SUPPLEMENTAL DATA

Penitrem A as a tool to understand the role of BK channels in vascular function

Shinichi Asano, Ian N. Bratz, Zachary C. Berwick, Ibra S. Fancher, Johnathan D. Tune, and Gregory M. Dick

Supplemental Fig. 1

Supplemental Fig. 1 Penitrem A inhibits BK, but not K_v , channels in a variety of smooth muscle cell types. We demonstrate that penitrem A (1 µM) inhibits the same type of strongly outwardly rectifying current without effect on native delayed rectifier K⁺ channels. Currents were measured in smooth muscle cells isolated from rat middle cerebral artery (Panel A; n = 3), rat femoral artery (Panel B; n = 3), mouse aorta (Panel C; n = 3), pig coronary artery (Panel D; n = 5), and dog coronary artery (Panel E; n = 7). The voltage template (shown in A) was the same for all experiments. Solutions for whole-cell currents are described in the Methods. Panel F contains data showing that penitrem A 1 µM inhibits the α subunit cloned from cow (courtesy of Dr. Michael Davis, University of Missouri) and expressed in HEK 293 cells (n = 3).

JPET #191072 Supplement

Supplemental Fig. 1 (cont)

Supplemental Fig. 2 Dialysis of smooth muscle cells with ATP-free pipette solution activates K_{ATP} current. Cells were dialyzed with an ATP-free pipette solution to activate K_{ATP} channels in symmetrical 140 mM K⁺. Panel A shows current in a mouse aortic myocyte in physiological and symmetrical K⁺ solutions. The delayed rectifier K⁺ current becomes inward in 140 mM K⁺. Panels B and C show the effect of intracellular ATP on the development of linear inward current in cells bathed in 140 mM K⁺. The cell in panel B was dialyzed with a solution containing 5 mM Mg-ATP, whereas the solution dialyzing the cell in panel C contained no Mg-ATP. Note that significant inward current developed only in the cell dialyzed with an ATP-free pipette solution. Panel D contains a plot of current at -100 mV vs. time for the cells in panels B and C. Inward current in cells dialyzed with ATP-free pipette solution was abolished by glibenclamide (10 µM; see Fig. 5C & D of the manuscript). In contrast, K_{ATP} current was unaffected by penitrem A (1 µM; see Fig. 5C & D of the manuscript).