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SUPPORTING DISCUSSION 

Parameterization of the electrostatic potential 

For the computation of the DNA-DNA electrostatic interactions DNA molecules were ap-

proximated by charged cylinders with radius R and a linear charge density of χCR·ξDNA with 

ξDNA = 2e/0.34 nm being the nominal charge density of DNA (see also Supporting Methods 

below). We used a charge adaptation factor χCR = 0.42 accounting for the lower effective 

charge density due to the highly structured nature of DNA and non-continuous counter ion 

density and a DNA radius R = 1.2 nm throughout all simulations. This parameter set was 

introduced by Maffeo et al. (1). It was found to quantitatively describe the postbuckling 

slopes and torques in simple theoretical models and Monte Carlo simulations of DNA super-

coiling experiments under tension. In addition it was confirmed by all-atom molecular dy-

namics simulations (1). The particular value of χCR was found to be critical with slight varia-

tions failing to describe the experimental data. More recently, R = 1.0 nm and χCR = 1 was 

also reported to describe the postbuckling parameters with the full DNA charge considered 

to be a “standard” value (2). It was hypothesized that the low charge density used by Maffeo 

et al. is compensated by the larger radius. However, as demonstrated in Fig. S3, R = 1.0 nm 

and χCR = 1 provide ~1.7-fold increased interaction energies compared to Maffeo et al. (1). 

For our simulations presented, such large interaction energies significantly overestimate the 

postbuckling parameters and can therefore not be applied. We attribute the apparent success 

of the parameter set with R = 1.0 nm and χCR = 1 (2) to the following points: (i) the usage of a 

relative extension factor (which, however, is not necessary when comparing theoretical mod-

els with simulations (1)), (ii) the approximation of the superhelix by a straight, non-helical 

conformation and (iii) the residual but significant overestimation of the postbuckling slopes 

and torques with this parameter set. Points i (discussed in ref. (1)) and ii (2) both lower the 

initially overestimated postbuckling slopes and torques. There is also no reason to assume a 

“standard” value with χCR = 1 for the charge of DNA cylinder models. As shown with all-

atom simulations (1) large part of the counterions are already located within the DNA 

grooves. Thus, the choice of any cylinder radius with an associated cylinder charge is any-

way quite arbitrary. 

Choice of the torsion modulus 

The value for the torsion modulus applied in the simulations critically influences the position 

of the buckling point. We found that a torsion modulus of 90 nm×kBT best reproduces the 

experimentally determined buckling point position (Fig. 3, main text), while applying 100 

nm×kBT leads to significant deviations (1). A torsion modulus of 90 nm×kBT is in agreement 
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with recent measurements of Mosconi et al. (3), where a value of 94 nm×kBT was found, of 

Lipfert et al. (4), which reported values of 88 and 95 nm×kBT, of Obertrass et al. (5), where a 

value of 96 nm×kBT was found, and Kauert et al. (6), that provide a value of 97 nm×kBT. The 

slight deviations among the reported values may partially be caused by the interpolation 

that is used to estimate the DNA torsion modulus from the experimentally measured appar-

ent torsional rigidities that are force dependent due to DNA bending fluctuations (4). 

We verified that the apparent torsional rigidities extracted from our simulations exhibit the 

theoretically expected force dependence (Fig. S2). According to ref. (7) the dependence of the 

apparent torsional rigidity on the pulling force F can be approximated in first order by: 

 

 

    

! 

CS = C 1" C
4p # kBT

kBT
p # F

$ 

% 
& 

' 

( 
) 

1/ 2* 

+ 

, 
, 

- 

. 

/ 
/ 
 (S1) 

 

where C denotes the nominal torsion modulus and p the bending persistence length. We de-

termined the apparent torsional rigidity in the simulations from linear fits of the torque dur-

ing twisting prior buckling (Fig. 1, main text). A comparison with the theoretical prediction 

reveal an almost quantitative agreement with data from simulations using WLC bending and 

2.5 nm segments at forces ≥ 1 pN (Fig. S2). Simulations using 5 nm segments show to be 

slightly higher (by 1.7 nm×kBT), while reproducing the overall shape of the curve. 

We also verified that the simulations with a torsion modulus of 90 nm×kBT reproduce the 

experimentally determined values for the postbuckling slopes over a large range of stretch-

ing forces and salt concentrations (Fig. S4 a). Within error the postbuckling slopes and tor-

ques obtained from the simulations (Fig. S4) agree also quantitatively with previous simula-

tions using a torsion modulus of 100 nm×kBT. The latter value was originally applied to re-

produce the experimental postbuckling parameters (1). The independence of the postbuck-

ling slopes and torques from the torsion modulus is expected based on theoretical models 

(1). 

Simulations with 2.5 nm DNA segments 

Since we expect bending radii in the end-loop of the superhelix that are smaller than the 

DNA segment length in the simulations, we performed a selected set of simulations using 2.5 

nm DNA segments in addition to the normally applied 5 nm segments. We determined the 

position of the buckling points Nb and the length jumps (see Fig. 3, main text) as well as the 

postbuckling slopes and torques (Fig. S4). The obtained values reproduced the results ob-

tained for 5 nm segments, suggesting that the conformational freedom of the DNA segments 

as well as the electrostatics of neighboring segments within the DNA chain are already well 

described by the larger segment size. Only when comparing the apparent torsional rigidities 

(see Fig. S2) the values appear increased by 1.7 nm×kBT for a chain with 5 nm segments com-

pared to a chain with 2.5 nm segments at forces ≥ 1 pN. 
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SUPPORTING METHODS 

Coarse grained Monte Carlo simulations 

The DNA is represented as a linear chain of straight segments. The majority of the simula-

tions was performed with a chain of 5 nm segments with an overall length of 645 nm. A se-

lected subset of simulations was performed with a chain of 2.5 nm segments to analyze dis-

cretization effects (see above). In the latter case the amount of segments was doubled to yield 

the same chain length. Each segment of the chain is defined by its position and a local coor-

dinate system describing its spatial orientation. The elastic properties are modeled by stand-

ard harmonic potentials for stretching and torsion (8, 9). For DNA bending we used harmon-

ic and non-harmonic potentials as indicated in the main text. 

Throughout all simulations, the electrostatic interactions between two DNA segments i and j 

were determined using a Debye-Hückel potential for a point charge. The resulting interac-

tion energy is then obtained by integration over the two line segments (1, 8, 10): 
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where lB denotes the Bjerrum length in water and λD the Debye length. rij is the distance be-

tween the current positions si and sj at the corresponding segments i and j. The effective 

charge density ξ* = ξ · χCR · χRod · χPB is chosen such that the potential coincides with the exact 

solution of the Poisson-Boltzmann equation for charged cylinders with a radius of 1.2 nm 

and a charge density χCR · ξ, with ξ being the nominal charge of 2e/0.34 nm. The factor χRod 

adapts the line charge to a homogeneously charged cylinder surface while χPB denotes the 

Poisson-Boltzmann adaptation of the Debye-Hückel potential. 

Electrostatic interactions between neighboring segments were excluded and assumed to be 

comprised in the persistence length of the DNA. In order to save computation time, the val-

ues of the double integral of Eq. S2 were pre-tabulated for each applied ionic strength. The 

distance between the segments and their spatial orientation to each other are the parameters 

of the table. During the simulation the values of the table were interpolated linearly. Addi-

tional potentials were used to model the configuration of the magnetic tweezers experiments 

(1). The stretching of the DNA is implemented by the following potential (1): 
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where the first term describes the tethering of the chain to a surface. d is the displacement of 

the first segment to its origin and αtether a factor scaling the strength of the attachment. The 

second term models the stretching of the chain by the magnetic bead with the force F and the 

extension of the chain z. The movements of the chain were restricted by the impenetrable 
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attachment surface and the excluded volume of a sphere with a radius of 400 nm represent-

ing the volume of the magnetic bead. Both excluded volumes were realized by soft-core po-

tentials. Prior to every simulation the chain was initialized as a straight, twisted chain. Addi-

tional segments with a fixed local coordinate system were used at both ends of the chain to 

prevent a free rotation of the chain ends. These capping segments were only considered in 

terms of their bending and twisting energy contribution. 
 
 

Parameter Value  

Stretching modulus 1100 pN (11) 

Torsion modulus 90 nm×kBT  

Bending modulus (WLC) 50 nm×kBT (12) 

LSEC parameter α 6.4  

Tether modulus 5530 pN / nm  

Temperature 293.0 K  

Number of segments 129 (258)  

Segment length 5 nm (2.5 nm)  

TABLE S1: Parameters used in the MC simulations. The elastic modulus for stretching and 

WLC bending were taken from literature as indicated. 

 

Simulation procedure 

An ensemble of configurations, representing thermal equilibrium distribution was generated 

using pivot, rotation (13, 14) and crankshaft moves (15, 16) as well as segment length varia-

tion (17). All simulations were performed at a temperature of 293.0 K. An overview of the 

simulation parameters is given in Tab. S1. The MC moves allow segments to cross each oth-

er, which can produce knotted configurations (15) or changes of the linking number Lk of the 

chain. To prevent such non-physical moves, the configuration was checked periodically (1) 

using a knot-finding algorithm (18) while Lk was verified using the condition Lk = Tw + Wr. 

The twist Tw can directly be derived from the simulation model while the writhe Wr was 

computed according to ref. (19). Every simulation run was carried out with 6·107 steps, and 

repeated at least five times for the analysis of the buckling transition. The first 2·107 steps 

were omitted to ensure system equilibration. To measure the number of uncorrelated config-

urations we determined the correlation times from the autocorrelation function as described 

in ref. (9) for the energy, the average twist and the z-position of the middle segment. The 

largest measured correlation length was 4.8·104 steps. Configurations separated more than 

two times the correlation length can be considered as statistically independent (20). Thus, we 

considered only every 105 simulation steps for analysis, yielding 400 uncorrelated samples 

from every simulation run and 2000 for all five reiterations. 
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Linear sub-elastic chain model for 5 nm segments 

The majority of Monte Carlo simulations was performed with 5 nm segments. To adapt the 

bending potential, that was originally developed for 2.5 nm segments (Eq. 2, main text), the 

angular distributions for two consecutive 2.5 nm segments need to be convoluted (21): 
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The integral can be simplified to: 
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Presuming θ to be non-negative and α > 0, Eq. S6 can be further simplified to: 
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The bending potential for 5 nm segments was derived from the angular distribution: 
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We omitted all constant terms (see Eq. 5, main text), since the Metropolis Monte Carlo algo-

rithm is based solely on energy differences. 



 6 

SUPPORTING FIGURES 
 

 

 
 

FIGURE S1: Analysis of the torque jump upon buckling from simulations carried out at 3.0 

pN force and 170 mM monovalent salt, corresponding to the analysis of the length jump in 

Fig. 2, main text. (a) DNA torque over simulation time at different numbers of turns N with 

corresponding histograms (shown on the right). Transitions between the pre- and the post-

buckling state can be clearly seen. The results of five independent simulations were concate-

nated to improve the number of events. (b) Occupancy of the postbuckling state as function 

of the applied turns obtained from the histograms shown in (a). The solid line is a fit accord-

ing to Eq. 3, main text. The dashed line indicates the buckling position Nb at which the DNA 

has the same probability to be in the pre- and the postbuckling state. (c) Mean DNA torque of 

the pre- and the postbuckling state (squares and circles, respectively) as function of turns 

obtained from the histograms shown in (a). The arrow indicates the size of the torque jump 

at the buckling position as obtained from linearly interpolating the DNA lengths (solid lines). 
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FIGURE S2: Apparent torsion modulus as function of force derived from simulations with 

WLC bending for a bending persistence length p = 50 nm and a torsion modulus C = 90 

nm×kBT at 320 mM monovalent ions for 5 nm segments (filled circles) and 2.5 nm segments 

(open squares). The apparent torsion modulus was obtained from linear fits of the torque 

data prior buckling (see Fig. 1 c, main text). The theoretical prediction by Moroz and Nelson 

(Eq. S1) is shown as a solid line. 
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FIGURE S3: Dependence of the interaction energies of two parallel DNA molecules on the 

monovalent ion concentration for different model parameters. DNA molecules were approx-

imated by charged cylinders with radius R and a linear charge density of χCR · ξDNA with 

ξDNA = 2e/0.34 nm being the nominal charge density of DNA. Interaction energies for differ-

ent values of R and χCR were calculated as previously described (see above (1, 10, 22)). Inter-

action energies were normalized by division with the values obtained using R = 1.2 nm and 

χCR = 0.42. In addition to the parameter set R = 1.0 nm and χCR = 1.00 (2) (see discussion 

above), we also show interaction energies for the parameter set originally introduced by Stig-

ter and coworkers (10, 23) with R = 1.2 nm and χCR = 0.73 as well as for R = 1.0 nm and χCR = 

0.73. Even in the latter case the interaction energies are significantly overestimated compared 

to R = 1.2 nm and χCR = 0.42. Since the decay of the electrostatic potential with distance from 

the DNA is the same for all parameter sets, the ratios between the interaction energies for 

different parameterizations and thus the normalized interaction energies are independent of 

distance. 
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FIGURE S4: Postbuckling parameters from simulations for a torsional rigidity of 90 nm×kBT 

using 5 or 2.5 nm DNA segments. (a) Slopes corresponding to the linear DNA length de-

crease per turn in the postbuckling phase as function of the applied stretching force for 30, 

60, 170 and 320 mM monovalent salt (gray, red, black and blue, respectively). Lines represent 

data from magnetic tweezers experiments (1) while results from WLC simulations with 5 nm 

DNA segments are depicted as filled circles. Simulations for 170 mM monovalent ions using 

2.5 nm segments are shown as open squares. (b) Torque in the postbuckling phase, corre-

sponding to the WLC simulations in (a). 
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FIGURE S5: Force dependence of the length jump (a) and the torque jump (b) compared to 

measurements using optical tweezers (24). Data from WLC simulation for 170 mM monova-

lent salt are depicted as black dots while data from optical tweezers experiments at 150 mM 

NaCl DNA template length of 2.2 kbp are shown as blue dots. The force dependence of the 

length jump from simulations is in better agreement with magnetic tweezers measurements 

(Fig. 3 b, main text), which found a nearly constant jump size with decreasing force. The 

strongly increasing jump sizes at low forces found in the optical tweezers measurements are 

probably due to a different way of analyzing this data. Jump sizes were in this case obtained 

from fits of the supercoiling curves (24) instead of analyzing the distributions of pre- and 

postbuckling state as done in the present study (see Figs. 2, main text and S1). Noticeably, 

the torque jump obtained from the simulations agrees within errors with the experimental 

results, though more precise measurements are still required to more stringently validate 

this data. 
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FIGURE S6: Simulation of DNA supercoiling under tension with WLC bending elasticity at 

low ionic strength (10 mM Na+) using a torsional rigidity of 100 nm×kBT. The energy barrier 

between the formation energy of the initial loop (Eloop) and the formation energy of the plec-

tonemic superhelix (Ehelix) disappears due to the reduced screening of the electrostatic repul-

sion at low ionic strength. As a consequence the buckling disappears while multiple initial 

loops are formed instead of an extended plectonemic superhelix. (a) Representative snap-

shots from the simulations at different stretching forces. The radius of the visualized DNA 

was doubled to improve clarity. (b) DNA length versus applied turns at different forces (0.25 

pN to 4.0 pN, colors as in Fig. 1b). (c) Torque values for the simulations shown in (b). 
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