
Supplementary Note 2: Details of the simulation design 

 

We used simulation to test the performance of BiForce in binary traits in comparison with BOOST 

(Wan, et al., 2010) and quantitative traits in comparison with PLINK (Purcell, et al., 2007). Since 

BOOST has been tested against PLINK in a simulation study (Wan, et al., 2010), to keep simple we 

choose to adopt the BOOST simulation design in this study. We used 500 replicates (in contrast to 

100 replicates used in the BOOST study) for all simulation scenarios. Details of the adopted 

simulation design and variations are briefly described below.  

 

Epistasis models 

The four two-locus interaction models used to generate epistatic scenarios with marginal effects in 

disease loci in the BOOST study were applied here (Table_S2_1). Considering two loci A (disease 

risk allele a) and B (disease risk allele b), Model 1 is a multiplicative model where the odds of each 

joint genotype have a baseline value unless both loci have at least one disease-associated allele and 

their odds increase multiplicatively within and between genotypes (Marchini, et al., 2005). Both 

Models 2 and 3 have the missing lethal genotype (i.e. the double homozygous genotype of disease 

alleles aa-bb does not lead to disease) (Li and Reich, 2000). Model 2 differs from Model 3 mainly 

in the double heterozygous genotype Aa-Bb that does not lead to disease and has been used to 

describe the genetics of handedness (Levy and Nagylaki, 1972; Neuman and Rice, 1992). In 

addition, Model 3 has the aa-Bb genotype leads to disease in contrast to Aa-BB in Model 2. Model 

4 is a well known XOR (exclusive OR) model where only four single heterozygous genotypes (AA-

Bb, Aa-BB, Aa-bb and aa-Bb) lead to disease (Li and Reich, 2000; Moore and Williams, 2009). 

The logical XOR operation on two binary variables is defined as: 0 XOR 0 = 0, 0 XOR 1 = 1, 1 

XOR 0 =1, 1 XOR 1 = 0, where the last operation makes XOR extremely nonlinear. These models 

were used in this study to generate epistatic scenarios for binary and quantitative traits. 

 

Epistatic scenarios 

For each epistasis model six simulation scenarios were used to cover a sample size of 800 or 1600 

(with balanced design) and a minor allele frequency (MAF) of 0.1 or 0.2 or 0.4 for the simulated 

epistatic SNPs (assumed equal MAF for both loci). In the binary trait case, the disease prevalence 

was fixed as 0.1 for all epistatic scenarios, whereas the disease heritability was set to 0.03 for Model 

1 and 0.02 for Models 2 to 4. With these settings, the parameters α and θ are calculated and showed 

in Table_S2_2.  



Table_S2_1. Genotype values of the simulated epistatic SNP pair in four epistasis models used in 

binary trait simulation scenarios* 

 

SNP1 

SNP2 

BB Bb bb 

Model 1 

AA α α α  

Aa α α(1 + θ) α(1 + θ)
2 

aa α α(1 + θ)
2 

α(1 + θ)
4 

Model 2 

AA α α(1 + θ) α(1 + θ) 

Aa α(1 + θ) α α 

aa α(1 + θ) α α 

Model 3    

AA α α α(1 + θ) 

Aa α α(1 + θ) α 

aa α(1 + θ) α(1 + θ) α 

Model 4 

AA α α(1 + θ) α 

Aa α(1 + θ) α α(1 + θ) 

aa α  α(1 + θ) α 

*: The parameters α and θ control the disease prevalence and heritability based on Equations 15 to 

18 given in the BOOST paper (Wan, et al., 2010). They define the interaction pattern in each model 

together with minor allele frequency of disease loci (identical for SNP1 and SNP2) 

 

 

Table_S2_2. Parameter values used to generate epistatic scenarios for binary traits 

Model MAF Heritability Prevalence α θ 

1 0.1 0.03 0.1 0.100 3.448 

1 0.2 0.03 0.1 0.091 1.300 

1 0.4 0.03 0.1 0.075 0.624 

2 0.1 0.02 0.1 0.077 1.533 

2 0.2 0.02 0.1 0.065 1.640 

2 0.4 0.02 0.1 0.065 1.640 

3 0.1 0.02 0.1 0.099 3.003 

3 0.2 0.02 0.1 0.088 1.746 

3 0.4 0.02 0.1 0.068 1.585 

4 0.1 0.02 0.1 0.078 1.537 

4 0.2 0.02 0.1 0.067 1.601 

4 0.4 0.02 0.1 0.061 1.717 

      

 



In the quantitative trait case, because the disease prevalence is not defined it is difficult to solve 

both parameters α and θ using only the trait heritability. To remove the parameter α while 

maintaining the interaction pattern in each epistasis model, each genotype value in Table_S2_1 was 

divided by the quantity of α(1 - θ) (Table_S2_3). For simplicity the θ value for each epistatic 

scenario in Table_S2_2 was applied to calculate the genotype values for the counterpart epistatic 

scenario for quantitative traits. Trait heritability was also set to 0.03 for Model 1 and 0.02 for 

Models 2 to 4 used in simulating phenotypes (see below). Therefore, the epistatic scenarios for 

quantitative traits may not be directly comparable against the counterparts for binary traits. 

 

Table_S2_3. Genotype values of the simulated epistatic SNP pair in four epistasis models used in 

quantitative trait simulation scenarios* 

 

SNP1 

SNP2 

BB Bb bb 

Model 1 

AA 1/(1 + θ) 1/(1 + θ) 1/(1 + θ)  

Aa 1/(1 + θ) 1 (1 + θ)
 

aa 1/(1 + θ)  (1 + θ)
 

 (1 + θ)
2 

Model 2 

AA 1/(1 + θ) 1 1 

Aa 1 1/(1 + θ) 1/(1 + θ) 

aa 1 1/(1 + θ) 1/(1 + θ) 

Model 3    

AA 1/(1 + θ) 1/(1 + θ) 1 

Aa 1/(1 + θ) 1 1/(1 + θ) 

aa 1 1 1/(1 + θ) 

Model 4 

AA 1/(1 + θ) 1 1/(1 + θ) 

Aa 1 1/(1 + θ) 1 

aa 1/(1 + θ)  1 1/(1 + θ) 

*: Parameter θ takes the values defined in Table_S2_2 for each epistatic scenario 

 

For each epistatic scenario, genotypes of 1,000 SNPs were generated using the program gs (version 

2.0) (Li and Chen, 2008) by randomly sampling from SNPs located on chromosome 11 of the CEU 

HapMap (phase 3 release 2) phased data under the assumption of Hardy-Weinberg equilibrium and 

selecting SNPs with the desired MAF to use as disease SNPs. Binary phenotypes were also 

generated by gs according to the genotype values calculated for the scenario as showed in 

Table_S2_1 and Table_S2_2. Quantitative phenotypes were simulated by an R script (Table_S2_4) 

based on the genotype values calculated for the scenario as showed in Table_S2_2 and Table_S2_3 

and trait heritability with random noise sampled from a normal distribution with a mean of zero and 

variance of 1 minus heritability. The simulated quantitative phenotypes were standardized before 

the association analysis. 

 



NULL scenarios 

Following the simulation design in the BOOST study (Wan, et al., 2010), two NULL scenarios were 

simulated each using 1,000 samples and 500 replicates: (1) the program genomeSIMLA (Dudek, et 

al., 2006) was used to generate SNP genotype data based on the Affymetrix 500k SNP array to 

accommodate linkage disequilibrium in real GWAS. We used only information of SNPs located on 

chromosome 1 of the Affymetrix 500k SNP array to generate 38,836 SNPs as the BOOST study; (2) 

1,000 SNPs were randomly generated with MAFs uniformly from [0.05, 0.5]. In both cases, 

samples were generated by sampling from a Bernoulli distribution for binary traits and a Gaussian 

distribution (mean=0, variance=1) for quantitative traits.  

 

Table_S2_4. The R script for generating quantitative phenotypes 

epiSim <- function(m1, m2, pattern, v){ 

  # Take two SNPs and simulate epistatic phenotype  

  # with genotype-phenotype as defined in pattern 

  # Args: 

  # 

  # m1, m2: SNP markers, numeric vectors {0, 1, 2} 

  # pattern: genotype phenotype map, 3x3 matrix 

  # v: variance explained by gp map 

  # return array of length of m1 representing standardized phenotype 

 

  N <- length(m1) 

  if(v == 0) return(rnorm(N)) 

  m12 <- m1 + m2*3 

  phen <- array(0,N) 

  for(i in 0:8) 

  { 

    phen[m12 == i] <- c(pattern)[i+1] 

  } 

  if(v == 1) return(phen) 

  var_orig <- var(phen) 

  sd_req <- sqrt((var_orig / v) - var_orig) 

  phen <- phen + rnorm(N,mean=0,sd=sd_req) 

  return((phen - mean(phen)) / sd(phen)) 

} 
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