s, 2 H), 4.16 (d, *J* = 5.2 Hz, 2 H), 5.36 (br s, 1 H), 6.47 (br s, 1 H), 7.15 (d, *J* = 8.4 Hz, 2 H), 7.25 (d, *J* = 8.4 Hz, 2 H), 7.32 (d, *J* = 8.8 Hz, 2 H), 7.35 (d, *J* = 8.8 Hz, 2 H), 7.45 (d, *J* = 8.4 Hz, 2 H), 7.80 (d, *J* = 8.8 Hz, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ d 15.1, 18.0 (× 2), 49.7, 127.0 (× 2), 127.2 (× 2), 127.8 (× 2), 128.6 (× 2), 130.2 (× 2), 131.5(× 2); u 28.8, 37.6, 46.8, 48.0, 53.1, 120.6, 134.0, 137.1, 139.8, 139.9, 149.7, 166.8; IR (neat) 2966, 1638, 1324, 1156 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₈H₃₅BrN₃O₃S ([M+H]⁺+ isotope), 574.1562, found 574.1554.

N-(2-((4-Bromobenzyl)(isopropyl)amino)ethyl)-4-((4-methoxyphenylsulfonamido)methyl)benzamide 3{*22*} (CID44620903). 4-((4-Methoxyphenylsulfonamido)methyl)benzoyl chloride (63 mg, 0.19 mmol) and N^{1} -(4-bromobenzyl)- N^{1} -isopropylethane-1,2-diamine (50 mg, 0.19 mmol) were reacted according to the general procedure to afford the product as a white solid (65 mg, 0.11 mmol, 61% yield). Mp = 106-107 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.05 (d, *J* = 6.4 Hz, 6 H), 2.64 (t, *J* = 5.6 Hz, 2 H), 2.97 (sept, *J* = 6.8 Hz, 1 H), 3.34 (m, 2 H), 3.49 (s, 2 H), 3.85 (s, 3 H), 4.13 (s, 2 H), 5.48 (br s, 1 H), 6.50 (br s, 1 H), 6.95 (d, *J* = 8.4 Hz, 2 H), 7.15 (d, *J* = 8.4 Hz, 2 H),7.24 (d, *J* = 8.0 Hz, 2 H), 7.34 (d, *J* = 8.4 Hz, 2 H), 7.45 (d, *J* = 8.4 Hz, 2 H), 7.81 (d, *J* = 9.2 Hz, 2 H); ¹³C (100 MHz, CDCl₃) δ d (CH, CH₃) 18.0 (× 2), 49.7, 55.6, 114.2 (× 2), 127.0 (× 2), 127.8 (× 2), 129.2 (× 2), 130.2 (× 2), 131.4 (× 2); u (C, CH₂) 37.7, 46.7, 48.0, 53.1, 120.6, 133.9, 139.8, 140.0 (× 2), 162.9, 166.8; IR (neat) 2966, 1641, 1497, 1153 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₇H₃₃BrN₃O₄S ([M+H + isotope (2)]⁺), 576.1355, found 576.1349.

N-(2-((4-Bromobenzyl)(isopropyl)amino)ethyl)-4-((4-methoxyphenylsulfonamido)methyl)benzamide 3{23} (CID44620900). 4-((4-Bromophenylsulfonamido)methyl)benzoyl chloride (72 mg, 0.19 mmol) and N^1 -(4-bromobenzyl)- N^1 -isopropylethane-1,2-diamine (50 mg, 0.19 mmol)

were reacted according to the general procedure to afford the product as a white solid (70 mg, 0.11 mmol, 60% yield). Mp = 108-111 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.06 (d, *J* = 6.4 Hz, 6 H), 2.65 (t, *J* = 5.6 Hz, 2 H), 2.97 (sept, *J* = 6.4 Hz, 1 H), 3.35 (m, 2 H), 3.49 (s, 2 H), 4.15 (s, 3 H), 5.77 (br s, 1 H), 6.49 (br s, 1 H), 7.15 (d, *J* = 8.4 Hz, 2 H), 7.22 (d, *J* = 8.4 Hz, 2 H), 7.34 (d, *J* = 8.4 Hz, 2 H), 7.40 (d, *J* = 8.0 Hz, 2 H), 7.63 (d, *J* = 8.8 Hz, 2 H), 7.75 (d, *J* = 8.8 Hz, 2 H); ¹³C (100 MHz, CDCl₃) δ d (CH, CH₃) 18.0 (× 2), 49.8, 127.0 (× 2), 127.8 (× 2), 128.6 (× 2), 130.2 (× 2), 131.5 (× 2), 132.3 (× 2); u (C, CH₂) 37.7, 46.8, 48.1, 53.1, 120.6, 127.6, 134.0, 139.2, 139.7, 139.8, 166.8; IR (neat) 3102, 1637, 1497, 1486 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₆H₃₀Br₂N₃O₃S ([M+H + isotope (2)]⁺), 624.0354, found 624.0338.

N-(2-((4-Methoxybenzyl)(isopropyl)amino)ethyl)-4-(phenylsulfonamidomethyl)-benzamide 3{24} (CID44665684). 4-(Phenylsulfonamidomethyl)benzoyl chloride (130 mg, 0.42 mmol) and N^{1} -(4-methoxybenzyl)- N^{1} -isopropylethane-1,2-diamine (93 mg, 0.42 mmol) were reacted according to the general procedure to afford the product as a viscous oil (40 mg, 0.081 mmol, 19% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.07 (d, *J* = 6.6 Hz, 6 H), 2.66 (t, *J* = 5.6 Hz 2 H), 2.96-3.08 (m, 1 H), 3.34 (dt, *J* = 6.4 Hz, 5.6 Hz, 2 H), 3.48 (s, 2 H), 3.76 (s, *J* = 3.0, 3 H), 4.20 (d, *J* = 5.6 Hz, 2 H), 4.91 (br s, 1 H), 6.52 (br s, 1 H), 6.74-6.82 (m, 2 H), 7.13-7.31 (complex, 4 H), 7.45-7.64 (complex, 5 H),7.90 (ddd, *J* = 7.0, 3.2, 1.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 18.1, 49.7, 55.3, 114.0, 127.1, 127.3, 127.8, 129.2, 129.7, 132.9; u 37.6, 47.0, 47.8, 53.0, 132.6, 134.5, 139.5, 140.0, 158.7, 166.6; IR (neat) 1639, 1510, 1327, 1159 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₂₇H₃₄N₃O₄S ([M+H]⁺), 496.2270, found 496.2261.

N-(2-((4-Methoxybenzyl)(isopropyl)amino)ethyl)-4-((4-methylphenylsulfonamido)methyl)benzamide 3{*25*} (CID44620909). 4-((4-Methylphenylsulfonamido)methyl)benzoyl chloride (146 mg, 0.45 mmol) and N^{1} -(4-methoxybenzyl)- N^{1} -isopropylethane-1,2-diamine (100 mg, 0.45 mmol) were reacted according to the general procedure to afford the product as a white solid (16 mg, 0.031 mmol, 7% yield). Mp = 122-125 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.10 (d, *J* = 6.8 Hz, 6 H), 2.47 (s, 3 H), 2.69 (t, *J* = 5.7 Hz, 2 H), 2.94-3.06 (m, 1 H), 3.37 (dt, J = 5.7, 6.0 Hz, 2 H), 3.52 (s, 2 H), 3.80 (s, 3 H), 4.20 (d, *J* = 5.2 Hz, 2 H), 4.91 (br s, 1 H), 6.55 (br s, 1 H), 6.81 (d, *J* = 8.0 Hz, 2 H), 7.21 (d, *J* = 8.0 Hz, 2 H), 7.28 (d, *J* = 8.0 Hz, 2 H), 7.35 (d, *J* = 8.0 Hz, 2 H), 7.53 (d, *J* = 8.0 Hz, 2 H), 7.81 (d, *J* = 8.0 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 18.0, 21.6, 49.6, 55.3, 113.9, 127.2, 127.2, 127.8, 129.7, 129.8; u 37.5, 46.9, 47.7, 52.9, 132.6, 134.3, 136.9, 139.6, 143.7, 158.6, 166.7; IR (neat) 1638, 1509, 1326, 1243, 1156 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₈H₃₆N₃O₄S ([M+H]⁺), 510.2427, found 510.2416.

N-(2-((4-Methoxybenzyl)(isopropyl)amino)ethyl)-4-((4-methylphenylsulfonamido)methyl)benzamide 3{26} (CID44620896). 4-((4-Ethylphenylsulfonamido)methyl)benzoyl chloride (149 mg, 0.44 mmol) and N^1 -(4-methoxybenzyl)- N^1 -isopropylethane-1,2-diamine (98 mg, 0.44 mmol)

were reacted according to the general procedure to afford the product as a viscous oil (13 mg, 0.025 mmol, 6% yield). ¹H NMR (400 MHz, CDCl₃) δ 0.99 (d, *J* = 6.8 Hz, 6 H), 1.19 (t, *J* = 7.6 Hz, 3 H), 2.58 (t, *J* = 5.2 Hz, 2 H), 2.65 (q, *J* = 7.6 Hz, 2 H), 2.86-2.98 (m, 1 H), 3.26 (m, 2 H), 3.40 (s, 2 H), 3.69 (s, 3 H), 4.10 (d, *J* = 6.0 Hz, 2 H), 4.78 (br s, 1 H), 6.43 (br s, 1 H), 6.70 (d, *J* = 8.4 Hz, 2 H), 7.10 (d, *J* = 8.4 Hz, 2 H), 7.17 (d, *J* = 8.4 Hz, 2 H), 7.26 (d, *J* = 8.4 Hz, 2 H), 7.42 (d, *J* = 8.4 Hz, 2 H), 7.72 (d, *J* = 8.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 15.2, 18.0, 49.6, 55.3, 113.9, 127.2, 127.3, 127.8, 128.7, 129.7; u 28.8, 37.5, 46. 9, 47.7, 52.9, 132.6, 134.3, 137.0, 139.6, 149.8, 158.6, 166.6; IR (neat) 1639, 1509, 1326, 1243, 1156 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₉H₃₈N₃O₄S ([M+H]⁺), 524.2578, found 524.2574.

N-(2-(Benzyl(ethyl)amino)ethyl)-4-(phenylsulfonamidomethyl)benzamide 3{27}

(CID44665688). 4-((4-Phenylsulfonamido)methyl)benzoyl chloride (116 mg, 0.38 mmol) and N^{1} -benzyl- N^{1} -ethylethane-1,2-diamine (67 mg, 0.38 mmol) were reacted according to the general procedure to afford the product as a viscous oil (35 mg, 0.078 mmol, 21% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.10 (t, J = 7.1 Hz, 3 H), 2.61 (q, J = 7.1 Hz, 2 H), 2.66 (t, J = 5.8 Hz, 2 H), 3.43 (dt, J = 5.8, 6.4 Hz, 2 H), 3.60 (s, 2 H), 4.20 (d, J = 5.6 Hz), 4.99 (br s, 1 H), 6.65 (br s, 1 H), 7.21-7.33 (m, 7 H), 7.48-7.56 (m, 5 H), 7.89 (d, J = 7.6 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 12.0, 127.1, 127.2, 127.3, 127.8, 128.5, 128.9, 129.2; u 37.5, 47.3, 51.6, 58.3, 134.3, 139.5, 139.6, 140.0, 166.9; IR (neat) 1638, 1325, 1157 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₅H₂₉N₃O₃S ([M+H]⁺), 452.2008, found 452.2005.

N-(2-(Benzyl(ethyl)amino)ethyl)-4-((4-methylphenylsulfonamido)methyl)benzamide 3{*28*} (CID44608034). 4-((4-Methylphenylsulfonamido)methyl)benzoyl chloride (147 mg, 0.45 mmol) and N^{1} -benzyl- N^{1} -ethylethane-1,2-diamine (81 mg, 0.45 mmol) were reacted according to the general procedure to afford the product as a white solid (23 mg, 0.050 mmol, 11% yield). Mp = 85-88 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.13 (t, *J* = 7.2 Hz, 3 H), 2.47 (s, 3 H), 2.64 (q, *J* = 7.2 Hz, 2 H), 2.69 (t, *J* = 6.0, 2 H), 3.46 (dt, *J* = 5.1, 6.0 Hz, 2 H), 3.63 (s, 2 H), 4.21 (s, 2 H), 4.91 (br s, 1 H), 6.66 (br s, 1 H), 7.25-7.37 (m, 9 H), 7.59 (d, *J* = 8.4 Hz, 2 H), 7.81 (d, *J* = 8.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 12.0, 21.6, 127.2, 127.3, 127.8, 128.5, 128.9, 129.8; u 37.3, 46.9, 47.5, 51.4, 58.0, 134.3, 136.8, 139.6, 139.7, 143.7, 166.6; IR (neat) 1638, 1325, 1149 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₆H₃₁N₃O₃S ([M+H]⁺), 466.2159, found 466.2159.

N-(2-(Benzyl(ethyl)amino)ethyl)-4-((4-ethylphenylsulfonamido)methyl)benzamide 3{29} (CID44608039). 4-((4-Ethylphenylsulfonamido)methyl)benzoyl chloride (121 mg, 0.36 mmol) and N^1 -benzyl- N^1 -ethylethane-1,2-diamine (64 mg, 0.36 mmol) were reacted according to the general procedure to afford the product as a viscous oil (14 mg, 0.029 mmol, 8% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.13 (t, *J* = 7.2 Hz, 3 H), 1.30 (t, *J* = 7.5 Hz, 3 H), 2.65 (q, *J* = 7.2 Hz, 2 H), 2.70 (t, J = 5.2 Hz, 2 H), 2.76 (q, J = 7.5 Hz, 2 H), 3.46 (dt, J = 5.2, 6.4 Hz, 2 H), 3.63 (s, 2 H), 4.22 (d, J = 6.0 Hz, 2 H), 4.80 (t, J = 6.3 Hz, 1 H), 6.66 (br s, 1 H), 7.24-7.40 (m, 9 H), 7.60 (d, J = 7.2 Hz, 2 H), 7.83 (d, J = 8.5 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 12.0, 15.2, 127.1, 127.2, 127.3, 127.8, 128.5, 128.7, 128. 9; u 28.8, 37.3, 46.9, 47.5, 51.4, 58.0, 134.3, 137.1, 139.6, 139.7, 149.9, 166.7; IR (neat) 1641, 1328, 1156 cm⁻¹; HRMS (ESI) *m/z* calcd for $C_{27}H_{34}N_3O_3S$ ([M+H]⁺), 480.2315, found 480.2318.

N-(2-(benzyl(ethyl)amino)ethyl)-4-((4-methoxyphenylsulfonamido)methyl)benzamide 3{*30*} (CID44620901). 4-((4-Methoxyphenylsulfonamido)methyl)benzoyl chloride (153 mg, 0.45 mmol) and N^{1} -benzyl- N^{1} -ethylethane-1,2-diamine (80 mg, 0.45 mmol) were reacted according to the general procedure to afford the product as a white solid (35 mg, 0.0727 mmol, 16% yield). Mp = 72-77 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.24 (t, *J* = 7.0 Hz, 3 H), 2.64 (t, *J* = 5.2 Hz, 2 H), 2.68 (q, *J* = 7.0 Hz, 2 H), 3.46 (dt, *J* = 5.2, 6.1 Hz, 2 H), 3.62 (s, 2 H), 3.90 (s, 3 H), 4.20 (d, *J* = 5.2 Hz, 2 H), 4.89 (br s, 1 H), 6.66 (br s, 1 H), 7.01 (d, *J* = 9.6 Hz, 2 H), 7.24-7.36 (m, 7 H), 7.59 (d, *J* = 8.4 Hz, 2 H), 7.85 (d, *J* = 9.6 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 12.0, 55.7, 114.3, 127.2, 127.2, 127.8, 128.5, 128.9, 129.3; u 37.2, 46.8, 47.4, 51.3, 57.9, 131.3, 134.2, 139.6, 139.8, 163.0, 166.7; IR (neat) 1639, 1496, 1301, 1258, 1152 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₆H₃₂N₃O₄S ([M+H]⁺), 482.2108, found 482.2109.

N-(2-(benzyl(ethyl)amino)ethyl)-4-((4-bromophenylsulfonamido)methyl)benzamide 3{*31*} (CID44620906). 4-((4-Bromophenylsulfonamido)methyl)benzoyl chloride (181 mg, 0.47 mmol) and N^{1} -benzyl- N^{1} -ethylethane-1,2-diamine (83 mg, 0.47 mmol) were reacted according to the general procedure to afford the product as a white solid (27 mg, 0.051 mmol, 11% yield). Mp = 99-101 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.06 (t, *J* = 7.0 Hz, 3 H), 2.57 (t, *J* = 7.1 Hz, 2 H), 2.68 (q, *J* = 7.0 Hz, 2 H), 3.46 (dt, *J* = 4.9, 7.1 Hz, 2 H), 3.56 (s, 2 H), 4.16 (s, 2 H), 6.60 (br s, 1 H), 7.16-7.31 (m, 7 H), 7.50 (d, *J* = 8.3 Hz, 2 H), 7.62 (d, *J* = 8.4 Hz, 2 H), 7.71 (d, *J* = 8.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 12.0, 127.2, 127.3, 127.8, 128.5, 128.7, 128.9, 132.5; u 37.2, 46.9, 47.4, 51.3, 57.9, 127.8, 134.3, 139.0, 139.4, 139.6, 167. 7; IR (neat) 1638, 1331, 1159 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₅H₂₉BrN₃O₃S ([M+H]⁺ and [M+H+Isotope (A+2)]⁺), 530.1108, 532.1090, found 530.1104, 532.1087.

N-(2-(Dibenzylamino)ethyl)-4-(phenylsulfonamidomethyl)benzamide 3{32} (CID44665683). 4-((Phenylsulfonamido)methyl)benzoyl chloride (82 mg, 0.27 mmol) and N^1 , N^1 -dibenzylethane-1,2-diamine (64 mg, 0.27 mmol) were reacted according to the general procedure to afford the product as a white solid (62 mg, 0.121 mmol, 45% yield). Mp = 100-102 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.66-2.75 (m, 2 H), 3.48 (dd, J = 11.2, 4.9 Hz, 2 H), 3.63 (s, 4 H), 4.23 (s, 2 H), 4.90 (br s, 1 H), 6.42 (br s, 1 H), 7.20-7.38 (complex, 12 H), 7.48-7.58 (complex, 4 H), 7.58-7.66 (m, 1 H), 7.88-7.96 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 127.1, 127.3, 127.8, 128.5, 129.0, 129.2, 132.9; u 37.4, 47.0, 51.8, 58.6, 134.3, 139.1, 139.7, 166.6; IR (neat) 1638, 1327, 1157 cm⁻¹; HRMS (ESI) *m/z* calcd for C₃₀H₃₂N₃O₃S ([M+H]⁺), 514.2164, found 514.2158.

N-(2-(Dibenzylamino)ethyl)-4-((4-methylphenylsulfonamido)methyl)benzamide 3{*33*} (CID44608028). 4-((4-Methylphenylsulfonamido)methyl)benzoyl chloride (146 mg, 0.45 mmol) and N^1 , N^1 -dibenzylethane-1,2-diamine (104 mg, 0.45 mmol) were reacted according to the general procedure to afford the product as a white solid (79 mg, 0.1497 mmol, 33% yield). Mp = 134-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.48 (s, 3 H), 2.73 (t, *J* = 6.0 Hz, 2 H), 3.50 (dt, *J* = 4.8, 6.0 Hz, 2 H), 3.65 (s, 4 H), 4.23 (s, 2 H), 4.89 (br s, 1 H), 6.45 (br s, 1 H), 7.25-7.38 (m, 14 H), 7.54 (d, *J* = 8.4 Hz, 2 H), 7.82 (d, *J* = 8.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 21.6, 127.2, 127.3, 127.4, 127.8, 128.5, 129.0, 129.9; u 37.4, 46.9, 51.8, 58.5, 134.3, 136.9, 139.2, 139.9, 143.8, 166.7; IR (neat) 1639, 1326, 1155 cm⁻¹; HRMS (ESI) *m/z* calcd for C₃₁H₃₄N₃O₃S ([M+H]⁺), 528.2315, found 528.2310.

N-(2-(Dibenzylamino)ethyl)-4-((3-methylphenylsulfonamido)methyl)benzamide 3{*34*} (CID CID44608038). 4-((3-Methylphenylsulfonamido)methyl)benzoyl chloride (46 mg, 0.142 mmol) and N^1 , N^1 -dibenzylethane-1,2-diamine (34 mg, 0.142 mmol) were reacted according to the general procedure to afford the product as a white solid (39 mg, 0.074 mmol, 53% yield). Mp = 117-119 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.46 (s, 3 H), 2.73 (t, *J* = 5.7 Hz, 2 H), 3.50 (dt, *J* = 5.0, 5.7 Hz, 2 H), 3.65 (s, 4 H), 4.25 (s, 2 H), 6.45 (br s, 1 H), 7.24-7.35 (m, 12 H), 7.43-7.45 (m, 2 H), 7.55 (d, *J* = 8.0 Hz, 2 H), 7.72-7.75 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 21.4, 124.2, 127.2, 127.3, 127.5, 127.8, 128.5, 129.0, 129.1, 133.6; u 37.3, 46.9, 51.8, 58.5, 134.3, 139.1, 139.5, 139.7, 139.8, 166.7; IR (neat) 1639, 1327, 1152 cm⁻¹; HRMS (ESI) *m/z* calcd for C₃₁H₃₄N₃O₃S ([M+H]⁺), 528.2315, found 528.2317.

N-(2-(Dibenzylamino)ethyl)-4-((4-ethylphenylsulfonamido)methyl)benzamide $3{35}$ (CID44608033). 4-((4-Ethylphenylsulfonamido)methyl)benzoyl chloride (117 mg, 0.35 mmol) and N^1 , N^1 -dibenzylethane-1,2-diamine (83 mg, 0.35 mmol) were reacted according to the general procedure to afford the product as a white solid (51 mg, 0.094 mmol 27% yield). Mp = 141-145 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.30 (t, J = 7.6 Hz, 3 H), 2.69-2.80 (m, 4 H), 3.50 (dt, J = 4.5, 6.4 Hz, 2 H), 3.65 (s, 4 H), 4.24 (s, 2H), 6.44 (br s, 1 H), 7.25-7.35 (complex, 12 H), 7.38 (d, J = 7.6 Hz, 2 H), 7.55 (d, J = 7.6 Hz, 2 H), 7.84 (d, J = 7.6 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 15.2, 127.3, 127.3, 127.8, 128.5, 128.7, 129.0; u 28.8, 37.3, 46.9, 51.8, 58.5, 134.2, 137.1, 139.1, 139.8, 149.9, 166.7; IR (neat) 1639, 1325, 1155 cm⁻¹; HRMS (APCI/ES) m/z calcd for C₃₂H₃₆N₃O₃S ([M+H]⁺), 542.2472, found 542.2469.

N-(2-(Dibenzylamino)ethyl)-4-((4-methoxyphenylsulfonamido)methyl)benzamide 3{*36*} (CID44620905). 4-((4-Methoxyphenylsulfonamido)methyl)benzoyl chloride (132 mg, 0.39 mmol) and N^1 , N^1 -dibenzylethane-1,2-diamine (93 mg, 0.39 mmol) were reacted according to the general procedure to afford the product as a white solid (46 mg, 0.085 mmol, 22% yield). Mp = 128-135 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.73 (t, *J* = 5.6 Hz, 2 H), 3.50 (dt, *J* = 5.2, 5.6 Hz, 2 H), 3.65 (s, 4 H), 3.90 (s, 3 H), 4.22 (d, *J* = 7.2, 2 H), 4.80 (br s, 1 H), 6.44 (br s, 1 H), 7.02 (d, *J* = 8.0, 2 H), 7.24-7.37 (complex, 12 H), 7.55 (d, *J* = 8.0, 2 H), 7.86 (d, *J* = 8.0, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 55.7, 114.4, 127.3, 127.3, 127.8, 128.5, 129.0, 129.3; u 37.3, 46.9, 51.7, 58.5, 131.3, 134.2, 139.1, 139.8, 163.1, 166.7; IR (neat) 1639, 1495, 1301, 1256, 1150 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₃₁H₃₄N₃O₄S ([M+H]⁺), 544.2265, found 544.2260.

N-(2-(Dibenzylamino)ethyl)-4-((4-bromophenylsulfonamido)methyl)benzamide 3{*37*} (CID44620908). 4-((4-Bromophenylsulfonamido)methyl)benzoyl chloride (160 mg, 0.41 mmol)

and N^1 , N^1 -dibenzylethane-1,2-diamine (99 mg, 0.41 mmol) were reacted according to the general procedure to afford the product as a white solid (41 mg, 0.069 mmol, 17% yield). Mp = 150-155 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.73 (t, J = 5.6 Hz, 2 H), 3.50 (dt, J = 5.3, 5.6 Hz, 2 H), 3.65 (s, 4 H), 3.90 (s, 3 H), 4.24 (s, 2 H), 5.10 (br s, 1 H), 6.44 (br s, 1 H), 7.24-7.37 (complex, 12 H), 7.53 (d, J = 8.4, 2 H), 7.69 (d, J = 8.4, 2 H), 7.79 (d, J = 8.4, 2 H); ¹³CNMR (100 MHz, CDCl₃) δ d 127.3, 127.8, 128.5, 128.7, 129.0, 132.5; u 37.3, 46.9, 51.7, 58.5, 127.8, 134.4, 139.0, 139.1, 139.4, 166.7; IR (neat) 1640, 1332, 1161 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₃₀H₃₁BrN₃O₃S ([M+H]⁺ and [M+H+Isotope (A+2)]⁺), 592.1264, 594.1247, found 592.1252, 594.1236.

N-(2-(benzyl(cyclopentyl)amino)ethyl)-4-((4-methylphenylsulfonamido)methyl)benzamide (CID45479167) 3{38}. 4-((4-Methylphenylsulfonamido)methyl)benzoyl chloride (101 mg, 0.31 mmol) and N^{l} -benzyl- N^{l} -cyclopentylethane-1,2-diamine (68 mg, 0.3114 mmol) were reacted according to the general procedure to afford the product as a white solid (37 mg, 0.073 mmol., 24% yield). Mp = 140-146 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.40-1.58 (m, 4 H), 1.59-1.73 (m, 2 H), 1.74-1.86 (m, 2 H), 2.43 (s, 3 H), 2.68-2.76 (m, 2 H), 3.17-3.28 (m, 1 H), 3.37 (dt, *J* = 6.4, 5.6 Hz, 2 H), 3.62 (s, 2 H), 4.16 (s, 2 H), 5.05 (br s, 1 H), 6.52 (br s, 1 H), 7.17-7.38 (m, 9 H), 7.51 (d, *J* = 8.4 Hz, 2 H), 7.77(d, *J* = 8.4 Hz, 2 H). ¹³C NMR (CDCl₃) δ d 21.5, 63.1, 127.0, 127.1, 127.2, 127.8, 128.5, 128.7, 129.8; u 24.2, 28.5, 37.6, 46.9, 50.1, 56.0, 134.2, 136.9, 139.8, 140.5, 143.7, 166.7; IR (neat) 1642, 1327, 1157 cm⁻¹; HRMS (APCI/ES) m/z calcd for C₂₉H₃₆N₃O₃S ([M+H]⁺), 506.2477, found 506.2472.

N-(2-(Benzyl(*tert*-butyl)amino)ethyl)-4-((4-methylphenylsulfonamido)methyl)benzamide (CID45115589) 3{39}. 4-((4-Methylphenylsulfonamido)methyl)benzoyl chloride (75 mg, 0.23 mmol) and N^{1} -benzyl- N^{1} -(*tert*-butyl)ethane-1,2-diamine (48 mg, 0.23 mmol) were reacted according to the general procedure to afford the product as a white solid (33 mg, 0.067 mmol, 19% yield). Mp = 136-139; ¹H NMR (400 MHz, CDCl₃) δ 1.17 (s, 9 H), 2.44 (s, 3 H), 2.83 (t, *J* = 5.9 Hz, 2 H), 3.18 (dt, *J* = 6.4, 5.9 Hz, 2 H), 3.70 (s, 2 H), 4.16 (s, 2 H), 4.94 (br s, 1 H), 6.25 (br s, 1 H), 7.16 (m, 1 H), 7.21-7.28 (complex, 4 H), 7.29-7.38 (complex, 4 H), 7.44 (d, *J* = 8.4 Hz, 2 H), 7.77 (d, *J* = 8.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 27.5, 41.0, 126.8, 127.2, 127.2, 127.8, 127.9, 128.5, 129.8; u 39.8, 46.9, 50.1, 55.3, 55.5, 134.4, 137.0, 139.6, 142.9, 143.7, 166.5; IR (neat) 1638, 1509, 1326, 1243, 1156 cm⁻¹; IR (neat) 1638, 1509, 1326, 1154 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₂₈H₃₆N₃O₃S ([M+H]⁺), 494.2477, found 494.2470.

4-((4-Ethylphenylsulfonamido)methyl)-*N***-phenethylbenzamide** (CID44601477) **3***{40}.* 4-((4-Ethylphenylsulfonamido)methyl)benzoyl chloride (42 mg, 0.13 mmol) and phenethylamine (32

mg, 0.25 mmol, 2.0 equiv.) afforded the product as a white solid (42 mg, 0.10 mmol, 80% yield). mp = 173-174 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.27 (t, *J* = 7.6 Hz, 3 H), 2.73 (q, *J* = 7.6 Hz, 2 H), 2.93 (t, *J* = 6.8 Hz, 2 H), 3.71 (m, 2 H), 4.17 (s, 2 H), 4.72 (br s, 1 H), 6.08 (br s, 1 H), 7.22-7.26 (complex, 5 H), 7.31-7.34 (complex, 4 H), 7.59 (d, *J* = 8.4 Hz, 2 H), 7.78 (d, *J* = 8.4 Hz, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ d 15.2 (× 2), 126.5, 127.2 (× 2), 127.3 (× 2), 127.9 (× 2), 128.6 (× 2), 128.7 (× 2), 128.8 (× 2); u 28.8, 35.7, 41.1, 46.8, 138.0, 138.8, 139.9, 152.4, 170.4; IR (neat) 3410, 3132, 1635, 1542, 1154 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₄H₂₇N₂O₃S ([M+H]⁺), 423.1742, found 423.1733.

N-(1-benzylpiperidin-3-yl)-4-((4-methylphenylsulfonamido)methyl)benzamide

(CID45479165) **3***{41}*. 4-((4-Methylphenylsulfonamido)methyl)benzoyl chloride (71 mg, 0.22 mmol) and the commercially available 1-benzylpiperidine-3-amine (42 mg, 0.22 mmol) were reacted according to the general procedure to afford the product as a white solid (65 mg, 0.14 mmol, 65% yield). Mp = 159-170 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.53-1.65 (complex, 2 H), 1.66-1.91 (complex, 2 H), 2.16-2.30 (m,1 H), 2.36-2.50 (complex, 4 H), 2.53-2.66 (m, 1 H), 2.66-2.80 (m, 1 H), 3.45 (d, *J* = 12.8 Hz, 1 H), 3.57 (d, *J* = 13.2 Hz, 1 H), 4.18 (d, *J* = 6.3 Hz, 2 H), 4.24 (br s, 1 H), 4.77 (t, *J* = 6.4 Hz, 1 H), 6.83 (br s, 1 H), 7.21 – 7.39 (complex, 9 H), 7.66 (d, *J* = 8.4 Hz, 2 H), 7.77 (d, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 21.6, 45.4, 127.0, 127.3, 127.8, 127.9, 128.4, 129.0, 129.8; u 21.9, 28.9, 46.9, 54.1, 57.8, 63.1, 134.6, 138.3, 139.8, 143.

8, 165.8; IR (neat) 3300, 1636, 1324, 1156 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₂₇H₃₂N₃O₃S ([M+H]⁺), 478.2164, found 478.2155.

N-(1-Benzylpiperidin-4-yl)-4-((4-methylphenylsulfonamido)methyl)benzamide

(CID45479171) **3***{42}*. 4-((4-Methylphenylsulfonamido)methyl)benzoyl chloride (103 mg, 0.32 mmol) and the commercially available 1-benzylpiperidine-4-amine (60 mg, 0.32 mmol) were reacted according to the general procedure to afford the product as a white solid (68 mg, 0.14 mmol, 46% yield). Mp = 160-167 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.49-1.61 (m, 2 H), 1.95-2.05 (m, 2 H), 2.11-2.24 (m, 2 H), 2.44 (s, 3 H), 2.79-2.91 (m, 2 H), 3.51 (s, 2 H), 3.93-4.05 (m, 1 H), 4.15 (s, 2 H), 4.90 (br s, 1 H), 5.95 (d, *J* = 7.7 Hz, 1H), 7.21-7.35 (complex, 9 H), 7.64 (d, *J* = 8.3 Hz, 2 H), 7.75 (d, *J* = 8.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d 21.6, 47.1, 127.1, 127.2, 127.2, 127.9, 128.3, 129.1, 129.8; u 32.4, 46.9, 52.4, 63.1, 134.4, 136.8, 138.4, 140.0, 143.7, 166.3; IR (neat) 1637, 1330, 1156 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₂₇H₃₂N₃O₃S ([M+H]⁺), 478.2164, found 478.2159.

N-(1-Benzylpyrrolidin-3-yl)-4-((4-methylphenylsulfonamido)methyl)benzamide (CID45479170) 3{43}. 4-((4-Methylphenylsulfonamido)methyl)benzoyl chloride (113 mg, 0.35

mmol) and the commercially available 1-benzylpyrrolidine-3-amine (61 mg, 0.35 mmol) were reacted according to the general procedure to afford the product as a white solid (70 mg, 0.1511 mmol, 49% yield). Mp = 160-168 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.67-1.76 (m, 1 H), 2.25-2.42 (complex, 2 H), 2.44 (s, 3 H), 2.57-2.65 (m, 1 H), 2.71 (dd, *J* = 9.6, 2.4 Hz, 1 H), 2.88-2.96 (m, 1 H), 3.62 (s, 2 H), 4.14 (s, 2 H), 4.71 – 4.58 (m, 1 H), 5.02 (br s, 1 H), 6.58 (d, *J* = 8.3 Hz, 1 H), 7.21-7.40 (complex, 9 H), 7.64 (d, *J* = 8.4 Hz, 2 H), 7.76 (d, *J* = 8.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ d u 21.6, 49.2, 127.2, 127.2, 127.3, 127.9, 128.4, 128.9, 129.8; u 32.7, 46.9, 52.8, 60.1, 60.8, 134.0, 136.8, 138.4, 139.9, 143.7, 166.2 IR (neat) 2926, 1641, 1319, 1157 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₂₆H₃₀N₃O₃S ([M+H]⁺), 464.2008, found 464.2005.

4-((4-Methylphenylsulfonamido)methyl)-*N*-(**2-(4-phenylpiperidin-1-yl)ethyl)benzamide** (CID45479163) **3**{*44*}. 4-((4-Methylphenylsulfonamido)methyl)benzoyl chloride (101 mg, 0.31 mmol) and 2-(4-phenylpiperidin-1-yl)ethanamine (64 mg, 0.31 mmol) were reacted according to the general procedure to afford the product as a white solid (23 mg, 0.047 mmol, 15% yield). Mp = 134-141 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.69-1.82 (m, 2 H), 1.83-1.93 (m, 2 H), 2.09-2.22 (m, 2 H), 2.44 (s, 3 H), 2.49-2.58 (m, 1 H), 2.59-2.66 (m, 2 H), 3.04 (m, 2 H), 3.55 (dt, *J* = 6.4, 5.7 Hz, 2H), 4.17 (s, 2 H), 4.90 (s, 1 H), 6.89 (s, 1 H), 7.16-7.36 (complex, 9 H), 7.71 (d, 2 H), 7.76 (d, 2 H); ¹³C NMR (CDCl₃) δ d 21.6, 42.5, 126.6, 126.8, 127.2, 127.3, 127.9, 128.5, 129.8; u 33.5, 36.6, 46.9, 54.1, 56.7, 134.3, 136.9, 139.9, 143.7, 146.1, 166.9; IR (neat) 1638, 1325, 1155 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₂₈H₃₄N₃O₃S ([M+H]⁺), 492.2321, found 492.2319.

4-((4-Methylphenylsulfonamido)methyl)-*N*-(**2-(4-phenylpiperazin-1-yl)ethyl)benzamide** (CID6621922) **3***{45}*. 4-((4-Methylphenylsulfonamido)methyl)benzoyl chloride (101 mg, 0.31 mmol) and 2-(4-phenylpiperazin-1-yl)ethanamine (64 mg, 0.31 mmol) were reacted according to the general procedure to afford the product as a white solid (30 mg, 0.061 mmol, 20% yield). Mp = 145-155 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.42 (s, 3 H), 2.62-2.70 (complex, 6 H), 3.16-3.25 (m, 4 H), 3.57 (dt, *J* = 6.4, 5.6 Hz, 2 H), 4.13 (s, 2 H), 5.28 (br s, 1 H), 6.84-6.90 (m, 2 H), 6.93 (d, *J* = 8.8, Hz, 2 H), 7.21-7.33 (complex, 6 H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 2 H); ¹³C NMR (CDCl₃) δ d 21.6, 116.1, 120.0, 127.2, 127.3, 127.9, 129.2, 129.8; u 36.3, 46.8, 49.3, 52.9, 56.4, 134.0, 136.9, 140.2, 143.6, 151.2, 167.0; IR (neat) 1637, 1599, 1499, 1325, 1154 cm⁻¹; HRMS (APCI/ES) *m/z* calcd for C₂₇H₃₃N₄O₃S ([M+H]⁺), 493.2273, found 493.2266.

N-(2-(Isoindolin-2-yl)ethyl)-4-((4-methylphenylsulfonamido)methyl)benzamide

(CID44620897) **3***{46}*. 4-((4-Methylphenylsulfonamido)methyl)benzoyl chloride (60 mg, 0.19 mmol) and 2-(isoindolin-2-yl)ethanamine (30 mg, 0.19 mmol) were reacted according to the general procedure to afford the product as a tan solid (30 mg, 0.07 mmol, 36% yield). Mp = 161-170 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.42 (s, 3 H), 2.99 (t, *J* = 5.6 Hz, 2 H), 3.62 (q, *J* = 5.6

Hz, 2 H), 3.98 (s, 4 H), 4.06 (d, J = 6.0 Hz, 2 H), 5.50 (t, J = 6.4 Hz, 1 H), 6.97 (t, J = 4.8 Hz, 1 H), 7.17-7.23 (complex, 6 H), 7.28 (d, J = 8.4 Hz, 2 H), 7.63 (d, J = 8.4 Hz, 2 H), 7.72 (d, J = 8.4 Hz, 2 H); ¹³C (100 MHz, CDCl₃) δ d (CH, CH₃) 21.5, 122.3 (× 2), 127.0 (× 2), 127.1 (× 2), 127.4 (× 2), 127.8 (× 2), 129.7; u (C, CH₂) 38.4, 46.7, 54.4, 58.9 (× 2), 133.9, 136.9, 139.5, 140.0 (× 2), 143.5, 167.1; IR (neat) 1638, 1323, 1305, 1153 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₅H₂₈N₃O₃S ([M+H]⁺), 450.1851, found 450.1846.

N-(2-(Isoindolin-2-yl)ethyl)-4-((3-methylphenylsulfonamido)methyl)benzamide (CID44608035) 3{*47*}. 4-((3-Methylphenylsulfonamido)methyl)benzoyl chloride (60 mg, 0.19 mmol) and 2-(isoindolin-2-yl)ethanamine (30 mg, 0.19 mmol) were reacted according to the general procedure to afford the product as an off-white solid (20 mg, 0.04 mmol, 24% yield). Mp = 130-140 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.39 (s, 3 H), 2.99 (t, *J* = 5.6 Hz, 2 H), 3.63 (q, *J* = 5.6 Hz, 2 H), 3.99 (s, 4 H), 4.12 (d, *J* = 5.2 Hz, 2 H), 5.20 (br s, 1 H), 6.91 (br s, 1 H), 7.20-7.26 (complex, 6 H), 7.37 (m, 2 H), 7.65 (m, 2 H); ¹³C (100 MHz, CDCl₃) δ d (CH, CH₃) 21.3, 122.3 (× 2), 124.2, 127.0 (× 2), 127.3 (× 2), 127.4, 127.8 (× 2), 129.0, 133.5; u (C, CH₂) 38.4, 46.8, 54.3, 58.8 (× 2), 134.0, 139.4, 139.6 (× 2), 139.7, 139.9, 167.1; IR (neat) 1639, 1545, 1325, 1308, 1152 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₅H₂₈N₃O₃S ([M+H]⁺), 450.1851, found 450.1847.

S-97

N-(2-(Isoindolin-2-yl)ethyl)-4-((2,4,6-trimethylphenylsulfonamido)methyl)benzamide

(CID44601478) **3***{48}*. 4-((2, 4, 6-Trimethylphenylsulfonamido)methyl)benzoyl chloride (102 mg, 0.29 mmol) and 2-(isoindolin-2-yl)ethanamine (47 mg, 0.29 mmol) were reacted according to the general procedure to afford the product as a viscous orange oil (106 mg, 0.22 mmol, 76% yield). ¹H NMR (400 MHz, CD₃OD) δ 2.26 (s, 3 H), 2.59 (s, 6 H), 2.98 (t, *J* = 5.6 Hz, 2 H), 3.62 (t, *J* = 6.8 Hz, 2 H), 4.00 (s, 4 H), 4.11 (s, 2 H), 6.95 (s, 2 H), 7.20-7.26 (complex, 6 H), 7.71 (d, *J* = 8.0 Hz, 2 H), 7.63 (d, *J* = 8.4 Hz, 2 H), 7.72 (d, *J* = 8.4 Hz, 2 H); ¹³C (100 MHz, CD₃OD) δ d (CH, CH₃) 21.1, 23.3, 122.4 (× 2), 128.3 (× 2), 128.4 (× 2), 128.9 (× 2), 133.0 (× 2); u (C, CH₂) 39.8, 46.8, 56.1, 60.1 (× 2), 134.5, 136.0, 140.2, 140.9 (× 2), 142.9, 143.6, 169.8; IR (neat) 3302, 1640, 1323, 1152 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₇H₃₂N₃O₃S ([M+H]⁺), 478.2164, found 478.2150.

NMR spectra for Chemotype III compounds and new synthetic intermediates

S-105

S-112

S-120

S-152

S-154

S-171

Synthesis of antagonist Chemotype IV compounds 4{n}.

Compounds 4{1} to 4{12} were available as milligram quantity dry powder samples from several commercial vendors of screening compounds.

Scheme 4. Representative synthetic sequence^a.

^a Reagents and conditions: (a) 2,5-dimethoxytetrahydrofuran, AcOH (72% yield); (b) ammonia, MeOH, 150 °C (76% yield); (c) triphosgene, toluene (43% yield); (d) sodium hydride, methyl bromoacetate, DMF (54% yield); (e) LiOH, MeOH:THF:H₂O (73% yield); (f) acryl nitrile (73% yield); (g) lithium aluminum hydride, ether (70% yield); (h) DIC, DMAP, CH₂Cl₂ (53% yield).

Scaffold synthesis.

Pyroloquinoxalinylacetic acid scaffolds:

Synthetic sequence to the methyl substituted scaffold:

2-Fluoro-4-methyl-3-(1*H***-pyrrol-1-yl)pyridine**. The protocol of Melander and coworkers was utilized.¹² Thus, 2-fluoro-4-methylpyridin-3-amine (1.00 g, 7.93 mmol) and 2,5-dimethoxytetrahydrofuran (1.08 mL, 1.05 equiv.) were suspended in acetic acid (3 mL), refluxed for 2 h and the reaction allowed to cool to rt. The solvents were removed in vacuo and the residue was purified by silca gel chromatography to afford the product as a light colored oil (1.00 g, 5.68 mmol, 72% yield). R_f = 0.3 (EtOAc:hexanes, 1:8); ¹H NMR (400 MHz, CDCl₃) δ 2.26 (s, 3H), 6.40 (t, *J* = 2.1 Hz, 2H), 6.74 (td, *J* = 2.1, 0.9 Hz, 2H), 7.17 (d, *J* = 5.1 Hz, 1H), 8.10 (dd, *J* = 0.8, 5.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 17.2, 17.3, 109.8, 122.1, 123.7, 123.8, 145.4, 145.5, 149.5, 149.6, 157.8, 160.2; HRMS (ESI) m/z calcd for C₁₀H₁₀FN₂ ([M+H]⁺), 177.0828, found 177.0827.

4-Methyl-3-(1*H***-pyrrol-1-yl)pyridin-2-amine**. 2-Fluoro-4-methyl-3-(1*H*-pyrrol-1-yl)pyridine (3.9 g, 22.1 mmol) was dissolved in 80 mL of ammonia (7N in MeOH) in a sealed tube (250 mL). The mixture was heated at 150 °C for 2 days protected with a blast shield. The mixture was cooled to room temperature, then cooled in an ice bath for 30 min and filtered cold. The filtrate was evaporated to dryness and purified by flash chromatography to give the product as a white solid (2.9 g 76% yield). $R_f = 0.5$ (EtOAc:Hexanes, 1:1); ¹H NMR (400 MHz, CDCl₃) δ 2.02 (s, 3H), 4.52 (s, 2H), 6.41 (t, *J* = 2.1 Hz, 2H), 6.67 (t, *J* = 2.1 Hz, 2H), 6.60 (d, *J* = 5.2 Hz, 1H), 7.96

(d, J = 5.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 16.7, 116.0, 121.2, 121.5, 145.9, 147.2, 156.1; HRMS (ESI) m/z calcd for C₁₀H₁₂N₃ ([M+H]⁺) 174.1031; found 174.1026.

1-Methylpyrido[2,3-e]pyrrolo[1,2-a]pyrazin-6(5*H*)-one. 4-Methyl-3-(1H-pyrrol-1-yl)pyridin-2-amine (1.0 g, 5.8 mmol) and triphosgene (2.6 g, 8.7 mmol) were dissolved in 100 mL of toluene. The mixture was refluxed for 3 h, then cooled to room temperature. The red solid was collected after filtration and washed with CH₃CN to afford the crude product (0.5 g, 43% yield). The material was used directly for next step reaction without purification. ¹H NMR (400 MHz, DMSO) δ 2.81 (s, 3H), 6.75 (dd, *J* = 2.9, 3.9 Hz, 1H), 7.20-7.08 (m, 2H), 8.13 (d, *J* = 4.9 Hz, 1H), 8.15 (dd, *J* = 1.4, 2.9 Hz, 1H), 11.64 (s, 1H); HRMS (ESI) m/z calcd for C₁₁H₁₀N₃O ([M+H]⁺) 200.0824; found 200.0819.

Methyl 2-(1-methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6*H*)-yl)acetate. To a solution of 1-methylpyrido[2,3-e]pyrrolo[1,2-a]pyrazin-6(5H)-one (50 mg, 0.25 mmol) in 2 mL of DMF, was added NaH (60%, 11 mg, 0.28 mmol). The mixture was stirred at room temperature for 1 h. Methyl bromoacetate (0.03 mL, 0.28 mmol) was added. The mixture was stirred for 16 h, the solvents removed under vacuum and the residue was purified by silca gel flash chromatography to afford the product as a light yellow solid (37 mg, 54% yield). $R_f = 0.5$ (DCM/MeOH, 1:10); ¹H NMR (400 MHz, CDCl₃) δ 2.83 (s, 3H), 3.77 (s, 3H), 5.25 (s, 2H), 6.71 (dd, J = 2.9, 4.0 Hz, 1H), 7.00 (d, J = 4.9 Hz, 1H), 7.36 (dd, J = 1.5, 4.0 Hz, 1H), 7.95 (dd, J = 1.5, 2.9 Hz, 1H), 8.15 (d, J = 4.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 22.9, 41.9, 52.3, 113.4, 113.5, 120.4, 122.6,

122.7, 124.2, 134.8, 142.1, 143.1, 155.5, 169.3; HRMS (ESI) m/z calcd for $C_{14}H_{14}N_3O_3$ ([M+H]⁺) 272.1035; found 272.1042.

2-(1-Methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetic acid. Methyl 2-(1methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetate (517 mg, 1.91 mmol) was dissolved in 20 mL of MeOH/H2O/THF (1:1:4). Lithium hydroxide monohydrate (68.5 mg, 2.86 mmol, 1.5 equiv.) was added. The mixture was stirred at room temperature for 16 h. The solvents were removed and residue was dissolved in water, washed with ether, then neutralized with 2N HCl to pH = 3. The precipitate was filtered and dried under vacuum to afford the product as a white solid (356 mg, 73% yield). ¹H NMR (400 MHz, DMSO) δ 2.85 (s, 3H), 5.02 (s, 2H), 6.80 (dd, *J* = 2.9, 3.9 Hz, 1H), 7.29-7.19 (m, 2H), 12.90 (s, 1H), 8.27-8.17 (m, 2H); ¹³C NMR (101 MHz, DMSO) δ 22.2, 41.6, 112.7, 113.3, 119.5, 122.8, 123.3, 123.9, 135.9, 141.4, 143.1, 154.5, 169.8; HRMS (ESI) m/z calcd for C₁₃H₁₂N₃O₃ ([M+H]⁺) 258.0879; found 258.0894.

Synthetic sequence to the unsubstituted scaffold:

Methyl 2-(6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(*6H*)-yl)acetate. To a solution of pyrido[2,3-e]pyrrolo[1,2-a]pyrazin-6(5H)-one¹³ (1.03 g, 5.55 mmol) in 20 mL of DMF, was added NaH (60%, 249 mg, 6.22 mmol, 1.1 equiv.). The mixture was stirred at room temperature for 1 h. Methyl bromoacetate (0.59 mL, 6.22 mmol, 1.1 equiv.) was added. The mixture was stirred for 16 h, the solvents removed under vacuum and the residue was purified by silca gel flash chromatography to afford the product as a light yellow solid (400 mg, 1.55 mmol, 28% yield). ¹H NMR (400 MHz, CDCl₃) δ 3.79 (s, 3H), 5.25 (s, 2H), 6.71 (dd, *J* = 2.8, 3.9 Hz, 1H), 7.19 (dd, *J* = 4.8, 8.0 Hz, 1H), 7.30 (dd, *J* = 1.2, 3.7 Hz, 1H), 7.66 (dd, *J* = 1.5, 2.8 Hz, 1H), 7.94 (dd, *J* = 1.5, 8.1 Hz, 1H), 8.30 (dd, *J* = 1.5, 4.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 41.3, 52.4, 113.9, 114.1, 117.0, 118.5, 120.2, 121.7, 122.9, 141.4, 144.3, 155.6, 169.2; HRMS (ESI) m/z calcd for C₁₃H₁₂N₃O₃ ([M+H]⁺), 258.0879, found 258.0872.

2-(6-Oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetic acid. Methyl 2-(1-methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetate (418 mg, 1.62 mmol) was dissolved in 20 mL of MeOH/H2O/THF (1:1:4). Lithium hydroxide monohydrate (102 mg, 2.43 mmol, 1.5 equiv.) was added. The mixture was stirred at room temperature for 16 h. The solvents were removed and residue was dissolved in water, washed with ether, then neutralized with 2N HCl to pH = 3. The precipitate was filtered and dried under vacuum to afford the product as a white solid (304 mg, 1.25 mmol, 77% yield). ¹H NMR (400 MHz, DMSO) δ 5.02 (s, 2H), 6.79 (dd, *J* = 2.8, 3.8 Hz, 1H), 7.17 (dd, *J* = 1.4, 3.9 Hz, 1H), 7.38 (dd, *J* = 4.8, 8.1 Hz, 1H), 8.32 (dd, *J* = 1.5, 2.8 Hz, 1H), 8.37 (dd, *J* = 1.4, 4.8 Hz, 1H), 8.58 (dd, *J* = 1.4, 8.1 Hz, 1H), 12.97 (s, 1H); ¹³C

NMR (101 MHz, DMSO) δ 41.0, 113.0, 113.8, 119.2, 119.6, 122.1, 123.2, 140.8, 144.4, 154.7, 169.7; HRMS (ESI) m/z calcd for C₁₂H₁₀N₃O₃ ([M+H]⁺), 244.0722; found 244.0717.

Synthetic sequence to the bromo substituted scaffold: Br

5-Bromo-2-fluoro-3-(1*H***-pyrrol-1-yl)pyridine**. 5-Bromo-2-fluoropyridin-3-amine (4.98 g, 2.60 mmol) and 2,5-dimethoxytetrahydrofuran (361 mg, 2.73 mmol, 1.05 equiv.) were suspended in acetic acid (10 mL), refluxed for 2 h and the reaction allowed to cool to rt. The solvents were removed in vacuo and the residue was purified by silca gel chromatography to afford the product as a light colored oil (5.40 g, 2.24 mmol, 86% yield). ¹H NMR (400 MHz, CDCl₃) δ 6.42 (d, *J* = 2.0 Hz, 2H), 7.09 (d, *J* = 2.0 Hz, 2H), 7.93 (d, *J* = 8.3 Hz, 1H), 8.15 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 111.7, 116.5, 116.6, 120.8, 120.9, 125.1, 125.4, 135.7, 135.8, 143.9, 144.1, 152.9, 155.3; HRMS (ESI) m/z calcd for C₉H₆FBrFN₂ ([M]⁺), 239.9698, found 239.9685.

5-Bromo-3-(1H-pyrrol-1-yl)pyridin-2-amine. 5-Bromo-2-fluoro-3-(1H-pyrrol-1-yl)pyridine (5.06 g, 21.0 mmol) was dissolved in 80 mL of ammonia (7N in MeOH) in a sealed tube (250 mL). The mixture was heated at 150 °C for 2 days protected with a blast shield. The mixture was cooled to room temperature, then cooled in an ice bath for 30 min and filtered cold. The filtrate
was evaporated to dryness and purified by flash chromatography to give the previously reported product¹⁴ as a white solid (3.0 g, 12.6 mmol, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.80 (s, 2H), 6.49-6.33 (m, 2H), 6.86-6.84 (m, 2H), 7.54 (d, *J* = 2.2 Hz, 1H), 8.13 (d, *J* = 2.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 107.0, 110.7, 121.2, 123.2, 136.4, 147.7, 153.2.

2-Bromopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-6(5H)-one. 5-Bromo-3-(1H-pyrrol-1-yl)pyridin-2-amine (2.00 g, 8.40 mmol) and triphosgene (3.74 g, 12.6 mmol, 1.5 equiv.) were dissolved in 100 mL of toluene. The mixture was refluxed for 3 h, then cooled to room temperature. The red solid was collected after filtration and washed with CH₃CN to afford the crude product (1.93 g, 7.31 mmol, 87% yield). The material was used directly for next step reaction without further purification. ¹H NMR (400 MHz, DMSO) δ 6.75 (dd, *J* = 2.8, 3.8 Hz, 1H), 7.09 (dd, *J* = 1.4, 3.8 Hz, 1H), 8.28 (dd, *J* = 1.4, 2.9 Hz, 1H), 8.37 (d, *J* = 2.0 Hz, 1H), 8.81 (d, *J* = 2.0 Hz, 1H), 11.87 (s, 1H). HRMS (ESI) m/z calcd for C₁₀H₇BrN₃O ([M+H]⁺), 263.9772, found 263.9755.

Methyl 2-(2-bromo-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetate. To a solution of 2-bromopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-6(5H)-one (1.00 g, 3.79 mmol) in 20 mL of DMF, was added NaH (60%, 167 mg, 4.17 mmol, 1.1 equiv.). The mixture was stirred at room temperature for 1 h. Methyl bromoacetate (0.39 mL, 4.17 mmol, 1.1 equiv.) was added. The mixture was stirred for 16 h, the solvents removed under vacuum and the residue was purified by silca gel flash chromatography to afford the product as a light yellow solid (613 mg, 1.82 mmol, 48% yield). $R_f = 0.5$ (DCM/MeOH, 1:10); ¹H NMR (400 MHz, CDCl₃) δ 3.76 (s, 3H), 5.20 (s,

2H), 6.69 (dd, J = 2.9, 4.0 Hz, 1H), 7.26 (dd, J = 1.3, 4.0 Hz, 1H), 7.58 (dd, J = 1.4, 2.9 Hz, 1H), 8.03 (d, J = 2.0 Hz, 1H), 8.29 (d, J = 2.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 41.4, 52.4, 113.5, 114.6, 114.7, 117.2, 120.9, 122.8, 124.2, 140.3, 144.8, 155.2, 168.9; HRMS (ESI) m/z calcd for C₁₃H₁₁BrN₃O₃ ([M+H]⁺) 337.9963; found 337.9952.

2-(2-Bromo-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6*H***)-yl**)acetic acid. Methyl 2-(2bromo-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6*H*)-yl)acetate (287 mg, 0.89 mmol) was dissolved in 20 mL of MeOH/H2O/THF (1:1:4). Lithium hydroxide monohydrate (56 mg, 1.34 mmol, 1.5 equiv.) was added. The mixture was stirred at room temperature for 16 h. The solvents were removed and residue was dissolved in water, washed with ether, then neutralized with 2N HCl to pH = 3. The precipitate was filtered and dried under vacuum to afford the product as a white solid (212 mg, 0.66 mmol, 74% yield). ¹H NMR (400 MHz, DMSO) δ 4.97 (s, 2H), 6.81 (dd, *J* = 2.9, 3.8 Hz, 1H), 7.19 (dd, *J* = 1.4, 3.9 Hz, 1H), 8.36 (dd, *J* = 1.4, 2.9 Hz, 1H), 8.49 (d, *J* = 2.0 Hz, 1H), 8.93 (d, *J* = 2.0 Hz, 1H), 13.04 (s, 1H); ¹³C NMR (101 MHz, DMSO-d6) δ 41.1, 113.2, 113.6, 114.2, 111.9, 120.6, 122.0, 125.5, 139.9, 144.4, 154.4, 169.5; HRMS (ESI) m/z calcd for C₁₂H₉BrN₃O₃ ([M+H]⁺) 321.9827; found 321.9812.

Aminopropylpiperazine fragments:

The preparation of aminopiperazine fragments for R = 4-methoxy,¹⁵, ¹⁶ 4-chloro,^{25, 17} 4-methyl,^{25, 26, 18, 19} 4-fluoro²⁰ and hydrogen^{26, 29, 21, 22} have been previously reported. The preparations of 4-methoxy, 2,4-dimethoxy, 3,4-dioxomethylene aminopiperazine fragments are given below.

3-(4-(4-methoxyphenyl)piperazin-1-yl)propanenitrile. 4-methoxyphenypiperazine (0.92 g, 4.68 mmol) and acrylonitrile (0.31 mL, 4.68 mmol) were mixed together neat in a 10 mL reaction tube and stirred for 16 h at rt. The crude reaction mixture was purified by silica gel chromatography to give the product as a white solid (0.80 g, 3.26 mmol, 70% yield). $R_f = 0.3$ (EtOAC:hexanes 1:8); ¹H NMR (400 MHz, CDCl₃) δ 2.57 (t, J = 7.0 Hz, 2H), 2.74 – 2.64 (m, 4H), 2.78 (t, J = 7.0 Hz, 2H), 3.17-3.07 (m, 4H), 3.79 (s, 3H), 6.90 – 6.82 (m, 2H), 6.98 – 6.90 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 15.9, 50.6, 52.8, 53.4, 55.6, 114.5, 118.4, 118.8, 145.5, 154.0. This data is consistent with that previously reported.⁹

3-(4-(4-methoxyphenyl)piperazin-1-yl)propan-1-amine. A solution of 3-(4-(4-methoxyphenyl)piperazin-1-yl)propanenitrile (0.80 g, 3.26 mmol) in ether (15 mL) was added to a suspension of LiAlH₄ (0.19 g, 4.89 mmol) in ether (5 mL). The mixture was stirred at room temperature for 16 h, then quenched with 2N NaOH (1 mL). The organics were separated, dried over MgSO4 and evaporated to give the previously reported aminopiperazine^{1, 2} (0.68 g, 2.73 mmol, 84% yield) as a white solid, which was used directly without further purification. ¹H NMR (400 MHz, CDCl₃) δ 1.75-1.54 (m, 2H), 2.51-2.37 (m, 2H), 2.67-2.53 (m, 4H), 2.76 (t, *J* = 6.8 Hz, 2H), 2.87 (br s, 2H), 3.15-3.04 (m, 4H), 3.75 (s, 3H), 6.82 (d, *J* = 9.1 Hz, 2H), 6.89 (d, *J* = 9.1 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 30.1, 40.6, 50.6, 53.5, 55.5, 56.4, 114.4, 118.1, 145.7. HRMS (m/z): calcd for C₁₄H₂₄N₃O ([M+H]⁺) 250.1914; found 250.1912.

3-(4-(Benzo[d][1,3]dioxol-5-yl)piperazin-1-yl)propan-1-amine. The sequence described above was applied to 1-(benzo[d][1,3]dioxol-5-yl)piperazine to give the amino piperazine fragment, which was used for the coupling step without further purification ¹H NMR (400 MHz, CDCl₃) δ 6.73 (d, *J* = 8.4 Hz, 1H), 6.58 (d, *J* = 2.4 Hz, 1H), 6.38 (dd, *J* = 2.4, 8.5 Hz, 1H), 5.91 (s, 2H),

3.15-3.05 (m, 4H), 2.79 (t, *J* = 6.8 Hz, 2H), 2.67-2.56 (m, 4H), 2.53-2.42 (m, 2H), 1.73-1.66 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 148.2, 147.5, 141.5, 108.9, 108.2, 100.8, 99.9, 56.4, 53.4, 50.8, 40.8, 30.6; HRMS (m/z): calcd for C₁₄H₂₂N₃O₂ ([M+H]⁺) 264.1712; found 264.1703.

3-(4-(2,4-Dimethoxyphenyl)piperazin-1-yl)propan-1-amine. The sequence described above was applied to 1-(3,4-dimethoxyphenyl)piperazine to give the amino piperazine fragment, which was used for the coupling step without further purification ¹H NMR (400 MHz, CDCl₃) δ 6.80 (d, *J* = 8.6 Hz, 1H), 6.40 (d, *J* = 2.7 Hz, 1H), 6.35 (dd, *J* = 2.7, 8.6 Hz, 1H), 3.76 (s, 3H), 3.70 (s, 3H), 2.95 (s, br., 4H), 2.70 (t, *J* = 6.8 Hz, 2H), 2.58 (s, br., 4H), 2.45-2.34 (m, 2H), 1.65-1.57 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 156.1, 153.4, 135.3, 118.5, 103.3, 99.9, 56.6, 55.4, 55.4, 53.6, 51.2, 40.9, 30.6. HRMS (m/z): calcd for C₁₅H₂₆N₃O₂ ([M+H]⁺) 280.2025; found 280.2026.

General procedure for the coupling of the acid scaffold and amino fragment.

The carboxylic acid scaffold (1 equiv.), amine fragment (1.4 equiv.) and DMAP (0.1 equiv.) were dissolved in 1 mL of DCM. Diisopropylcarbodiimide (4.8 equiv.) was added. The mixture

was stirred at room temperature for 16 h. The reaction mixture was purified directly by silica gel flash chromatography (DCM/MeOH) to afford the coupled product.

N-(3-(4-(4-methoxyphenyl)piperazin-1-yl)propyl)-2-(6-oxopyrido[2,3-e]pyrrolo[1,2a]pyrazin-5(6*H*)-yl)acetamide 4{*1*} (CID22553442). 2-(6-Oxopyrido[2,3-e]pyrrolo[1,2a]pyrazin-5(6*H*)-yl)acetic acid (30 mg, 0.12 mmol) and 3-(4-(4-methoxyphenyl)piperazin-1yl)propan-1-amine (42 mg, 0.17 mmol) were reacted according the general procedure to afford the product as an off-white solid (19 mg, 0.040 mmol, 32% yield). ¹H NMR (400 MHz, CDCl3) δ 8.22 (dd, J = 1.5, 4.8 Hz, 1H), 7.77 (dd, J = 1.5, 8.1 Hz, 1H), 7.48 (dd, J = 1.4, 2.8 Hz, 1H), 7.16 (dd, J = 1.4, 3.9 Hz, 1H), 7.12 (s, 1H), 7.07 (dd, J = 4.8, 8.0 Hz, 1H), 6.76 (s, 4H), 6.58 (dd, J = 2.8, 3.9 Hz, 1H), 5.02 (s, 2H), 3.69 (s, 3H), 3.34 (dd, J = 5.8, 11.9 Hz, 2H), 2.96 – 2.83 (m, 4H), 2.57 – 2.47 (m, 4H), 2.42 (t, J = 6.3 Hz, 2H), 1.71 – 1.58 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.6, 155.9, 153.8, 145.4, 144.4, 141.6, 122.9, 121.8, 120.2, 118.5, 118.0, 116.9, 114.4, 114.1, 113.9, 57.3, 55.6, 53.4, 50.4, 43.5, 39.5, 25.1. HRMS (ESI) m/z calcd for C₂₆H₃₁N₆O₃ ([M+H]⁺) 475.2452; found 475.2448.

N-(3-(4-(4-methoxyphenyl)piperazin-1-yl)propyl)-2-(1-methyl-6-oxopyrido[2,3-

e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetamide 4{13} (CID44665680). 2-(1-Methyl-6-

oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6*H*)-yl)acetic acid (30 mg, 0.12 mmol) and 3-(4-(4methoxyphenyl)piperazin-1-yl)propan-1-amine (44 mg, 0.17 mmol) were reacted according the general procedure to afford the product as a white solid (30 mg, 0.061 mmol, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.75-1.69 (m, 2H), 2.49 (t, *J* = 6.4 Hz, 2H), 2.63-2.54 (m, 4H), 2.74 (s, 3H), 3.02-2.91 (m, 4H), 3.41 (dd, *J* = 5.8, 12.0 Hz, 2H), 3.78 (s, 3H), 5.11 (s, 2H), 6.68 (dd, *J* = 2.9, 4.0 Hz, 1H), 6.84 (s, 4H), 6.99 (d, *J* = 5.0 Hz, 1H), 7.12 (s, 1H), 7.33 (dd, *J* = 1.4, 4.0 Hz, 1H), 7.87 (dd, *J* = 1.4, 2.9 Hz, 1H), 8.17 (d, *J* = 4.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 22.8, 25.2, 39.4, 44.2, 50.4, 53.4, 55.6, 57.3, 113.4, 113.5, 114.4, 118.0, 122.6, 122.8, 124.1, 134.8, 142.3, 143.2, 145.4, 153.8, 155.8, 167.9; HRMS (ESI) m/z: calcd for C₂₇H₃₃N₆O₃ ([M+H]⁺) 489.2609; found 489.2600.

N-(3-(4-(2,4-Dimethoxyphenyl)piperazin-1-yl)propyl)-2-(1-methyl-6-oxopyrido[2,3-

e]pyrrolo[1,2-a]pyrazin-5(6*H*)-yl)acetamide 4{14} (CID44665679). 2-(1-Methyl-6oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6*H*)-yl)acetic acid (30 mg, 0.12 mmol) and 3-(4-(2, 4dimethoxyphenyl)piperazin-1-yl)propan-1-amine (47 mg, 0.17 mmol) were reacted according the general procedure to afford the product as a white solid (38 mg, 0.073 mmol, 63% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.72-1.55 (m, 2H), 2.42 (t, *J* = 6.4 Hz, 2H), 2.56 (s, br. 4H), 2.68 (s, 3H), 2.87 (s, br. 4H), 3.31 (dd, *J* = 5.9, 11.9 Hz, 2H), 3.69 (s, 3H), 3.75 (s, 3H), 5.03 (s, 2H), 6.32 (dd, J = 2.7, 8.6 Hz, 1H), 6.39 (d, J = 2.7 Hz, 1H), 6.59 (dd, J = 2.9, 4.0 Hz, 1H), 6.70 (d, J = 8.6 Hz, 1H), 7.14 (s, 1H), 6.89 (d, J = 4.9 Hz, 1H), 7.24 (dd, J = 1.4, 4.0 Hz, 1H), 7.81 (dd, J = 1.4, 2.9 Hz, 1H), 8.06 (d, J = 4.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 22.9, 25.2, 39.3, 44.1, 51.2, 53.5, 55.4, 55.5, 57.3, 100.0, 103.4, 113.4, 118.5, 120.4, 122.6, 122.7, 124.2, 134.8, 135.0, 142.3, 143.2, 153.3, 155.8, 156.1, 167.8; HRMS (ESI) m/z calcd for C₂₈H₃₅N₆O₄ ([M+H]⁺) 519.2714; found 519.2710.

N-(3-(4-(benzo[d][1,3]dioxol-5-yl)piperazin-1-yl)propyl)-2-(1-methyl-6-oxopyrido[2,3e|pyrrolo[1,2-a|pyrazin-5(6H)-yl)acetamide 4{15} (CID44665685). 2-(1-Methyl-6oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetic acid (30 mg, 0.12 mmol) and 3-(4-(benzo[d][1,3]dioxol-5-yl)piperazin-1-yl)propan-1-amine (45 mg, 0.17 mmol) were reacted according the general procedure to afford the product as a white solid (24 mg, 0.048 mmol, 41%) yield). ¹H NMR (400 MHz, CDCl₃) δ 1.69-1.56 (m, 2H), 2.39 (t, J = 6.4 Hz, 2H), 2.39 (t, J Hz, 2H), 2.52-2.43 (m, 4H), 2.67 (s, 3H), 2.89-2.80 (m, 4H), 3.32 (dd, J = 5.8, 12.0 Hz, 2H), 5.02 (s, 2H), 5.82 (s, 2H), 6.20 (dd, J = 2.4, 8.5 Hz, 1H), 6.40 (d, J = 2.4 Hz, 1H), 6.66-6.58 (m, 2H), 6.91 (d, J = 4.9 Hz, 1H), 6.96 (s, 1H), 7.25 (dd, J = 1.4, 4.0 Hz, 1H), 7.80 (dd, J = 1.4, 2.9 Hz, 1H), 8.08 (d, J = 4.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 22.9, 25.2, 39.4, 44.3, 50.6, 53.3, 57.3, 99.7, 100.9, 108.2, 108.8, 113.5, 113.6, 120.4, 122.6, 122.8, 124.1, 134.8, 141.3, 142.3, 143.2, 147.1, 148.3, 155.7, 167.9; HRMS (ESI) m/z calcd for $C_{27}H_{31}N_6O_4$ ([M+H]⁺) 503.2401; found 503.2397.

N-(3-(4-(4-chlorophenyl)piperazin-1-yl)propyl)-2-(1-methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-2-(1-Methyl-6-oxopyrido[2,3a]pyrazin-5(6H)-yl)acetamide 4{16} (CID44665687). e]pyrrolo[1,2-a]pyrazin-5(6*H*)-yl)acetic acid (30 0.12 mmol) and 3-(4-(4mg, chlorophenyl)piperazin-1-yl)propan-1-amine (43 mg, 0.17 mmol) were reacted according the general procedure to afford the product as an off-white solid (34 mg, 0.069 59% yield). ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 1.75 \cdot 1.68 \text{ (m, 2H)}, 2.47 \text{ (t, } J = 6.4 \text{ Hz}, 2\text{H}), 2.61 \cdot 2.51 \text{ (m, 4H)}, 2.74 \text{ (s, 3H)},$ 3.06-2.94 (m, 4H), 3.41 (dd, J = 5.9, 12.0 Hz, 2H), 6.67 (dd, J = 2.9, 4.0 Hz, 1H), 5.11 (s, 2H), 6.80-6.73 (m, 2H), 6.99 (d, J = 4.9 Hz, 1H), 7.25-7.16 (m, 2H), 7.02 (s, 1H), 7.32 (dd, J = 1.4, 4.0 Hz, 1H), 7.87 (dd, J = 1.5, 2.9 Hz, 1H), 8.17 (d, J = 4.9 Hz, 1H), ¹³C NMR (101 MHz, CDCl₃) & 22.8, 25.3, 39.3, 44.3, 48.9, 53.1, 57.2, 113.5, 113.6, 117.0, 120.4, 122.6, 122.8, 124.1, 124.4, 128.9, 134.8, 142.3, 143.2, 149.6, 155.8, 167.9; HRMS (ESI) m/z calcd for C₂₆H₃₀ClN₆O₂ ([M+H]⁺) 493.2113; found 493.2108.

2-(1-Methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)-*N*-(**3-(4-(p-tolyl)piperazin-1-yl)propyl)acetamide** 4*{17}* (CID44665686). 2-(1-Methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetic acid (30 mg, 0.12 mmol) and 3-(4-(4-methylphenyl)piperazin-1-

yl)propan-1-amine (40 mg, 0.17 mmol) were reacted according the general procedure to afford the product as an off-white solid (29 mg, 0.061 mmol, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.72-1.66 (m, 2H), 2.26 (s, 3H), 2.46 (t, *J* = 6.4 Hz, 2H), 2.60-2.51 (m, 4H), 2.70 (s, 3H), 3.03-2.92 (m, 4H), 3.39 (dd, *J* = 5.8, 12.0 Hz, 2H), 5.08 (s, 2H), 6.65 (dd, *J* = 2.9, 4.0 Hz, 1H), 6.76 (d, *J* = 8.6 Hz, 2H), 6.96 (d, *J* = 4.9 Hz, 1H), 7.05 (d, *J* = 8.2 Hz, 2H), 7.09 (s, 1H), 7.31 (dd, *J* = 1.4, 4.0 Hz, 1H), 7.84 (dd, *J* = 1.4, 2.9 Hz, 1H), 8.14 (d, *J* = 4.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 20.4, 22.8, 25.2, 39.4, 44.2, 49.5, 53.3, 57.3, 113.4, 113.5, 116.2, 120.4, 122.6, 122.8, 124.1, 129.2, 129.6, 134.9, 142.3, 143.2, 148.9, 155.8, 167.9; HRMS (ESI) m/z calcd for C₂₇H₃₃N₆O₂ ([M+H]⁺) 473.2600; found 473.2657.

2-(1-Methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6*H***)-yl)-***N***-(3-(4-phenylpiperazin-1-yl)propyl)acetamide 4***{18}* (CID44665682). 2-(1-Methyl-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6*H*)-yl)acetic acid (17 mg, 0.066 mmol) and 3-(4-phenylpiperazin-1-yl)propan-1-amine (20 mg, 0.092 mmol) were reacted according the general procedure to afford the product as an off-white solid (24 mg, 0.052 mmol, 79% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.67-1.52 (m, 2H), 2.38 (t, *J* = 6.3 Hz, 2H), 2.50-2.42 (m, 4H), 2.62 (s, 3H), 2.99-2.84 (m, 4H), 3.33 (dd, *J* = 5.8, 12.0 Hz, 2H), 5.02 (s, 2H), 6.58 (dd, *J* = 2.9, 4.0 Hz, 1H), 6.77 (dd, *J* = 7.7, 8.5 Hz, 3H), 6.90 (d, *J* = 4.9 Hz, 1H), 7.00 (s, 1H), 7.17 (dd, *J* = 1.7, 6.8 Hz, 2H), 7.25 (dd, *J* = 1.4, 4.0 Hz, 1H), 7.76 (dd, *J* = 1.4, 2.9 Hz, 1H), 8.08 (d, *J* = 4.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 22.8, 25.1, 39.5, 44.4, 48.9, 53.3, 57.4, 113.5, 113.6, 115.9, 119.7, 120.4, 122.7, 122.8, 124.0,

129.1, 134.9, 142.3, 143.2, 151.0, 155.8, 167.9; HRMS (ESI) m/z calcd for $C_{26}H_{31}N_6O_2$ ($[M+H]^+$) 459.2503; found 459.2507.

N-(3-(4-(2,4-dimethoxyphenyl)piperazin-1-yl)propyl)-2-(6-oxopyrido[2,3-e]pyrrolo[1,2a]pyrazin-5(6*H*)-yl)acetamide 4{*19*} (CID44828478). 2-(6-Oxopyrido[2,3-e]pyrrolo[1,2a]pyrazin-5(6*H*)-yl)acetic acid (30 mg, 0.12 mmol) and 3-(4-(2,4-dimethoxyphenyl)piperazin-1yl)propan-1-amine (47 mg, 0.17 mmol) were reacted according the general procedure to afford the product as an off-white solid (36 mg, 0.071 mmol, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.82-1.68 (m, 2H), 2.54 (t, *J* = 6.3 Hz, 3H), 2.67 (s, br. 4H), 2.98 (s, br. 4H), 3.43 (dd, *J* = 5.8, 11.8 Hz, 2H), 3.78 (s, 3H), 3.85 (s, 3H), 5.12 (s, 2H), 6.42 (dd, *J* = 2.7, 8.6 Hz, 1H), 6.48 (d, *J* = 2.7 Hz, 1H), 6.66 (dd, *J* = 2.8, 3.9 Hz, 1H), 6.82 (d, *J* = 8.6 Hz, 1H), 7.15 (dd, *J* = 4.8, 8.0 Hz, 1H), 7.25 (dd, *J* = 1.4, 3.9 Hz, 1H), 7.37 (s, 1H), 7.61 (dd, *J* = 1.4, 2.8 Hz, 1H), 7.90 (dd, *J* = 1.5, 8.1 Hz, 1H), 8.29 (dd, *J* = 1.5, 4.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 25.1, 39.4, 43.4, 51.2, 53.5, 55.5, 55.6, 57.3, 99.9, 103.3, 113.8, 114.0, 116.9, 118.4, 118.5, 120.2, 121.8, 122.9, 135.0, 141.6, 144.3, 153.4, 155.9, 156.2, 167.6; HRMS (ESI) m/z calcd for C₂₇H₃₃N₆O₄ ([M+H]⁺) 505.2558; found 505.2552.

S-191

N-(3-(4-(benzo[d][1,3]dioxol-5-yl)piperazin-1-yl)propyl)-2-(6-oxopyrido[2,3-e]pyrrolo[1,2a]pyrazin-5(6H)-yl)acetamide 4{20} (CID44828479). 2-(6-Oxopyrido[2,3-e]pyrrolo[1,2a]pyrazin-5(6*H*)-yl)acetic acid (30 mg, 0.12 mmol) and 3-(4-(benzo[d][1,3]dioxol-5yl)piperazin-1-yl)propan-1-amine (45 mg, 0.17 mmol) were reacted according the general procedure to afford the product as an off-white solid (24 mg, 0.49 mmol, 40% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.71-1.57 (m, 2H), 2.40 (t, *J* = 6.3 Hz, 2H), 2.54-2.44 (m, 4H), 2.93-2.80 (m, 4H), 3.33 (dd, *J* = 5.8, 11.9 Hz, 2H), 5.01 (s, 2H), 5.82 (s, 2H), 6.21 (dd, *J* = 2.4, 8.5 Hz, 1H), 6.41 (d, *J* = 2.4 Hz, 1H), 6.58 (dd, *J* = 2.8, 3.9 Hz, 1H), 6.63 (d, *J* = 8.4 Hz, 1H), 7.08 (dd, *J* = 4.8, 8.0 Hz, 2H), 7.16 (dd, *J* = 1.4, 3.9 Hz, 1H), 7.50 (dd, *J* = 1.4, 2.8 Hz, 1H), 7.79 (dd, *J* = 1.4, 8.1 Hz, 1H), 8.22 (dd, *J* = 1.4, 4.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 25.2, 39.4, 43.6, 50.7, 53.3, 57.3, 99.7, 100.9, 108.1, 108.8, 113.9, 114.1, 116.9, 118.5, 120.2, 121.8, 122.8, 141.5, 141.6, 144.4, 147.1, 148.2, 155.9, 167.7; HRMS (ESI) m/z calcd for C₂₆H₂₉N₆O₄ ([M+H]⁺) 489.2245; found 489.2237.

N-(3-(4-(4-Chlorophenyl)piperazin-1-yl)propyl)-2-(6-oxopyrido[2,3-e]pyrrolo[1,2-

a]pyrazin-5(6*H*)-yl)acetamide 4{21} (CID44828476). 2-(6-Oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6*H*)-yl)acetic acid (30 mg, 0.12 mmol) and 3-(4-(4-chlorophenyl)piperazin-1-yl)propan-1-amine (43 mg, 0.17 mmol) were reacted according the general procedure to afford the product as an off-white solid (35 mg, 0.073 mmol, 59% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.63 (p, *J* = 6.3 Hz, 2H), 2.39 (t, *J* = 6.3 Hz, 2H), 2.52-2.44 (m, 4H), 2.98-2.87 (m, 4H), 3.33

(dd, J = 5.9, 11.9 Hz, 2H), 5.01 (s, 2H), 6.60-6.51 (m, 1H), 6.73-6.63 (m, 2H), 7.02 (s, 1H), 7.17-7.05 (m, 4H), 7.47 (dd, J = 1.4, 2.7 Hz, 1H), 7.77 (dd, J = 1.3, 8.0 Hz, 1H), 8.22 (d, J = 4.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 25.2, 39.4, 43.6, 49.0, 53.1, 57.3, 113.9, 114.1, 116.9, 117.1, 118.5, 120.2, 121.8, 122.8, 124.5, 128.9, 141.6, 144.4, 149.6, 155.9, 167.7; HRMS (ESI) m/z calcd for C₂₅H₂₈ClN₆O₂ ([M+H]⁺) 479.1957; found 479.1949.

2-(6-Oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)-N-(3-(4-(p-tolyl)piperazin-1-yl)propyl)acetamide *4{22}* (CID44828480) 2-(6-Oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)acetic acid (30 mg, 0.12 mmol) and 3-(4-(4-methylphenyl)piperazin-1-yl)propan-1-amine (40 mg, 0.17 mmol) were reacted according the general procedure to afford the product as an off-white solid (30 mg, 0.065 mmol, 53% yield). ¹H NMR (400 MHz, CDCl3) δ 1.63 (p, *J* = 6.3 Hz, 2H), 2.19 (s, 3H), 2.40 (t, *J* = 6.3 Hz, 2H), 2.54-2.45 (m, 4H), 2.99-2.85 (m, 4H), 3.33 (dd, *J* = 5.8, 11.9 Hz, 2H), 5.00 (s, 2H), 6.56 (dd, *J* = 2.8, 3.9 Hz, 1H), 6.70 (d, *J* = 8.6 Hz, 2H), 6.99 (d, *J* = 8.2 Hz, 2H), 7.05 (dd, *J* = 4.8, 8.0 Hz, 1H), 7.14 (dt, *J* = 4.2, 8.3 Hz, 2H), 7.46 (dd, *J* = 1.4, 2.8 Hz, 1H), 7.75 (dd, *J* = 1.5, 8.1 Hz, 1H), 8.20 (dd, *J* = 1.5, 4.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 20.4, 25.1, 39.5, 43.5, 49.6, 53.3, 57.4, 113.9, 114.1, 116.3, 117.0, 118.5, 120.2, 121.8, 122.8, 129.2, 129.6, 141.6, 144.3, 148.9, 155.9, 167.6; HRMS (ESI) m/z calcd for C₂₆H₃₁N₆O₂ ([M+H]⁺) 459.2503; found 459.2501.

2-(6-Oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)-N-(3-(4-phenylpiperazin-1-

yl)propyl)acetamide 4{23} (CID44828477). 2-(6-Oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6*H*)yl)acetic acid (30 mg, 0.12 mmol) and 3-(4-phenylpiperazin-1-yl)propan-1-amine (37 mg, 0.17 mmol) were reacted according the general procedure to afford the product as a-white solid (40 mg, 0.090 mmol, 73% yield). ¹H NMR (400 MHz, CDCl3) δ 1.73 (p, *J* = 6.3 Hz, 2H), 2.50 (t, *J* = 6.3 Hz, 2H), 2.64-2.54 (m, 3H), 3.13-2.98 (m, 4H), 3.43 (dd, *J* = 5.8, 11.9 Hz, 2H), 5.10 (s, 2H), 6.64 (dd, *J* = 2.8, 3.9 Hz, 1H), 6.93-6.82 (m, 3H), 7.14 (dd, *J* = 4.8, 8.0 Hz, 1H), 7.34-7.18 (m, 4H), 7.54 (dd, *J* = 1.4, 2.8 Hz, 1H), 7.83 (dd, *J* = 1.5, 8.1 Hz, 1H), 8.30 (dd, *J* = 1.5, 4.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 25.1, 39.6, 43.6, 49.0, 53.3, 57.4, 113.9, 114.1, 115.9, 117.0, 118.5, 119.7, 120.1, 121.8, 122.8, 129.1, 141.6, 144.3, 151.0, 155.9, 167.7; HRMS (ESI) m/z calcd for C₂₅H₂₉N₆O₂ ([M+H]⁺) 445.2347; found 445.2344.

2-(2-Bromo-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)-N-(3-(4-(4-

methoxyphenyl)piperazin-1-yl)propyl)acetamide 4{24} (CID45100475). 2-(2-Bromo-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6*H*)-yl)acetic acid (20 mg, 0.062 mmol) and 3-(4-(4-bromophenyl)piperazin-1-yl)propan-1-amine (22 mg, 0.087 mmol) were reacted according the

general procedure to afford the product as an off-white solid (31 mg, 0.056 mmol, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.78-1.71 (m, 2H), 2.54 (t, *J* = 6.2 Hz, 2H), 2.68-2.59 (m, 4H), 3.07-2.95 (m, 4H), 3.44 (dd, *J* = 5.7, 11.7 Hz, 2H), 3.79 (s, 3H), 5.05 (s, 2H), 6.68 (dd, *J* = 2.9, 3.8 Hz, 1H), 6.86 (s, 4H), 7.26 (dd, *J* = 1.4, 3.9 Hz, 1H), 7.36 (s, 1H), 7.51 (dd, *J* = 1.4, 2.8 Hz, 1H), 7.97 (d, *J* = 2.0 Hz, 1H), 8.33 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 24.9, 39.8, 43.5, 50.5, 53.4, 55.6, 57.6, 113.5, 114.4, 114.5, 114.6, 117.2, 118.0, 120.8, 122.8, 124.3, 140.5, 144.8, 145.4, 153.8, 155.5, 167.2; HRMS (ESI) m/z calcd for C₂₆H₃₀BrN₆O₃ ([M+H]⁺) 553.1557; found 553.1544.

2-(2-Bromo-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)-N-(3-(4-(2,4-

dimethoxyphenyl)piperazin-1-yl)propyl)acetamide 4{25} (CID45100477). 2-(2-Bromo-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6*H*)-yl)acetic acid (20 mg, 0.062 mmol) and 3-(4-(2, 4-dimethoxyphenyl)piperazin-1-yl)propan-1-amine (24 mg, 0.087 mmol) were reacted according the general procedure to afford the product as an off-white solid (34 mg, 0.058 mmol, 94% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.79-1.73 (m, 2H), 2.58 (d, *J* = 6.0H, 2H), 2.71 (s, br. 4H), 3.01 (s, br. 4H), 3.44 (d, *J* = 5.7 Hz, 2H), 3.80 (s, 3H), 3.86 (s, 3H), 5.07 (s, 2H), 6.44 (d, *J* = 8.7 Hz, 1H), 6.50 (s, 1H), 6.70 (s, 1H), 6.83 (d, *J* = 8.7 Hz, 1H), 7.28 (dd, *J* = 2.7, 5.7 Hz, 2H), 7.50 (s, 1H), 7.57 (s, 1H), 8.02 (s, 1H), 8.33 (s, 1H) ¹³C NMR (101 MHz, CDCl₃) δ 24.8, 39.7, 43.4, 51.2, 53.5, 55.4, 55.5, 57.5, 99.9, 103.3, 113.4, 114.5, 114.6, 117.1, 118.5, 120.9, 122.9, 124.2,

134.8, 140.6, 144.8, 153.4, 155.5, 156.2, 167.1; HRMS (ESI) m/z calcd for $C_{27}H_{32}BrN_6O_4$ ([M+H]⁺) 585.1647; found 585.1637.

N-(3-(4-(Benzo[d][1,3]dioxol-5-yl)piperazin-1-yl)propyl)-2-(2-bromo-6-oxopyrido[2,3e]pyrrolo[1,2-a]pyrazin-5(6*H*)-yl)acetamide 4{26} (CID45100476). 2-(2-Bromo-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6*H*)-yl)acetic acid (20 mg, 0.062 mmol) and 3-(4-(benzo[d][1,3]dioxol-5-yl)piperazin-1-yl)propan-1-amine (23 mg, 0.087 mmol) were reacted according the general procedure to afford the product as an off-white solid (31 mg, 0.055 mmol, 88% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.70-1.58 (m, 2H), 2.44 (t, *J* = 6.2 Hz, 2H), 2.53 (s, 4H), 2.88 (d, *J* = 4.9 Hz, 4H), 3.34 (d, *J* = 5.9 Hz, 2H), 4.96 (s, 2H), 5.83 (s, 2H), 6.23 (dd, *J* = 2.4, 8.5 Hz, 1H), 6.43 (d, *J* = 2.3 Hz, 1H), 6.69-6.56 (m, 2H), 7.26-7.14 (m, 3H), 7.45 (s, 1H), 7.89 (d, *J* = 1.9 Hz, 1H), 8.24 (d, *J* = 1.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 24.9, 39.6, 43.5, 50.6, 53.3, 57.4, 99.8, 100.9, 108.2, 108.8, 113.5, 114.6, 114.7, 117.1, 120.9, 124.3, 140.5, 141.6, 144.8, 147.0, 148.2, 155.5, 167.2; HRMS (ESI) m/z calcd for C₂₆H₂₈BrN₆O₄ ([M+H]⁺) 569.1333; found 569.1321.

S-196

2-(2-Bromo-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6H)-yl)-N-(3-(4-(4-

chlorophenyl)piperazin-1-yl)propyl)acetamide 4{27} (CID45100474). 2-(2-Bromo-6-oxopyrido[2,3-e]pyrrolo[1,2-a]pyrazin-5(6*H*)-yl)acetic acid (20 mg, 0.062 mmol) and 3-(4-(4-chlorophenyl)piperazin-1-yl)propan-1-amine (22 mg, 0.087 mmol) were reacted according the general procedure to afford the product as an off-white solid (30 mg, 0.054 mmol, 87% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.78-1.71 (m, 2H), 2.52 (t, *J* = 6.2 Hz, 2H), 2.66-2.57 (m, 4H), 3.10-2.98 (m, 4H), 3.44 (dd, *J* = 5.8, 11.8 Hz, 2H), 5.05 (s, 2H), 6.69 (dd, *J* = 2.9, 3.9 Hz, 1H), 6.85-6.76 (m, 2H), 7.28-7.17 (m, 4H), 7.52 (dd, *J* = 1.4, 2.8 Hz, 1H), 7.97 (d, *J* = 2.0 Hz, 1H), 8.34 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 25.0, 39.7, 43.6, 49.0, 53.1, 57.5, 113.5, 114.6, 114.7, 117.1, 117.2, 120.8, 122.8, 124.3, 124.6, 128.9, 140.5, 144.9, 155.5, 167.2; HRMS (ESI) m/z calcd for C₂₅H₂₇BrClN₆O₂ ([M+H]⁺) 559.1042; found 559.1031.

NMR spectra for Chemotype IV compounds and new synthetic intermediates

References

¹ Costanzo, M. J.; Almond, H. R., Jr.; Hecker, L. R.; Schott, M. R.; Yabut, S. C.; Zhang, H.-C.; Andrade-Gordon, P.; Corcoran, T. W.; Giardino, E. C.; Kauffman, J. A.; Lewis, J. M.; de Garavilla, L.; Haertlein, B. J.; Maryanoff, B. E. In-depth study of tripeptide-based α-ketoheterocycles as inhibitors of Thrombin. Effective utilization of the S1' subsite and its implications to structure-based drug design. *J. Med. Chem.* **2005**, *48*, 1984-2008.

² Chen, F. M. F.; Benoiton, N. L. Diisopropylethylamine eliminates dipeptide formation during the acylation of amino acids using benzoyl chloride and some alkyl chloroformates *Canadian J. Chem.* **1987**, *65*, 1224-1227.

³ Morley, J. S.; Dutta, A. S. Polypeptides. XII. Preparation of 2-pyridyl esters and their use in peptide synthesis. *J. Chem. Soc. Section C: Organic* **1971**, 2896-2902.

⁴ Clayton, D. W.; Kenner, G. W.; Sheppard, R. C. Peptides. V. Condensation of the γ-carboxyl group of α-glutamyl peptides with the peptide chain. *J. Chem. Soc.* **1956**, 371-80.

⁵ Sutphin, P.; Chan, D.; Turcotte, S.; Denny, W. A.; Hay, M. P.; Giddens, A. C.; Bonnet, M.; Giaccia, A. Preparation of heteroaryl benzamides useful in treating diseases PCT Int. Appl. (2011), WO 2011011514 A1 20110127.

⁶ Deng, X.; Mani, N. S. A facile, environmentally benign sulfonamide synthesis in water. *Green Chem.* **2006**, *8*, 835-838.

⁷ Ruchelman, A. L.; Houghton, P. J.; Zhou, N.; Liu, A.; Liu, L. F.; LaVoie, E. J. 5-(2-

Aminoethyl)dibenzo[c,h][1,6]naphthyridin-6-ones: Variation of N-Alkyl Substituents Modulates Sensitivity to Efflux Transporters Associated with Multidrug Resistance *J. Med. Chem.* **2005**, *48*, 792-804.

⁸ Couri, M. R. C.; Vieira de Almeida, M.; Fontes, A. P. S.; Chaves, J. D. S.; Cesar, E. T.; Alves, R. J.; Pereira-Maia, E. C.; Garnier-Suillerot, A. Synthesis of polyamines from ethylenediamine and their platinum(II) complexes, potential antitumor agents. *Eur. J. Inorg. Chem.* **2006**, 1868-1874.

⁹ Perrone, R.; Berardi, F.; Leopoldo, M.; Tortorella, V.; Lograno, M. D.; Daniele, E.; Govoni, S. 5-HT and DA receptor affinity of arylpiperazine derivatives with terminal benzamide fragment. *Farmaco* **1994**, *49*, 567-572.

¹⁰ Kanno, H.; Taylor, R. J. K. A one-pot oxidation-imine formation-reduction route from alcohols to amines using manganese dioxide-sodium borohydride: The synthesis of naftifine. *Tetrahedron_Lett.* **2002**, *43*, 7337-7340.

¹¹ Leonardi, A.; Barlocco, D.; Montesano, F.; Cignarella, G.; Motta, G.; Testa, R.; Poggesi, E.; Seeber, M.; De Benedetti, P. G.; Fanelli, F. Synthesis, screening, and molecular modeling of new potent and selective antagonists at the alpha 1d adrenergic receptor. *J. Med. Chem.* **2004**, *47*, 1900-1918.

¹² Richards, J.J.; Reed, C.S.; Melander, C., *Bioorganic & Medicinal Chemistry Letters* Effects of *N*-pyrrole substitution on the anti-biofilm activities of oroidin derivatives against *Acinetobacter baumannii*. **2008**, *18*, 4325-4327.

¹³ Peet, N. P.; Sunder, S. Reinvestigation of a cyclization reaction of 2-hydrazino-3-(1H-pyrrol-1-yl)pyridine. *Heterocycles*, **1986**, *24*, 3213-3221.

¹⁴ Blache, Y.; Gueiffier, A.; Chavignon, O.; Teulade, J. C.; Milhavet, J. C.; Viols, H.; Chapat, J. P.; Dauphin, G. Heterocyclizations in the pyrido[2,3-b]pyrazine series. *J. Heterocyclic Chem.* **1994**, *31*, 161-166.

¹⁵ Fang, H.; Li, M. Y.; Xia, L. Pharmacophore-guided design, synthesis and evaluation of quinazolinearylpiperazines as new α_1 -adrenoceptor antagonists. *Chinese Chem. Lett.* **2007**, *18*, 41-44.

¹⁶ Lee, J. E.; Koh, H. Y.; Seo, S. H.; Baek, Y. Y.; Rhim, H.; Cho, Y. S.; Choo, H. Pae, A. N. Synthesis and biological evaluation of oxazole derivatives as T-type calcium channel blockers. *Biorg. Med. Chem. Lett.* **2010**, *20*, 4219-4222.

¹⁷ Samant, S. D.; Kulkarni, R. A. Synthesis and pharmacology of 1-(4-aryl-1-piperazinylalkyl)-4-(4-methoxyphenyl)piperidine-2,6-diones: tranquilizers. *J. Indian Chem. Soc.* **1981**, *58*, 692-694.

¹⁸ Valenta, V.; Marie, V.; Holubek, J.; Svatek, E.; Metysova, J.; Protiva, M. Potential neuroleptics of the orthopramide series; synthesis of N-(3-(tert.amino)propyl)-5-sulfamoyl-2-methoxybenzamides. *Collect. Czech. Chem. Cummun.* **1990**, *55*, 797-808.

¹⁹ Jung, H. K.; Doddareddy, M. R.; Cha, J. H.; Rhim, H.; Cho, Y. S.; Koh, H. Y.; Jung, B. Y.; Pae, A. N. Synthesis and biological evaluation of novel T-type Ca²⁺ channel blockers. *Biorg. Med. Chem.* **2004**, *12*, 3965-3970.

²⁰ Yoo, E.; Yoon, J.; Pae, A. N.; Rhim, H. P.; Park, W.-K.; Kong, J. Y.; Choo, H. Y. Synthesis and biological evaluation of (phenylpiperazinyl-propyl)arylsulfonamides as selective 5-HT2A receptor antagonists. *Biorg. Med. Chem.* **2010** *18*, 1665-1675.

²¹Biswas, S.; Zhang, S.; Fernandez, F.; Ghosh, B.; Zhen, J.; Kuzhikandathil, E.; Reith. M. E. A.; Dutta, A. K. Further structure-activity relationships study of hybrid 7-{[2-(4-phenylpiperazin-1-yl)ethyl]propylamino}-5,6,7,8-tetrahydromphthalen-2-ol analogues: Identification of a high-affinity D3-preferring agonist with potent in vivo activity with long duration of action. *J. Med. Chem.* **2008**, *51*, 101-117.

²² Robarge, M. J.; Husbands, S. M.; Kieltyka, A.; Brodbeck, R.; Thurkauf, A.; Newman, A. H. Design and synthesis of [(2,3-dichlorophenyl)piperazin-1-yl]alkylfluorenylcarboxamides as novel ligands selective for the dopamine D3 receptor subtype. *J. Med. Chem.* **2001**, *44*, 3175-3186.