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Supplemental Fig. 1

Supplemental Fig. 1 Penitrem A inhibits BK, but not Ky, channels in a variety of smooth
muscle cell types. We demonstrate that penitrem A (1 uM) inhibits the same type of strongly
outwardly rectifying current without effect on native delayed rectifier K channels. Currents
were measured in smooth muscle cells isolated from rat middle cerebral artery (Panel A; n = 3),
rat femoral artery (Panel B; n = 3), mouse aorta (Panel C; n = 3), pig coronary artery (Panel D; n
=5), and dog coronary artery (Panel E; n = 7). The voltage template (shown in A) was the same
for all experiments. Solutions for whole-cell currents are described in the Methods. Panel F
contains data showing that penitrem A 1 uM inhibits the a subunit cloned from cow (courtesy of

Dr. Michael Davis, University of Missouri) and expressed in HEK 293 cells (n = 3).
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Supplemental Fig. 1 (cont)
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Supplemental Fig. 2 Dialysis of smooth muscle cells with ATP-free pipette solution
activates Katp current. Cells were dialyzed with an ATP-free pipette solution to activate Karp
channels in symmetrical 140 mM K. Panel A shows current in a mouse aortic myocyte in
physiological and symmetrical K solutions. The delayed rectifier K* current becomes inward in
140 mM K. Panels B and C show the effect of intracellular ATP on the development of linear
inward current in cells bathed in 140 mM K. The cell in panel B was dialyzed with a solution
containing 5 mM Mg-ATP, whereas the solution dialyzing the cell in panel C contained no Mg-
ATP. Note that significant inward current developed only in the cell dialyzed with an ATP-free
pipette solution. Panel D contains a plot of current at -100 mV vs. time for the cells in panels B
and C. Inward current in cells dialyzed with ATP-free pipette solution was abolished by
glibenclamide (10 uM; see Fig. 5C & D of the manuscript). In contrast, Kap current was

unaffected by penitrem A (1 uM; see Fig. 5C & D of the manuscript).



