Supplementary Data

Supplementary Table I. Location of repeat tracts in four Campylobacter jejuni genome sequences

Supplementary rable i	i. Location of re	beat ti	acts in four Campylob	acter _j	<i>jejuni</i> genome se	equenc	ces
Location ¹	Homolog in strain 1221 ²	PV ³	Homolog in strain 81- 176 ²	PV ³	Homolog in strain 81116 ²	PV ³	Length/ Tract/ Position In gene ⁴
	Phas	se Var	able Tracts in CjNCTC1	1168			
<i>cj0031</i> <i>1243 aa</i> (48,995-49,006)	CJE0031 (90%)	-	CJJ81176_ 0068 (81%)	-	C8J_0034 (66%)	-	10/G/M
<i>cj0045c*</i> 240 aa (65,747-65,758) ⁵	CJE0044 (80%)	+	CJJ81176-0083 (pseudo) (check region)	+	C8J_0048 (78%)	+	9- 10/G/E
<i>cj0046</i> , pseudo 1520 nts (67,707-67,719)	CJE0046 (pseudo) (92%)	-	CJJ81176 _0085 to 0089 (pseudo) (98%)	+	C8J_0049 (pseudo?) (96%)	-	9- 11/G/NR
<i>cj0170</i> 247 aa (167,050-167,794)	none	-	CJJ81176 _0206/0207 (92%)	+	none	-	9/G/M
cj0275, clpX 417 aa (252,477-252,486)	CJE0324 (99%)	+	CJJ81176 -0302 (99%)	-	C8J_0252 (98% nts)	-	7-8/G/
in front of cj0565* 614 nts (527,377-527,390)	In front of CJE0670 (363/614 nts)	+	In front of CJJ81176_0590 (327/614 nts)	+	in front of C8J_0526 (323/614 nts)	+	10- 12/G/NR
<i>cj0617</i> 418 aa 1200nts (577,585-577,595)	CJE0720 (98% nts)	+	CJJ81176_0646 (98% nts)	+	none	-	9/G/M
<i>cj0628</i> 1144 aa (588,368-588,379)	none	-	none	-	none	-	10/G/M
<i>cj0676, kdpA</i> , pseudo 1657 nts (628,169-628,179)	CJE0774 (pseudo) (99%)	(+)	CJJ81176_0699 (98%)	-	C8J_0628 (98%)	-	9/G/NR
cj0685c, cipA* 450 aa (639,006-639,016)	CJE0783 (94%)	+	CJJ81176_0708 (95%)	+	C8J_0652 (91%)	+	9- 11/C/M
in front of rRNA* 600 nts (695,942-695,953)	Conserved 774,689 (99%)	+	Conserved 692,448 (96%)	+	Conserved 706,131 (97%)	+	9- 11/C/NR
<i>cj1139c, wlaN</i> 303 aa (1,074,192-1,074,201)	None	-	none	-	None	-	8/G/M
<i>cj1144c</i> 281 aa (1,079,739-1,079,748)	None	-	none	-	None	-	8/G/M
<i>cj1295*</i> 435 aa (1,227,120-1,227,130)	CJE1487 (95%)	+	CJJ81176_1312/1313 (92%)	+	C8J_1238 (93%)	+	9- 15/G/S

cj1296/1297							9/G/M
263 aa	none	-	none	-	none	_	0, 0,
(1,228,590-1,228.600)							
cj1305c							9/G/M
405 aa	none	_	CJJ81176_1321	+	none	_	
1241 nts			(90% nts)				
(1,234,921-1,234,931)							0.0/0/14
<i>cj1306c</i> 408 aa	CJE1495/1494						8-9/G/M
1194 nts	(99% nts)	+	none	-	none	-	
(1,236,160-1,236,170)	(99701113)						
cj1310c	_						8-9/G/M
404 aa	CJE1504	+	none	_	none	_	0 0/0/101
(1,239,673-1,240,887)	(80%)						
cj1318 maf1							11/G/S
649 aa	none	-	none	-	none	-	
(1,246,845-1,246,857)							
In front of cj1321	nono		nono		nono		10/G/NR
(1,250,805-1,250,816)	none	-	none	-	none	_	
cj1325							10/G/M
224 aa	none	-	none	-	none	-	
(1,253,417-1,254,092)							
cj1335, maf4	CJE1524						9/G/S
649 aa	(82%)	-	none	-	none	-	
(1,263,507-1,265,454)	(0=70)						0/0/14
cj1342c, maf7	CJE1531		CJJ81176_1341		C8J_1258		9/G/M
413 aa	(96%)	+	(75%)	-	(9 1 %)	+	
(1.274,694-1,275,935) cj1420c							9/G/M
257 aa	none	_	CJJ81176_1419	+	C8J_0641	+	9/G/W
(1,353,375-1,354,418)	Horic		(99%)		(98%)		
cj1421c							9/G/
612 aa	none	_	none	_	none	_	0,0,
(1,354,215-1,356,053)							
cj1422c							9/G/
625 aa	none	-	none	-	none	-	
(1,356,108-1,357,985)							
cj1426c							10/G/M
283 aa	none	-	none	-	none	-	
(1,360,321-1,361,172)							
cj1429c			CJJ81176_1428/1429				10/G/M
308 aa	none	-	(89%)	+	none	-	
(1,363,196-1,364,122)			(00,0)				0/0/84
cj1437c	none	_	none	_	none	-	9/G/M
(1,373,917-1,375,020)	N.o.		 	1224			
		ei Pna	se Variable Tracts in Cj1	1221	Homolog in	1	
Location	Homolog in NCTC11168		Homolog in strain 81- 176		Homolog in strain 81116		
In ferral of A	conserved				conserved		
In front of <i>rrsA</i>	region		conserved region		region		10/0/ND
900 nts	(38,285)	-	(38,191)	-	(36,600)	_	10/C/NR
(36,916-36,926)	(97%)		(94%)		(94%)		
CJE0775 (pseudo)	Cj0677 (kdpB)	_	Cjj81176_0700	_	C8j_0629	_	10/G/NR
2060 nts	(97% nts)		(97% nts)		(97% nts)		10,0,1410

(707855-709915)											
CJE0835 205 aa (767,754-768,371)	Cj0735 (96%)	-	Cjj81176_0758 (98%)	+	C8j_0703/0702 (98% nts)	+	9- 13/G/E				
CJE1105 184 aa (1,025,669-1,026,223)	none	-	none	-	none	-	10/G/M				
CJE1280 323 aa (1,198,131-1,199,102)	none	-	none	-	none	-	9/G/M				
CJE1281 295 aa (1,199,095-1,199,982)	none	-	none	-	none	-	9/G/M				
Intergenic 600 nts (1,307,026-1,307037)	conserved region (1,185,847)	ı	conserved region (1,187,505)	-	conserved region (1,206,775)	-	11/C/NR				
CJE1498 239 aa 719 nts (1,393,364-1,394,083)	none	ı	Cjj81176_1325 (74% nts, 120 nts missing at 5')	+	C8j_1241 (83%)	-	9/G/M				
CJE1500 (1,394,318-1,395,232	none	-	none	-	none	-	10/G/M				
CJE1502/CJE1503 (1,396,224-1,397,013)	none	-	none	-	none	-	11/G/M				
CJE1515 (1,406,353-1,406,724)	none	-	none	-	none	-	9/G/E				
Intergenic 525 nts (1,448,401-1,448,408)	none	-	none	-	in front of C8J_1278 (1,292,915) (99%)	+	8/C/NR				
CJE1602 (1,502,884-1,504,734)	none	-	none	-	none	-	9/G/E				
CJE1603 (1,504,703-1,506,655)	none	-	none	-	none	-	9/G/E				
		l Phas	e Variable Tracts in Cj8	1-176		ı					
Location	Homolog in NCTC11168		Homolog in strain 1221		Homolog in strain 81116						
CJJ81176_1160 (1,078,500-1,079,447)	none	-	none	-	none	-	10/G/M				
CJJ81176-1327 403 aa 1211 nts (1,241,740-1,240,529)	<i>Cj1305c</i> (80% nts)	+	none	-	C8J_1243 (85% aas) (86% nts)	+	9/G/M				
CJJ81176_1420/1421 (1,341,847-1,343,626)	none	-	none	-	none	-	10/G/S				
CJJ81176_1432 (1,353,939-1,352,230)	none	-	none	-	none	-	9/G/E				
CJJ81176_1435 (1,358,459-1,356,648)	none	-	none	-	none	-	9/G/S				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Nove	l Phas	se Variable Tracts in Cj8	1116							
Location Homolog in Homolog in strain Homolog in Strain 81-176											
in front of C8J_0464	in front of	-	in front of CJE1048	-	in front of	-	10/C/NR				

1000 nts (467,660-467,669)	Cj0967 (95%)		(84%)		CJJ81176_0528 (96%)		
in front of C8J_0909 (919,404-919,413)	duplication absent	-	duplication absent	-	duplication absent		10/C/NR
C8J_1078 (1,087,684-1,088,109)	none	-	none	-	none	ı	10/G/E
C8J_1080/1081 (1,088,528-1,089,809)	none	-	none	-	none	ı	9/G/M
C8J_1246 172 aas (1,255,231-1,255,749)	Cj1313 (77%)	-	CJE1508 (80%)	-	CJJ81176_1330 (80%)	-	10/G/E
C8J_1334 (1,348,646-1,349,179)	none	-	none	-	none	-	11/G/E
C8J_1350 276 aa (1,368,135-1,369,082)	Cj1443c (98%)	-	CJE1617 (97%)	-	CJJ81176_1437 (97%)	-	7/G/M

¹Genes/loci marked with an asterisk (*) are phase variable in all four genomes.

²Homologous gene = >75% amino acid identity over 90% or more of gene (if matching gene has a higher homology to another phase variable gene then this match is ignored; this occurs because some genes are duplicated in some genomes); a homologous pseudogene = >90% identical nucleotides; a homologous region = >90% identical nucleotides in sequences flanking repeat tract.

³Phase variation (PV) is present (+) or absent (-); an indication of PV was dependent on whether a tract of 7 or more Cs or Gs in tandem was located in the locus/gene.

⁴Position in gene. S, start, 5' end, first 200 nts; E, end, 3' end last 50 nts; M, middle, rest of gene.

⁵The tracts in *cj0045* of strain NCTC11168 mediate switching between addition of 0 amino acids (10G), 14 amino acids (11G), and 2 amino acids (DR, 12G). The 10G tract results in termination of translation immediately adjacent to the initiation codon of *cj0044* whilst the other lengths will result in overlap of the reading frames of these genes.

Statistical Analysis of PV Rates

Analyses were performed using a Mann-Whitney non-parametric rank sum test (InStat 1.0).

All 1139 constructs

G8-cat v G11 cat, P<0.0001

G8-cat v G9-cat, P = 0.0001

G8-cat v G10-cat, P = 0.75

G8-cat v G8-kan, P<0.0001

G8-cat v G7-kan, P = 0.0002

G9-cat v G10-cat, P = 0.0005

G9-cat v G7-kan, P = 0.0132

G8-kan v G11-cat, P<0.0001

1139-cat v 0031

1139-G8 v 0031-G9, P<0.0001

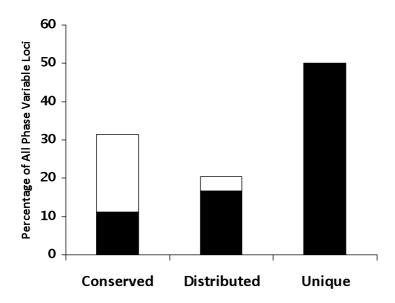
1139-G10 v 0031-G10, P<0.0001

0031-G9 v 0031-G10, P = 0.4303

1139-cat v capA

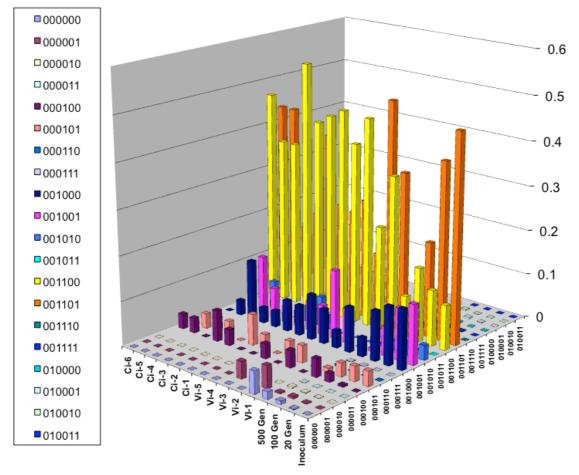
1139-G8 v CapA G11, P<0.0001

1139-G11 v CapA G11, P is 0.0005

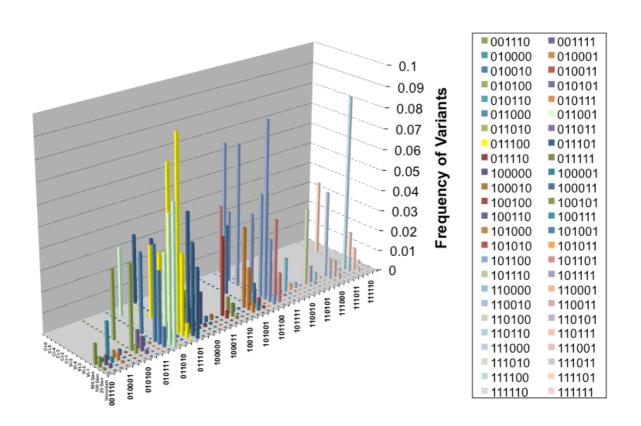

1139-G10 v CapA-G10, P = 0.6382

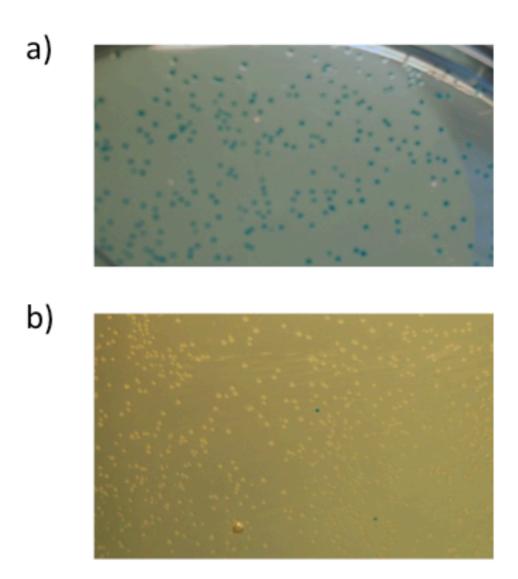
1139-G11 v Cap G12, P = 0.0025

CapA v capA


CapA G11 v Cap-G12, P = 0.0273

CapA G11 v Cap G10, P<0.0001


Supplementary Fig. 1. Distribution of phase variable loci in *Campylobacter jejuni* genomes. The conservation of phase variable loci (n = 55) containing polyC or polyG repeat tracts was compared for four published *C. jejuni* genome sequences (from strain NCTC11168, 81-176, 1221 and 81116). Conserved loci exhibited an amino acid identity of >75% or, where a gene was absent or disrupted (e.g. pseudogenes), a nucleotide sequence conservation of >90%. Conserved loci were present in all four genome sequences, distributed loci in 2-3 genomes and unique loci in a single genome. Black bars shows loci in which the repeat tract is conserved in all homologous regions.



Frequency of Variants

(B)

Supplementary Fig. 2. Modelling Changes in the Proportions of Genotypes for In Vitro Passage of *C. jejuni*. The proportions of genotypes for the inoculum were used as input to the theoretical model of phase variation. Genotypes were for the six genes with 0 representing an OFF phase variant and 1 an ON variant. The order of the genes and the ON-to-OFF and OFF-to-ON switching rates (x10⁻⁴) were as follows:- cj1326, 10.3, 17.9; cj0031, 10.3, 17.9; cj1139, 6.9, 2.1; cj0685, 2.1, 6.9; cj0045, 6.9, 2.1; capA, 38.8, 3.7. Panel A shows genotypes from 0-0-0-0-0 to 0-1-0-0-1-1 and panel B from 0-0-1-1-1-0 to 1-1-1-1-1. Note the differing scales on panels A and B. Inoculum, inoculum; 20 Gen, 100 Gen, and 500 Gen are output data from the model for runs of 20, 100 and 500 generations; Vi-1 to Vi-5 are output experimental data for variable size inoculums; Ci-1 to Ci-6, are output experimental data for a constant inoculum.

Supplementary Fig. 3. Demonstration of expression and phase variation of the *cj1139c-lacZ* reporter gene in *Campylobacter jejuni* strain NCTC11168. Panel a) shows ON-to-OFF switching of colonies from the reporter construct grown on Muller-Hinton agar plates containing X-gal. Panel b) shows OFF-to-ON switching of this construct.

Supplementary Table II. Phase variation of six genes in multiple single colonies derived from different starter colonies

					Start Color	nies			
Gene		<u>A1</u>			<u>A2</u>			<u>A3</u>	
	Start	Non- Variants	Variants	Start	Non- Variants	Variants	Start	Non- Variants	Variants
cj0031	G9	29	0	G10	28	0	G10	30	0
cj0045	G9	25	0	G9	27	1 (G10)	G9	30	0
cj0685	G8	25	0	G8	28	0	G8	30	0
cj1139	G8	29	0	G8	28	0	G8	30	0
cj1326	G9	25	0	G10	28	0	G10	29	1 (G9)
capA	G12	28	1 (G11)	G11	26	0	G11	29	1 (G10)

In Vitro Passage Experiment

The inoculum was prepared from strain NCTC11168 grown overnight on MHA plates. A suspension was prepared in MHB and the OD600 was 0.8. A sample of 100 ul was inoculated into 5 ml of MHB for 6 separate cultures (CI1-CI6; i.e. constant inoculum). A further 6 tubes (VI1-VI6; i.e. variable inoculum) were prepared with the first tube being inoculated with 100 ul of the suspension and the 5 subsequent tubes with 10-fold dilutions of this suspension in 100 ul of MHB. Serial dilutions of the inoculum were also plated onto MHA and the numbers of colonies were counted after four days growth. Analysis of these plates indicated that the inoculum contained 3.5 x 10⁹ cfu/ml. After overnight growth 300 (CI1-Ci6, VI1-VI3), 600 (VI4) or 1 (VI5) ml of the culture was transferred into 5 ml of MHB and again incubated overnight (Note that VI6 did not grow). A second passage was performed using an inoculum of 250 ul into 5 ml. After overnight growth, the bacterial cells were pelleted and resuspended in 1 ml of MHB prior to plating of serial dilutions on MHA plates. Colonies from the inoculum and output plates were subject to immunoblotting with anti-CapA antisera. The frequency of OFF variants in the inoculum was 0.29.

Supplementary Table III. Inoculum and output population sizes during in vitro growth of *C. jejuni* strain NCTC11168 in Mueller-Hinton broth

Sample	Inoc	P1 OD	P2 OD	P3 OD	P3 (Total	СарА
					cfu)	Fre OFF
						variants
Ci-1	3.5×10^8	0.77	0.97	1.01	1.1 x 10 ⁹	0.24
Ci-2	3.5×10^8	0.76	0.96	1.01	9.4 x 10 ⁸	0.28
Ci-3	3.5×10^8	0.75	0.94	0.97	4.4×10^8	0.28
Ci-4	3.5×10^8	0.75	1.03	1.02	6.9×10^8	0.29
Ci-5	3.5×10^8	0.76	0.99	1.01	9.2 x 10 ⁸	0.29
Ci-6	3.5×10^8	0.76	0.92	1.04	1.2 x 10 ⁹	0.36
Vi-1	3.5×10^8	0.77	0.98	0.97	8.2 x 10 ⁸	0.36
Vi-2	3.5×10^7	0.61	0.94	1.00	4.9 x 10 ⁸	0.27
Vi-3	3.5×10^6	0.47	0.90	0.98	5.6 x 10 ⁸	0.27
Vi-4	3.5×10^5	0.25	0.85	0.95	3.7×10^8	0.33
Vi-5	3.5×10^4	0.05	0.77	0.98	5.1 x 10 ⁸	0.27
Vi-6	3.5×10^3	0.02	NR	NR	NR	NR

In Vitro Passage – Tract lengths

Supplementary Table IV. Repeat Tract Lengths of Colonies Derived Following In Vitro Passage of *C. jejuni* strain NCTC11168

Sample		cj1	326		(j003	31	C	j113	9	C	j068	5	(j004	15	(cap/	1
	9	10	11	12	9	10	11	7	8	9	8	9	10	8	9	10	10	11	12
Inoc		30			2	28			29	1	10	19	1	1	29		8	22	
Vi-1	2	25	1		2	26		2	23	1	4	21	3		25	1	8	9	3
Vi-2		27	3		2	28			28	2	4	25	1		30		8	17	3
Vi-3	2	24	3		1	26	2		25	2	11	17			26	1	12	10	4
Vi-4	1	29			2	28			28	2	6	24		1	27	2	15	11	4
Vi-5	1	29			1	28	1		29	1	7	23		2	28		14	11	5
Ci-1	3	26	1		1	29			28	2	4	25	1	1	29		16	10	4
Ci-2	1	27		1	2	28			28	1	2	27			26	3	10	14	4
Ci-3	1	28				29			26	3	3	26			29		15	9	5
Ci-4	2	28			1	28	1		29	1	11	19		2	27	1	15	11	4
Ci-5		30				29	1		28	2	4	26			29	1	12	17	1
Ci-6	1	28	1		1	29			29	1		30			29	1	14	15	1

Note:- 'on' repeat numbers for cj1326, cj0031, cj1139, cj0685, cj0045 and capA are 9, 9, 8, 9, 8 and 11, respectively.

Supplementary Table V. Relative frequencies and confidence intervals for 'on/off' phenotypes

of populations derived by in vitro passage

		, pope	aidtioii	0 0011	vou by	111 710	. o pa	ooage										
Sample		cj132	6		cj0031	1		cj113	9		cj068	5		cj004	5		capA	l
Campic	on	off	CI ¹	on	off	CI ¹	on	off	CI ¹	on	off	CI ¹	on	off	CI ¹	on	off	CI ¹
Inoc	0	1	0	0.07	0.93	0.07	0.97	0.03	0.05	0.63	0.37	0.14	0.03	0.97	0.05	0.73	0.27	0.13
Vi-1	0.07	0.93	0.08	0.07	0.93	0.08	0.88	0.12	0.1	0.75	0.25	0.13	0	1	0	0.45	0.55	0.18
Vi-2	0	1	0	0.07	0.93	0.07	0.93	0.07	0.07	0.83	0.17	0.11	0	1	0	0.61	0.39	0.15
Vi-3	0.07	0.93	0.08	0.03	0.97	0.06	0.93	0.07	0.08	0.61	0.39	0.15	0	1	0	0.38	0.62	0.16
Vi-4	0.03	0.97	0.05	0.07	0.93	0.07	0.93	0.07	0.07	8.0	0.2	0.12	0.03	0.97	0.05	0.37	0.63	0.14
Vi-5	0.03	0.97	0.05	0.03	0.97	0.05	0.03	0.97	0.05	0.77	0.23	0.13	0.07	0.93	0.07	0.37	0.63	0.14
Ci-1	0.1	0.9	0.09	0.03	0.97	0.05	0.93	0.07	0.07	0.83	0.17	0.11	0.03	0.97	0.05	0.33	0.67	0.14
Ci-2	0.07	0.93	0.08	0.07	0.93	0.07	0.97	0.03	0.06	0.93	0.07	0.08	0	1	0	0.5	0.5	0.16
Ci-3	0.03	0.97	0.06	0	1	0	0.9	0.1	0.09	0.9	0.1	0.09	0	1	0	0.31	0.69	0.14
Ci-4	0.07	0.93	0.07	0.03	0.97	0.05	0.97	0.03	0.05	0.63	0.37	0.14	0.07	0.93	0.07	0.37	0.63	0.14
Ci-5	0	1	0	0	1	0	0.93	0.07	0.07	0.87	0.13	0.1	0	1	0	0.57	0.43	0.15
Ci-6	0.03	0.97	0.05	0.03	0.97	0.05	0.03	0.97	0.05	1	0	0	0	1	0	0.5	0.5	0.16

¹CI, 90% confidence intervals

Evaluation of the independence of selection of genes for the in vitro passaged populations. Proportions of each genotype were calculated from the individual proportions of on/off for each gene and compared to the observed proportions. In the majority of cases the observed proportions for the major genotypes (30 in total with an average of 2.5 per culture) were within the confidence intervals of the expected values indicating that independence of mutation/selection held for each case. The proportion of minor genotypes, observed due to 1 or 2 colonies (i.e. <0.07), were often higher and outside the confidence intervals for the expected values. There were a few exceptions:- Vi-3, 0-0-1-1-0-0, expected 31%, observed 46%; Vi-3, 0-0-1-0-0-0, expected 20%, observed 8%; Vi-1, 0-0-1-0-0-1, expected 9%, observed 0.

In vivo passage of *C. jejuni* strain NCTC11168 – Tract Lengths

Supplementary Table VI. GeneScan Analysis of Repeat Tract Lengths on DNA Extracts from Caecal Material of Chickens Colonised with *C. jejuni* strain NCTC11168H

	cj1	326	cj0	031	Cj1	139		685	cj0	045	са	pΑ
Sample	Major Peak	Minor Peak ¹ (ratio)										
Inoc	G10	G9 (2.3)	G10	G9 (2)	G8	G7 (1.4)	C8	C9 (4.3)	G9	G10 (2.2)	G11	G12 (2.7)
В6	G10	G9 (3.3)	G9	G10 (4)	G9	G8 (3.0)	C9	C8 (3.9)	G10	G9 (4.7)	G11	G12 (2.6)
В7	G10	G9 (3.2)	G9	G10 (6.2)	G9	G10 (6.9)	C9	C10 (5.3)	G10	G9 (5.2)	G11	G10 (2.5)
В8	G10	G9 (3.3)	G9	G10 (5.7)	G9	G10 (7.8)	C9	C8 (8.4)	G10	G11 (1.3)	G11	G10 (3.0)
В9	G10	G9 (3.1)	G9	G10 (3.9)	G9	G10 (6.9)	C9	C8 (8.4)	G10	G11 (1.1)	G11	No data
B10	G10	G9 (3.2)	G9	G10 (3.3)	G9	G8 (3.3)	C9	C8 (3.4)	G10	G11 (1.6)	G11	G10 (2.8)
B11	G10	G9 (3.3)	G9	G10 (5.9)	G9	G10 (5.1)	C9	C10 (4.0)	G10	G9 (5.0)	G11	G12 (1.4)

¹Multiple peaks are observed in GeneScan analyses of PCR products spanning repeat tracts. The size of the largest peak is defined as the major peak and represents the major repeat type present in the sample. The second largest peak was defined as the minor peak and this may represent and be proportional to a minor repeat type present in the sample but note that these peaks can also be generated as a result of replication slippage during the PCR. The number in brackets is the ratio between the major and minor peak.

Supplementary Table VII. GeneScan Analysis of Repeat Tract Lengths of Colonies Derived

Following In Vivo Passage of C. jejuni strain NCTC11168H

Sample		cj1	326		(j003	1		cj1	139		(:j068	5		cj0	045				capA	1	
Sample	9	10	11	12	9	10	11	7	8	9	10	8	9	10	9	10	11	12	9	10	11	12	13
Inoc	8	21	0	1	5	23	2	3	25	2	0	29	1	0	13	17	0	0	0	3	11	10	5
B6	1	27	0	0	21	9	0	0	7	22	0	4	24	0	0	25	3	0	0	6	12	10	0
B7	1	21	2	0	28	2	0	0	1	29	0	0	24	0	0	16	8	0	0	8	20	2	0
B8	1	24	1	0	25	1	0	0	0	26	0	1	25	1	1	11	15	0	0	3	19	3	0
B9	0	30	0	0	24	6	0	0	0	29	1	0	30	0	0	12	16	2	0	9	11	9	0
B10	0	25	2	0	18	1	0	0	0	0	0	0	25	1	2	19	5	0	0	1	12	2	0
B11	1	28	0	0	26	2	0	0	3	25	0	0	29	0	0	27	2	0	1	1	8	17	1

Note:- 'on' repeat numbers for cj1326, cj0031, cj1139, cj0685, cj0045 and capA are 9, 9, 8, 9, 11 and 11, respectively.

Supplementary Table VIII. Relative frequencies and confidence intervals for 'on/off' phenotypes of populations derived from in vivo passage of strain NCTC11168H

Samp cj13261 cj00311 ci11391 ci06851 cj00451 capA¹ le ${\rm Cl}^2$ Cl^2 Cl^2 off Cl^2 off off on off on off Cl^2 off on on on on 0.71 0.14 0.11 0.89 0.82 0.18 0.12 0.04 0.96 0.06 0 0.39 0.61 Inoc 0.29 B6 0.04 0.96 0.06 0.69 0.31 0.15 0.23 0.77 0.14 0.85 0.15 0.12 80.0 0.92 0.09 0.42 0.58 **B7** 0.04 0.07 0.92 0.08 0.09 0.04 0.96 0.07 0 0.33 0.67 0.16 0.71 0.29 0.960 1 0.07 1 0 0 **B8** 0.04 0.96 0 0 0 0.57 0.43 0.17 0.78 0.22 0 14 1 0 1 0.79 0.21 0 0 1 0 0.12 1 0 0.52 0.48 0.15 0.38 0.62 B9 0 1 0 0.15 B11 0.04 0.96 0.06 0.92 0.08 0.09 0.08 0.92 0.09 1 0 0 0.08 0.92 0.09 0.31 0.69 0.15

¹Phenotypes were derived assuming the 'on' repeat numbers for cj1326, cj0031, cj1139, cj0685, cj0045 and capA were 9, 9, 8, 9, 8 and 11, respectively. Phenotypes were only derived for colonies in which unambiguous data was generated for every gene of a colony. ²CI, 90% confidence intervals

Evaluation of the independence of selection of genes for the in vivo passaged populations Proportions of each genotype were calculated from the individual proportions of on/off for each gene and compared to the observed proportions. In the majority of cases the observed proportions for the major genotypes were within the confidence intervals of the expected values indicating that independence of mutation/selection held for each case. The proportions for minor genotypes, observed due to 1 or 2 colonies (i.e. a frequency of <0.07), were often higher and outside the confidence intervals of the expected values. Samples from bird 8 (B8) exhibited a number of significant variations from this general trend with two major genotypes over-represented and one under-represented (see Supplementary Table IX). This may be due to selection against a genotype in which cj0045 is expressed (i.e. contains 11 repeats) and capA is switched off or may be due to sampling error. Intriguingly a similar genotype in which both these genes are switched 'off' is over-represented in two samples further suggesting that when capA is switched 'off' then there is selection against a cj0045 'on' phenotype. However, a test for dependent selection (using a Chi-squared test) of these two genes in the B8 sample did not detect any statistically-significant divergence between observed and expected proportions of the combined genotypes of these two genes.

Supp. Table IX. Genotypes exhibiting a significant divergence from expected frequencies

assuming independent selection of genes.

Sample	Over-represented in	Under-represented in
	observed ¹	observed ¹
Inoculum	000001 (obs 0.11; exp 0.04	001001 (obs 0.07, exp 0.2 +/-
	+/-0.04)	0.09)
B6	010100 (obs 0.5; exp 0.23 +/-	000100 (obs 0.04, exp 0.1 +/-
	0.1)	0.06)
	001101 (obs 0.12, exp	
	0.02+/-0.02)	
B7	none	None
B8	010111 (obs 0.39, 0.16 +/-	010110 (obs 0.09, exp
	0.08)	0.25+/-0.11)
	010101 (obs 0.26, 0.15+/-	
	0.08)	
B9	010100 (obs 0.34, exp	
	0.24+/-0.1)	
B11	none	none

¹Only genotypes observed or expected to exceed a frequency of 0.1 were included in this table. Numbers in brackets are 90% confidence intervals.

In vivo passage of *C. jejuni* strain 81-176 – Tract Lengths and Genotypes

Supp Table X. Repeat Tract Lengths of Colonies Derived Following In Vivo Passage of *C. jejuni* strain NCTC11168H

Sample	8	31176	5-008	3 ¹		31170 0646	1		31176 0708	1		81176 1160 ¹) -	81	176-1	312 ¹		81176 1325	1
	9	10	11	12	9	10	11	8	9	10	8	9	10	8	9	10	8	9	10
Inoc-S	1	8	21	0	1	27	2	0	30	0	0	27	2	0	28	2	1	28	1
Inoc-L	0	10	20	0	4	25	1	0	29	1	0	29	1	1	26	3	0	29	0
B03	1	5	21	3	6	21	3	1	21	8	2	24	0	0	27	3	0	24	3
B06	0	3	22	4	3	26	0	0	30	0	1	23	4	0	29	1	0	28	2
B09	1	26	3	0	4	25	1	0	29	0	0	29	1	0	23	7	0	23	7
B014	0	28	2	0	3	27	0	0	30	0	0	29	1	0	27	3	0	29	1

¹The 'on' repeat numbers for *81176-0646*, *81176-0708*, *81176-1160*, *81176-1312* and *81176-1325* are 10, 9, 10, 9 and 9, respectively. Gene *81176-0083* is a pseudogene that is homologous to *cj0045* of strain NCTC11168. Genes *81176-0646*, *81176-0708* and *81176-1312* are homologs of the strain NCTC11168 genes *cj0617*, *cj0685* and *cj1295*, respectively.

Supp. Table XI. Relative frequencies and confidence intervals for 'on/off' phenotypes of

populations derived from in vivo passage of strain NCTC11168H

Sampl	81176-0083 ¹			81176-0646 ¹			81176-0708 ¹			81176-1160 ¹			81176-1312 ¹			81176-1325 ¹		
е	on	off	Cl ²	on	off	CI ²	on	off	CI ²	on	off	CI ²	on	off	Cl ²	on	off	CI ²
Inoc-S	0.69	0.31	0.14	0.90	0.10	0.09	1	0	0	0.07	0.93	0.08	0.93	0.07	0.08	0.93	0.07	0.08
Inoc-L	0.69	0.31	0.14	0.83	0.17	0.12	0.96	0.03	0.06	0.03	0.97	0.06	0.86	0.14	0.11	1	0	0
B03	0.81	0.19	0.13	0.69	0.31	0.15	0.73	0.27	0.14	0	1	0	0.88	0.12	0.12	0.88	0.12	0.10
B06	0.79	0.21	0.13	0.93	0.07	0.08	1	0	0	0.14	0.86	0.11	0.96	0.04	0.06	0.93	0.07	0.08
B09	0.10	0.90	0.09	0.83	0.17	0.12	1	0	0	0.03	0.97	0.06	0.79	0.21	0.12	0.76	0.24	0.13
B014	0.07	0.93	0.07	0.90	0.10	0.09	1	0	0	0.03	0.97	0.05	0.90	0.10	0.09	0.97	0.03	0.05

¹Phenotypes were derived assuming the 'on' repeat numbers for *81176-0083*, *81176-0708*, *81176-1160*, *81176-1312* and *81176-1325* are 11, 10, 9, 10, 9 and 9, respectively. Note, that 81176-0083 is a pseudogene and that a 11 repeats was arbitrarily chosen as an ON number of repeats to match data for strain NCTC11168. Phenotypes were only derived for colonies in which unambiguous data was generated for every gene of a colony. ²CI, 90% confidence intervals.

Test for independence of in vivo selected 81-176 genotypes

Expected proportions of each genotype were calculated from observed proportions of ON/OFF variants for each gene and compared to observed proportions of each genotype. Non-overlapping confidence intervals were detected for a number of the minor genotypes observed in a single colony but no differences for any of the major genotypes (i.e. with a frequency >0.01).