Supplementary Data

Replication regulation of *Vibrio cholerae* chromosome II involves initiator binding to the origin both as monomer and as dimer

Jyoti K. Jha, Gaëlle Demarre, Tatiana Venkova-Canova and Dhruba K. Chattoraj

 Table S1. Primers used in this study

Name	Sequence (5'-3')	Used to
		construct
JJ1	CGTCCATATGAGCTCAGAAGAAAAACGA	pJJ03
JJ2	ATCTGCGGCCGCTTACTGCTTGGAAACCAGCTC	pJJ02
JJ36	CATACCTTGGTATCTCAGCTCTACTCCTAT	pJJ58
JJ52	AATTCGTAAATCGTCGCGGAAGCATGTAAATTC	pJJ17
	ATTATCAATTTACGGTCGATGTCAGGCAGAGTG	
JJ53	AATTCACTCTGCCTGACATCGACCGTAAATTGA	pJJ17
	TAATGAATTTACATGCTTCCGCGACGATTTACG	
JJ54	AATTCTTGTGGATAAACTGTGTGAGCACCTTGA	pJJ16
	TCATCGTTCTGAATGGCTTAAAATAATCTCTTG	
JJ55	AATTCAAGAGATTATTTTAAGCCATTCAGAACG	pJJ16
	ATGATCAAGGTGCTCACACAGTTTATCCACAAG	
JJ60	GTATCTCGAGTTACTGCTTGGAAACCAGCTC	pJJ03
JJ64	TAGGAGTAGAGCTGAGATACCAAGGTATGTTGTT	pJJ58
JJ70	AGTAGGATCCTTAGGCTCCAGCGGCCATCTC	pJJ56
JJ115	ATGCGAATTCATGAGCTCAGAAGAAAAACG	pJJ56
GD1	TATGGAATTCGCGGCCGCGAGCTCGGATCCGTCGACAAGCTTCAAT TGGGTACCC	pGD14
GD2	TCGAGGGTACCCAATTGAAGCTTGTCGACGGATCCGAGCTCGCGGC CGCGAATTCCA	pGD14
GD4	ATAATATTGAAAAAGGAAGAGTATGAGGGAAGCGGTGATCG	pGD12

GD5	CGATCACCGCTTCCCTCATACTCTTCCTTTTTCAATATTAT	pGD12
GD6	AAAACTGCAGTTATTTGCCGACTACCTTGGTG	pGD12
GD7	GCCTTTCATGATATATCTCCC	pGD12
GD9	CGGTATCATTGCAGCACTGG	pGD12
GD10	CCGGAATTCAAGAAGGAGATATACATGAGCTCAGAAGAAAAACGA TT	pGD24
GD13	GAGGCACCTGTGGAAGGATCCGATGGCGAGATCCGCATC	pGD16
GD14	GATGCGGATCTCGCCATCGGATCCTTCCACAGGTGCCTC	pGD16
GD16	AAAACTGCAGCTGTCAGACCAAGTTTACTCAT	pGD12
GD17	TCTCGCGTCAATAGCTCTTC	pGD16 and pGD19
GD18	AGTGAGAATATGCCAGAAGGC	pGD16 and pGD19
GD23	CATACCTTGGTATCTCAGCTCTAC	pGD28 and pGD43
GD24	GTAGAGCTGAGATACCAAGGTATG	pGD28 and pGD43
GD27	CGGGGTACCTTACTGCTTGGAAACCAGCTC	pGD24
GD30	ATTAATACGACTCACTATAGG	pGD16 and pGD19
GD31	GCTAGTTATTGCTCAGCGG	pGD16 and pGD19
TVC1	GAACTATAGTGCTAGCACGGTAAGTGTGA	pJJ02
TVC141	AATTCCAAATTTTTCTTTATTATGATCTCTTTTTTCTTTATTCTCTTGG AACTATAGTGATATTACGGTAAGTGTGATACGGATCTAACCG	pAS1
TVC142	AATTCGGTTAGATCCGTATCACACTTACCGTAATATCACTATAGTTC CAAGAGAATAAAGAAAAAGAGATCATAAATAAAGAAAAATTTGG	
TVC143	GGCCGCTCGATCTTGTATTGATCATGGTTTCCATCGATACATGATCA TGCTTCTGAATGGCTTAAAATAATCTCTTTTAAC	pTVC148
TVC144	TCGAGTTAAAAGAGATTATTTTAAGCCATTCAGAAGCATGATCATG TATCGATGGAAACCATGATCAATACAAGATCGAGC	
TVC145	AATTCCAAATTTTTCTTTATTTATGATCTCTTTTTTTTTT	pTVC500
TVC146	AATTCGGTTAGATCCGTATCACATCGACCGTAAATTGATAATGAAT TTACATGCTTCCGAGAGAATAAAGAAAAAGAGATCATAAATAA	

	Number of transformants ^{<i>a</i>} with	
<i>E. coli</i> / pRctB (Sp ^R)	pACYC177	Low-copy porill
	(positive control, Ap ^R)	(pTVC22, Ap ^R)
WT / pGD16	~500	~140
Δ <i>dnaKJ</i> / pGD16	~500	0

Table S2. Transformation efficiency of *E. coli* WT and $\Delta dnaKJ$ cells by a low-copy *oriII* plasmid

^{*a*}Transformants were selected on plates containing Ap (100 μ g/ml) and Sp (40 μ g/ml).

~2000

32

 $\Delta dnaKJ$ / plasmid library^b

^bThe library also contained pGD16 except that its *rctB* gene was mutagenized randomly.

Mutant name	Amino acid substitutions	Initiator activity ^a with multiple amino acid substitutions	Initiator activity ^a with single amino acid substitution
$\mathrm{JK1}^b$	T149M F378L A567E	Yes	NT^{c} Yes NT
JK2	P190T V201L F233I	Yes	No No Yes
JK3	S122A E496V K502ochre	Yes	No No Yes
JK4	F378S R525I	Yes	Yes No
CD26 ^d	E335D F378Y L420I R651H K580N	No	NT Yes NT NT NT

Table S3. Description of RctB mutants isolated in this study

^{*a*}The initiator activity was checked by the ability to replicate pTVC22 in $\Delta dnaKJ$ cells.

^b JK1 and JK4 were found once each, and JK3 and JK4 were found four times each.

^cNT stands for not tested.

^{*d*}This mutant was isolated in a different screen, not detailed in this study, but is included here because one of the amino-acid substitutions affected the position F378.

Figure S1. Western blotting analysis of the $dnaJK^+$ (WT) and $\Delta dnaJK$ cells expressing RctB. The numbers below the blots show RctB amounts relative to that of *V. cholerae* cells (N16961). The average intensity of the cross reacting bands seen in lanes 1 and 3 was subtracted from the intensities of the bands seen in lanes 2 and 4 while calculating relative amounts of RctB.

For Western blotting, *E. coli* and *V. cholerae* cells of total OD = 1 or 2, were harvested at late log phase (OD 0.4-0.5) by centrifugation for 5 min at 13,000 rpm (Biofuge fresco) at room temperature and the pellet was frozen. Upon thawing, the pellet was dissolved in 100 µl 1x SDS Red Loading Sample Buffer with 1x DTT (NEB), vortexed, boiled for 7 min, vortexed again and spun for 5 min 13,000 rpm at room temperature. An aliquot of the supernatant was loaded on 7.5% Tris-HCl Pre-cast Criterion gel (Bio-Rad). The gel was run in 1x Tris-HCl SDS buffer (Bio-Rad) at constant 200V for ~45-50 min (5 min after the front dye ran out of the gel). The proteins were transferred onto a membrane using iBlot Fast Transfer apparatus, following the manufacturer's protocol (Invitrogen). The membrane was blocked for 1 hour in 5% blocking reagent (GE Healthcare) in PBS-T [1x PBS (KD Medical, Columbia, MD) + 0.1% Tween 20 (Affymetrix, Santa Clara, CA)], and was incubated for 1 hour with purified RctB antibody (1:3500 dilution in 5% blocking reagent in PBS-T). The membrane was washed with PBS-T three times, 20 min each, and incubated for 1 hour in 5% blocking reagent in PBS-T containing 1:5000 diluted anti-rabbit horseradish peroxidase-conjugated secondary antibody from donkey (GE Healthcare). The membrane was finally washed three times, 20 min each, with PBS-T and kept in fresh PBS-T before staining and imaging. Four ml of each detection solution of SuperSignal* West Pico Chemiluminescent ECL Substrate (ThermoScientific, Waltham, MA) was mixed and incubated with the membrane for 1 min. The images were visualized using Fuji LAS-3000 imaging system.

44. Khlebnikov, A., Datsenko, K.A., Skaug, T., Wanner, B.L. and Keasling, J.D. (2001) Homogeneous expression of the P_{BAD} promoter in *Escherichia coli* by constitutive expression of the low-affinity high-capacity AraE transporter. *Microbiology*, **147**, 3241-3247.

Figure S2B. Western blotting to confirm RctB induction from P_{BAD} . The samples are same as in Figure S2A and in Figure 2, and the details of Western blotting are same as in Figure S1. The RctB concentrations shown are normalized with respect to OD of cells and to the intensity of the *V. cholerae* band.

Figure S3. Molecular weight determination of WT and mutant RctB proteins by size exclusion chromatography. The chromatography was performed using Superdex 200 10/300 GL column (GE Healthcare) equilibrated with the RctB buffer {25 mM Tris-HCl (pH 8.0), 300 mM NaCl, 5% glycerol (v/v) and 1 mM EDTA}, and connected to ACTA FPLC (GE Healthcare). The column void volume was determined with Blue Dextran 2000. The column was calibrated with Biorad gel filtration standard #151-1901 and Blue Dexran. The molecular weight of RctB proteins (Table) was calculated from the plot of the gel-phase distribution coefficient (Kav) vs. log Mw of protein

standards. Kav=(Ve-Vo)/(Vc-Vo), where Ve = elution volume, Vo = column void volume, and Vc = geometric column volume. Kav values are shown by arrows and the corresponding molecular mass in kDa in the Table.

Figure S5. EMSA of RctB binding to a 12- or a 39-mer fragment in the presence or in the absence of chaperones. EMSA was performed with end-labeled (32 P) DNA fragments carrying a single copy of either a 12-mer or a 39-mer, same as in Figure 3. The upper panels represent binding in the absence of chaperones DnaJ and DnaK (– JK) and the bottom panels in the presence of chaperones (+JK). RctB concentrations ranged from 1.3-13 nM in +JK conditions and 6.7-67nM in – JK conditions. The binding was analyzed using a 5% polyacrlyamide gel. Binding profiles were obtained by fitting the data using the equation shown the legend to Figure 3.