
Supplementary Note 1: BiForce algorithm and implementation

Outline

One of the major challenges of studying epistasis in genome-wide association studies (GWAS) is

the computational efficiency. Current methods are either unable to handle high density SNP data

and therefore execute a pre-filtering or screening step prior to statistical tests to reduce the search

space or apply high-performance computing solutions using advanced or supercomputer systems

(e.g. graphics processing units (GPU), cloud and grid-based solutions, computer clusters). The

majority of these methods concern only binary (i.e. case-control) data. Many complex (quantitative)

traits may require even more computational resources. On the other hand, the number of SNPs used

in GWAS has increased greatly providing an unprecedented opportunity to investigate epistasis on

hundreds of billions of SNP pairs. Fast computational methods are desperately needed for GWAS to

fill the gap between this opportunity and computational challenges. Here we present a novel tool

named BiForce to tackle the challenges. BiForce is a powerful and versatile method able to carry

out high throughput pair-wise epistasis detection for both binary (case-control) and quantitative

traits by

1. Converting SNP genotype data into Boolean bit values and storing them in special arrays

(called bit sets) for counting samples in each SNP genotype combination in a fast and CPU-

efficient way

2. Efficiently calculating pair-wise SNP interactions using a logical AND operation over bit

sets

3. Applying a fast, multithreaded approach to perform a full pair-wise genome scan for

epistasis in a parallel manner

Experimental results show that BiForce can reduce the running time dramatically and make

epistasis analysis in GWAS possible even on a single computer.

Data structure

GWAS raw data are stored as phenotype and genotype files. Phenotype data contains information

about each individual and its phenotype that can be either a class label (i.e. case or control) in a

disease trait, or a decimal number in a quantitative trait. Genotype data contain the genetic

information of each individual as SNP genotypes: the homozygous of A allele (AA or 0),

heterozygous (AB or 1) and homozygous of B allele (BB or 2). Table_S1_1 shows an example of a

typical raw data format for a binary and quantitative dataset with six individuals (samples) and four

SNPs.

Table_S1_1: A typical raw data format of GWAS data with four SNPs from six individual samples.

I. Phenotype data
 I/1. Binary (case-control) data

I/2.Quantitative data

Sample ID Value

Sample ID Value

I1 1

I1 1.4
I2 0

I2 2.4

I3 1

I3 -1.3
I4 1

I4 -3.1

I5 0

I5 2.4
I6 0

I6 1.2

II. Genotype data

Sample ID
SNP ID I1 I2 I3 I4 I5 I6

SNP1 AA AA AB AA AB BB
SNP2 AB AA AB AB BB BB
SNP3 AA AB AA AB AB AA
SNP4 AA BB BB AA AB AA

For contingency table based statistical tests of SNP interactions, phenotype values for each joint

genotype need to be calculated first (see below). Because the running time of a pair-wise genome

scan significantly depends on how efficient such a calculation is, the data structure in which

genotype values are stored is critically important. Instead of storing SNP genotypes as integer

values (e.g. 0, 1, 2) each using 16 or 32 bits of computer memory, BiForce use bitwise arrays to

manage the genotype data where each component of a bitwise array has a Boolean value, i.e. either

on/true/1 or off/false/0. Because each SNP can only have three genotypes, we can represent each

genotype as one bit – if a sample has the genotype the bit value is 1 otherwise 0. Therefore, each

SNP SX can be represented by 3 bit sets,
 ,

 and
 , corresponding to the three genotypes 0, 1

and 2. If a sample has a genotype at the SNP, one and only one of the 3 bits will be set to 1.

Otherwise, the genotype is missing (e.g.NA) so none of the 3 bits will be set (i.e. all remain 0).

Thus, by applying the bitwise data structure, BiForce will save 13 or 29 bits (from 16 or 32

bits to only 3 bits) for each SNP and consequently is very memory efficient in light of a large

number of SNPs used in GWAS. More importantly, such bitwise data structures can cope with

missing genotypes easily without the need of imputing and enable very fast bitwise

operations (see section of Construction of Contingency Tables below). To use the bitwise data

structures, the raw GWAS data need to be converted and stored in bitwise arrays first as

illustrated in Table_S1_2. BiForce uses Java BitSet to implements the bitwise arrays that can

be increased in size if necessary and indexed by a nonnegative integer corresponding to each

individual sample to allow fast storage and retrieval.

Table_S1_2: Raw data represented as in bitwise data structure.

Genotype data after conversion (Binary data)

Cases I1 I3 I4 Cont. I2 I5 I6

 1 0 1

 1 0 0

 0 1 0

 0 1 0

 0 0 0

 0 0 1

 0 0 0

 1 0 0

 1 1 1

 0 0 0

 0 0 0

 0 1 1

 1 1 0

 0 0 1

 0 0 1

 1 1 0

 0 0 0

 0 0 0

 1 0 1

 0 0 1

 0 0 0

 0 1 0

 0 1 0

 1 0 0

Genotype data after conversion (Quantitative data)

I1 I2 I3 I4 I5 I6

 1 1 0 1 0 0

 0 0 1 0 1 0

 0 0 0 0 0 1

 0 1 0 0 0 0

 1 0 1 1 0 0

 0 0 0 0 1 1

 1 0 1 0 0 1

 0 1 0 1 1 0

 0 0 0 0 0 0

 1 0 0 1 0 1

 0 0 0 0 1 0

 0 1 1 0 0 0

The bitwise data structures can also be applied to manage the phenotypes in binary traits where two

bit sets are used to represent case and control respectively. Again these data structures allow

BiForce to use bitwise operations to compute the contingency tables in a fast, CPU-efficient

manner. The bitwise data structures however, are not applicable to phenotypes in quantitative traits.

Construction of Contingency Tables

In order to calculate the interactions between two SNPs, SX and SY, first a contingency table C is

constructed with three variables: the trait value (e.g. disease status, i.e. case or control) and the two

SNPs. We define the contingency table using a binary trait as an example as follows. Let C be

defined as a matrix, where a matrix element represents the number of samples

with joint genotype z (0 to 8) and trait value t, where , the first SNP’s genotype code

 and the second SNP’s genotype code (Table_S1_3). is calculated using

a logical AND function (or intersection) of the two SNPs’ bit sets
 and

as follows:

 .

Table_S1_3: Contingency table for GWAS binary data.

Trait

To illustrate how contingency table is built, let’s take the case samples and SNPs S1 and S2 in

Table_S1_2 to calculate n1,1 (i.e. the number of case samples with S1 taking genotype 0 and S2

taking genotype 1):

 .

Note that the logical AND function () gives a TRUE (1) only if both operands are TURE and the

final result of 2 is obtained by counting the 1s. The full contingency table constructed for the pair of

SNPs S1 and S2 is given in Table_S1_4.

Table_S1_4: The contingency table for the pair of SNPs S1 and S2 with binary data from

Table_S1_2.

Trait

 0 2 0 0 1 0 0 0 0

 1 0 0 0 0 1 0 0 1

The definitions above are also applied to construct contingency tables for quantitative traits where

each table has only a single row instead of two for binary traits. As bitwise operations cannot be

used to calculate the counts and sums (mean = sum/count) in the contingency table for quantitative

traits, a simple loop is used over all bits in a BitSet. This results in longer running time for

quantitative traits.

Statistical tests of pair-wise SNP interactions

Binary Traits

BiForce uses the contingency tables constructed as input to calculate test statistics of interaction

between each pair of SNPs. For binary traits, BiForce adopts the approximation step and the log-

likelihood ratio tests as implemented in BOOST (Wan et. al. 2010, American Journal of Human

Genetics, 87: 325-340) (http://bioinformatics.ust.hk/BOOST.html) as a default option to accelerate

the full pair-wise genome scan. The approximation step can be dismissed when necessary and thus

perform the exhaustive scan using only the log-likelihood ratio tests. Briefly, considering a SNP

pair of S1 and S2 in case (t1) and control (t0) in Table_S1_4 with a total number of samples of n:

a. calculate conditional probabilities P(S1|S2), P(S2|t), P(t|S1)

b. for t0 (and then t1)

i. calculate probability*log(probability) for each of the 9 joint genotypes and the sum

(int_sum_a for t0 and int_sum_c for t1)

ii. calculate P(S1|S2)*P(S2|t)*P(t|S1) for each of the 9 joint genotypes and then the sum

(tao_a for t0 and tao_b for t1)

iii. calculate -probability*log(P(S1|S2)*P(S2|t)*P(t|S1)) for each of the 9 joint genotypes

and the sum (int_sum_b for t0 and int_sum_d for t1)

c. log-likelihood ratio for the interactions is calculated as:

 2*n*((int_sum_a+int_sum_b+ int_sum_c+int_sum_d)+log(tao_a+tao_b))

http://bioinformatics.ust.hk/BOOST.html

Quantitative traits

For quantitative traits, BiForce uses F-ratio tests implemented using ANOVA. Considering SNP pair

of S1 and S2 in quantitative trait t with a total number of samples of n and a contingency table of

number of samples in each joint genotype similar to Table_S1_4, BiForce first calculates the overall

mean µ, the total phenotypic variance  
n

i

itSST 2)( and then derives a new 3 x 3 contingency

table of means of each joint genotype mij with cntij number of samples quoted from the previous

contingency table (i ~ 0 to 2, j ~ 0 to 2), row (r0 to r2) and column (c0 to c2) means (Table_S1_5).

Table_S1_5: The 3 x 3 contingency table of joint genotype means for the pair of SNPs S1 and

S2

 row_mean

 m00 m01 m02 r0

 m10 m11 m12 r1

 m20 m21 m22 r2

col_mean c0 c1 c2 µ

BiForce then computes the between group variance 
 


2

0

2
2

0

)(
i

ij

j

ij mcntSSB  and interaction

variance 
 


2

0

2
2

0

)(
i

jiij

j

ij crmcntSSI  and then the residual variance SSBSSTSSW  . The

F ratio of interaction is)/()(int dfWSSWdfISSIF  where dfW and dfI are the degrees of freedom

for the residual (e.g. n-9) and the interaction (e.g. 4) respectively.

Multithreaded approach for full pair-wise genome scans

During the past few years, computer processors went through a major evolution in computing

technology. Multi-core processors have eventually become the standard computing model because

of the provided performance benefits beyond the capabilities of single-core processors. Therefore, it

is becoming more and more common for computer systems to have multiple processors or

processors with multiple execution cores. At the same time, however, there is a lack of method

development among computational biologists to exploit the opportunities that this computing model

promises. Almost all of the methods reported for genome wide association studies restrict their

access to a single thread and thus, a single core, regardless of the available number of cores.

Multithreaded approach, in contrast, allows access to two or more threads depending solely on the

given computer power. In a multithreaded environment, each thread of a process can run on a

separate processor at the same time, resulting in a parallel execution. Even on a single processor, a

multithreaded method is running faster than a method developed merely for a single thread as

computer systems even with a single execution core have many active threads.

BiForce is designed and implemented to fully exploit the advantage of multithreaded environment.

The main steps of the method can be summarized as follows:

 Step 1: Convert raw data to bit sets as described above.

 Step 2: For each SNP Si, i={1,2,..,m-1}, collect all (Si, Sj) SNP pairs, where j={i+1,

i+2,…,m}. Let Taski denote all SNP pairs having Si as the first SNP of the pair (see

Figure_S1_1).

 Step 3: Send all Taski, i={1,2,…,m-1} to the Thread Pool. (While a thread can be thought as

an actual worker, Thread Pool is a group of workers.) For each task Taski in the pool, build

contingency table and calculate statistical tests for its SNP pairs.

 Step 4: Report SNP pairs with interaction values above the required threshold.

Figure_S1_1: Illustration of multithreaded steps applied in the BiForce method.

BiForce on parallel computing platforms

In addition to single computers with multi-cores, BiForce is able to run on various parallel

computing platforms including clusters, MPPs and grids. These systems are specifically designed to

take large data, divide them into subparts, allowing the individual computer nodes to process their

own parts. To ensure the best running time, BiForce performs the division by splitting up the data

into closely equal parts applying a simple greedy strategy before distributing the data parts to the

nodes (Figure_S1_2). Applying BiForce on parallel platforms, the running time can be further

reduced from hours to minutes and from minutes to seconds depending on the number of available

nodes.

Figure_S1_2: Parallel distribution method applied in the BiForce method.

