SUPPORTING INFORMATION

Factors Influencing the DNA Nuclease Activity of Iron, Cobalt, Nickel, and Copper Chelates

Jeff C. Joyner,^{1,2} Jared Reichfield,¹ and J. A. Cowan^{1,2,3}*

Contribution from ¹ Evans Laboratory of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210; ² The Ohio State Biochemistry Program, 784 Biological Sciences 484 W. 12th Avenue, Columbus, Ohio 43210; and ³ MetalloPharm LLC, 1790 Riverstone Drive, Delaware, OH 43015

Correspondence to: Dr. J. A. Cowan, Evans Laboratory of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210. tel: 614-292-2703, e-mail: cowan@chemistry.ohio-state.edu

Figure SM1. O₂ requirement for ascorbate consumption for those complexes found to function aerobically in the absence of H₂O₂. Starting reactants included 1 mM ascorbate and 10 μ M metal-chelate complex in prepared mixtures of anaerobic (degassed/Ar purged) buffer and aerobic buffer: 100% aerobic (as made), 15% aerobic (by mixing aerobic and anaerobic buffers to a 15:85 ratio within an Ar-purged vial), or ~ 0% aerobic. Rates of ascorbate consumption generally decreased as a higher percentage of purged/degassed buffer was used, consistent with the proposed O₂-dependent mechanisms proposed for these metal complexes.

Figure SM2. (A) Sample trace for metal-chelate mediated multiple turnover ascorbate consumption monitored by UV/Vis absorbance. Reactions contained 10 µM Fe(II)-triazacyclononane (or other metal-chelates), 1 mM H₂O₂, and 1 mM ascorbate in 20 mM HEPES, 100 mM NaCl, pH 7.4 on a clear 96-well plate. Initial rates of ascorbate consumption were determined after monitoring the disappearance of ascorbate at 300 nm. The absorbance from 1 mM ascorbate was ~ 0.68 and from background absorbance was ~ 0.40. The extinction coefficients for ascorbate and M-chelates at 300 nM are ~ 590 $M^{-1}cm^{-1}$ and 0 – 4,900 $M^{-1}cm^{-1}$, respectively (the highest extinction coefficient at 300 nm of 4,900 M⁻¹cm⁻¹ was observed for Fe-EDTA). Since the concentration of M-chelates used was 100-fold lower than that of ascorbate, the absorbance of 10 µM M-chelate was always less than 10% of the initial absorbance of 1 mM ascorbate. Also, the relatively low absorbance of each M-chelate does not change appreciably during each experiment, especially during steady state turnover, and therefore does not affect the measured slope that occurs as a result of ascorbate consumption. (B) Wavelength scans for 1 mM ascorbate and 10 µM Fe-EDTA, which had the highest extinction coefficient at 300 nM among the M-chelates tested, demonstrating the suitability of the ascorbate and M-chelate concentrations used in the ascorbate consumption assay (300 nm is indicated by the dashed line). Wavelength scans were performed in a quartz cuvette with 1 cm pathlength.

Figure SM3. Sample trace for metal-chelate mediated radical generation monitored by real-time fluorescence of TEMPO-9-AC. Reactions contained 10 μ M Fe-EDTA (or other metal-chelates), 10 μ M TEMPO-9-AC, and 1 mM H₂O₂ in 20 mM HEPES, 100 mM NaCl, pH 7.4 on a black 96-well plate. Steady-state rates of TEMPO reaction with diffusible radicals were determined after monitoring TEMPO fluorescence at 435 nm. The emission intensity from unreacted TEMPO was ~ 25 units, and for completely reacted TEMPO was ~ 160 units.

Figure SM4. Sample trace for metal-chelate mediated hydroxyl radical generation monitored by rhodamine B absorbance. Reactions contained 1 μ M Fe(II)-EDTA (or other metal-chelates), 10 μ M rhodamine B, 1 mM H₂O₂, and 1 mM ascorbate in 20 mM Na₂HPO₄, pH 7.4 on a clear 96-well plate. Relative absorbance was monitored at 555 nm and the absorbance from unreacted rhodamine B was ~ 0.74.

Figure SM5. Summary of initial rates for reaction of rhodamine B with each metal-chelate/ O_2 (front) and metal-chelate/ H_2O_2 (rear) combination.

Figure SM6. Representative voltammogram for square wave voltammetry experiments, by which the reduction potentials of metal-chelates (Fe-DOTA shown here) were determined. Each reduction potential was determined by fitting to the Gaussian equation (6) and was later converted from potential vs. Ag/AgCl to vs. NHE. Square wave voltammetry experiments were conducted in an anaerobic solution of 20 mM HEPES, 100 mM NaCl, pH 7.4 at an ambient temperature of ~ 25 °C.

Figure SM7. Structures and pathways for reaction of, (A) TEMPO-9-AC with hydroxyl radical, (B) TEMPO-9-AC with superoxide,^{2,3} and (C) rhodamine B (figure adapted from Mishra et. al. (2010)).⁴ Hydroxyl radical and superoxide radical each react with the nitroxide radical, which quenches the fluorescence of TEMPO-9-AC. Following reaction, the fluorescence of TEMPO is restored.⁵ Limited information is available regarding the mechanism of rhodamine B degradation by hydroxyl radical, although the most likely pathways are aromatic ring opening or de-ethylation.

complex	k _{nick} for DNA nicking (min ⁻¹)	k _{lin} for DNA linearization (min ⁻¹)	
Fe	0.05 ± 0.01	a	
Со	a	0.0009 ± 0.0001	
Ni	a	0.0004 ± 0.0001	
Cu	0.25 ± 0.05	0.073 ± 0.004	
Co-Cyclam	a	a	
Ni-Cyclam	a	0.0012 ± 0.0001	
Cu-Cyclam	0.053 ± 0.004	0.0008 ± 0.0002	
Co-Cyclen	0.017 ± 0.003	a	
Ni-Cyclen	a	a	
Cu-Cyclen	0.014 ± 0.004	0.0007 ± 0.0001	
Fe-DOTA	a	0.0008 ± 0.0001	
Co-DOTA	a	0.0005 ± 0.0001	
Ni-DOTA	0.030 ± 0.007	0.0029 ± 0.0008	
Cu-DOTA	a	0.0013 ± 0.0001	
Fe-DTPA	a	0.0012 ± 0.0001	
Co-DTPA	a	a	
Ni-DTPA	a	a	
Cu-DTPA	a	a	
Fe-EDTA	0.044 ± 0.009	0.0005 ± 0.0001	
Co-EDTA	0.08 ± 0.02	a	
Ni-EDTA	0.037 ± 0.002	a	
Cu-EDTA	0.032 ± 0.003	^a	
Co-GGH	a	a	
Ni-GGH	a	a	
Cu-GGH	0.06 ± 0.01	0.0012 ± 0.0002	
Co-KGHK	0.014 ± 0.002	0.0042 ± 0.0008	
Ni-KGHK	a	a	
Cu-KGHK	0.055 ± 0.008	0.00054 ± 0.00004	
Fe-NTA	0.05 ± 0.01	0.0008 ± 0.0002	
Co-NTA	0.1 ± 0.1	0.005 ± 0.003	
Ni-NTA	a	< 0.009	
Cu-NTA	0.148 ± 0.007	0.0032 ± 0.0004	
Fe-TACN	0.012 ± 0.006	0.0008 ± 0.0007	
Co-TACN	a	a	
Ni-TACN	a	a	
Cu-TACN	a	a	
Background	0.006 ± 0.001	0.00024 ± 0.00003	

Table SM1. Summary of observed first-order rate constants (k_{obs}) for consecutive DNA nicking $(k_{nick}, rear)$ and subsequent linearization $(k_{lin}, front)$ by each metal-chelate (as shown in Figure 1 of the manuscript). ^a Below detection limit. The limits of detection for nicking and linearization were 0.009 and 0.00033 min⁻¹, respectively.

complex	k _{nick} for DNA nicking (min ⁻¹)	ascorbate consumption rate for H_2O_2 and $\{O_2\}$ $(\mu M/min)$	TEMPO reaction rate for H ₂ O ₂ and {O ₂ } (µM/min)	reduction potential vs. NHE (mV)	redox couple
Fe	0.05 ± 0.01	$6.4 \pm 0.1 \{^a\}$	$a \{a\}$	^b	3+/2+
Со	a	$a \{a\}$	$0.0319 \pm 0.0009 \{^a\}$	^b	3+/2+
Ni	a	$a \{a\}$	$0.0156 \pm 0.0003 \{^a\}$	^b	2+/1+
Cu	0.25 ± 0.05	80 ± 10 {12.9 ± 0.2}	$0.16 \pm 0.01 \{^a\}$	136 ¹	2+/1+
Co-Cyclam	^a	$a \{a\}$	$0.0175 \pm 0.0002 \{^{a}\}$	61 ^c	3+/2+
Ni-Cyclam	^a	$a \{a\}$	$a \{a\}$	-275 ^c	2+/1+
Cu-Cyclam	0.053 ± 0.004	$a \{a\}$	$a \{a\}$	163 ^c	2+/1+
Co-Cyclen	0.017 ± 0.003	$a \{a\}$	$^{a} \{0.0124 \pm 0.0002\}$	-228 ^c	3+/2+
Ni-Cyclen	a	$a \{a\}$	^a { ^a }	-211 ^c	2+/1+
Cu-Cyclen	0.014 ± 0.004	^a { ^a }	^a { ^a }	280 ^c	2+/1+
Fe-DOTA	a	$a \{a\}$	$0.0601 \pm 0.0005 \{^{a}\}$	396 ¹	3+/2+
Co-DOTA	a	^a { ^a }	^a { ^a }	142 ¹	3+/2+
Ni-DOTA	0.030 ± 0.007	^a { ^a }	^a { ^a }	-35 ¹	2+/1+
Cu-DOTA	a	^a { ^a }	^a { ^a }	180 ¹	2+/1+
Fe-DTPA	a	$a \{a\}$	$0.0185 \pm 0.0005 \{^{a}\}$	280^{1}	3+/2+
Co-DTPA	a	^a { ^a }	^a { ^a }	1111 ¹	3+/2+
Ni-DTPA	a	^a { ^a }	$a^{a}\{a^{a}\}$	^b	2+/1+
Cu-DTPA	a	^a { ^a }	^a { ^a }	148 ¹	2+/1+
Fe-EDTA	0.044 ± 0.009	$80 \pm 10 \{6.9 \pm 0.2\}$	$0.078 \pm 0.001 \{ 0.0222 \pm 0.0006 \}$	391 ¹	3+/2+
Co-EDTA	0.08 ± 0.02	^a { ^a }	$0.0185 \pm 0.0003 \{^{a}\}$	146 ¹	3+/2+
Ni-EDTA	0.037 ± 0.002	^a { ^a }	^a { ^a }	172 ¹	2+/1+
Cu-EDTA	0.032 ± 0.003	$a \{a\}$	$a \{a\}$	47 ¹	2+/1+
Co-GGH	a	$0.5 \pm 0.2 \{4.9 \pm 0.1\}$	$a \{a\}$	-119 ¹	3+/2+
Ni-GGH	a	$a \{a\}$	$a \{a\}$	1000 ¹	3+/2+
Cu-GGH	0.06 ± 0.01	$2.72 \pm 0.08 \{^{a}\}$	^a { ^a }	1038 ¹	3+/2+
Co-KGHK	0.014 ± 0.002	$0.5 \pm 0.2 \{7.1 \pm 0.2\}$	$a \{a\}$	-228 ¹	3+/2+
Ni-KGHK	a	^a { ^a }	$a \{a\}$	1055 ¹	3+/2+
Cu-KGHK	0.055 ± 0.008	^a { ^a }	^a { ^a }	1058 ¹	3+/2+
Fe-NTA	0.05 ± 0.01	$130 \pm 20 \{4.15 \pm 0.04\}$	$0.145 \pm 0.002 \{0.0449 \pm 0.0005\}$	464 ¹	3+/2+
Co-NTA	0.1 ± 0.1	^a { ^a }	$0.075 \pm 0.002 \{^a\}$	274 ¹	3+/2+
Ni-NTA	a	^a { ^a }	^a { ^a }	176 ¹	2+/1+
Cu-NTA	0.148 ± 0.007	$0.72 \pm 0.05 \{3.46 \pm 0.04\}$	^a { ^a }	215 ¹	2+/1+
Fe-TACN	0.012 ± 0.006	$17 \pm 1 \{5.7 \pm 0.1\}$	$25.94 \pm 0.02 \{0.0099 \pm 0.0001\}$	175 ^c	3+/2+
Co-TACN	a	^a { ^a }	^a { ^a }	-362 ^c	3+/2+
Ni-TACN	a	^a { ^a }	^a { ^a }	991°	2+/1+
Cu-TACN	a	^a { ^a }	^a { ^a }	110 ^c	2+/1+
Background	0.006 ± 0.001	$0.6 \pm 0.6 \{0.3 \pm 0.1\}$	$0.007 \pm 0.003 \{0.0039 \pm 0.0007\}$		

Table SM2. Summary of observed rate constants for DNA nicking reactions (k_{nick}) promoted by M-chelates/H₂O₂/ascorbate, arranged by chelating ligand. Initial rates for ascorbate consumption (with and without H₂O₂ as an added coreactant) and radical generation (again, with and without added H₂O₂), as well as the reduction potential for each M-chelate, are listed for comparison. Redox couples are 3+/2+ for Fe, Co, Ni-ATCUN, and Cu-ATCUN complexes and 2+/1+ for all other Ni and Cu complexes. ^a Below detection limit. ^b Not determined. ^c This work.

SM References

(1) Joyner, J. C.; Cowan, J. A. J. Am. Chem. Soc. 2011, 133, 9912–9922.

(2) Samuni, A.; Goldstein, S.; Russo, A.; Mitchell, J. B.; Krishna, M. C.; Neta, P. J. Am. Chem. Soc. 2002, 124, 8719-8724.

(3) Bar-On, P.; Mohsen, M.; Zhang, R.; Feigin, E.; Chevion, M.; Samuni, A. J. Am. Chem. Soc. **1999**, *121*, 8070-8073.

(4) Mishra, K. P.; Gogate, P. R. Separ. Purif. Technol. 2010, 75, 385-391.

(5) Laight, D. W.; Andrews, T. J.; Haj-Yehia, A. I.; Carrier, M. J.; Änggård, E. E. *Env. Tox. Pharm.* **1997**, *3*, 65-68.

Complete Reference 8 from Manuscript

Hacein-Bey-Abina, S.; Kalle, C. V. S., M.; M.P., M.; Wulffraat, N.; Leboulch, P.; Lim, A.; Osborne, C. S.; Pawliuk, R.; Morillon, E.; Sorenson, R.; Forster, A.; Fraser, P.; Cohen, J. I.; de Saint Basile, G.; Alexander, I.; Wintergest, U.; Frebourg, T.; Aurias, A.; Stoppa-Lyonnet, D.; Romana, S.; Radford-Weiss, I.; Gross, F.; Valensi, F.; Delabesse, E.; Macintyre, E.; Sigaux, F.; Soulier, J.; Leiva, L. E.; Wissler, M.; Prinz, C.; Rabbitts, T. H.; Le Deist, F.; Fischer, A.; Cavazzana-Calvo, M. *Science* **2003**, *302*, 415.