

Fig. S1: Amplification of endophyte DNA from seed of Greek tall fescue lines. Total DNA extracted from 3 seeds of each tall fescue line was amplified using endophyte-specific primers designed to A) *tefA* and B) *perA*-A2. Amplicon detection indicates the presence of fungal biomass within the seeds. Tall fescue lines are provided in numerical order. The letters above indicate the collection locations marked in Fig. 1. The asterisk (*) denotes accession 45081, which had a low incidence of endophyte infection. Tall fescue lines with no seed available are represented by an X. + = positive control, - = negative control.

Fig. S2: Colony and conidia morphology of Greek isolates representative of the five unique morphotypes/genotypes G1-G5. Colony morphology was photographed after 21 days of growth at 22°C. Isolate designations are listed in the figure. Bar = 50 mm and 50 μ m for colony and conidial photographs, respectively.

Fig. S3: Phylogeny derived from maximum likelihood (ML) analysis of introns 1-4 of *tefA* from representative haploid *Epichloë* species, hybrid *Neotyphodium* species, and copies obtained from the Greek tall fescue endophytes. Midpoint root is at the left edge. Numbers at branches are the branch support values; branches with less than 50% support were collapsed. Letters in parentheses after the *Epichloë* and *Neotyphodium* isolates refer to host designations as follows: Ao (*Anthoxanthum odoratum*); As (*Agrostis stolonifera*); At (*Agrostis tenuis*); Bp (*Brachypodium pinnatum*); Cv (*Calamagrostis villosa*); Fl (*Festuca longifolia*); Frc (*Festuca rubra* subsp. *commutata*); Frr (*Festuca rubra* subsp. *rubra*); La (*Lolium arundinaceum* = *Schedonorus phoenix*); Lp (*Lolium perenne* subsp *perenne*); Lsp (*Lolium* sp.); Php (*Phleum pratense*); Pn (*Poa nemoralis*); Pp (*Poa pratensis*); Ps (*Poa silvicola*). Multiple alleles from N.

coenophialum and FaTG-2 isolates are designated by Genbank accession number, and G1, G4, and G5 copies are designated by (copy 1), (copy 2), or (copy 3); alleles from G2 and G3 isolates are designated by (copy 1) or (copy 2). The *tefA* allele of the G5 isolates containing a deletion is designated with an asterisk. *Et*C, *Epichloë typhina* complex; *Efe*, *E. festucae*; LAE, *Lolium*-associated endophyte clade.

Figure S4: Phylogeny derived from maximum likelihood (ML) analysis of sequence fragments of (A) *dmaW*, (B) *ltmP*, and (C) *lolC* from *E. festucae* and *Neotyphodium* sp. Accession numbers for previously published *dmaW* gene sequences are listed to the right of isolates in the figure. Midpoint root is at the left edge. Numbers at branches are the branch support values; branches with less than 50% support were collapsed. *EtC*, *Epichloë typhina* complex; *Efe*, *E. festucae*; LAE, *Lolium*-associated endophyte clade.

Figure S5: Alkaloid biosynthesis gene clusters and primer locations for the alkaloid genes referenced within this study. A and B: Indole-diterpene (*IDT/LTM*) locus from *N. lolii*, DQ443465 and AY742903, respectively. C: Loline locus *LOL*1 of *N. uncinatum*, AY723749. D, E, and F: Ergot alkaloid (*EAS*) loci from *N. lolii* (D, EF125025), *N. coenophialum* (E, AY259839), and *N.* sp. LpTG-2 (F, AF368420). G: Peramine (*PER*) locus from *E. festucae* (AB205145).

Table S1: Primers used in this study

Gene	Forward	Primer sequence $(5' \rightarrow 3')$	Reverse	Primer sequence $(5' \rightarrow 3')$
<i>tefA</i> ^a	Tef1-exon1d-1	GGGTAAGGACGAAAAGACTCA	Tef1-exonбu-1	CGGCAGCGATAATCAGGATAG
$tubB^{b}$	T1.1	GAGAAAATGCGTGAGATTGT	T1.2	CTGGTCAACCAGCTCAGCAC
<i>matA</i> ^c	mtAC-F2	GAGAACTGAGGAAAGACCACTCAG	mtAC-R	CGGTCTCATTCTTCCAGAGAGAGG
$matB^{c}$	mtBA-F	TCTACCGCAAGGAACGACACAATACCG	mtBA-R	GCTTTTCCAGCAAGGCTTGCTTGACTC
$ltmG^{d}$	ltmG-156	GCACAAACAATAAATTCGGCCAA	ltmG-157	AATTTGCCCTCTGTTAAATCCTC
<i>ltmG</i>	idtG-F	GAGCTTGAGAAGCTTACGAATCC	idtG-R	GGGCAATGGAGCGATTCTCTC
$ltmM^{d}$	ltmM-158	GTGATCGGTGCTGACGGGGTCCA	ltmM-159	TATCGCCATATTTGCTCCTTGCCC
$ltmK^{d}$	ltmK-160	ATATTGAATTGCTGCGTGAGGAG	ltmK-161	AGAGGCCAAGAAGCGGCCTGGACA
$ltmB^{d}$	ltmB-345	AACATCGCCTGGGAGCTCGTATA	ltmB-346	CGCAGGTCCTATTTCCATCGC
$ltmC^{d}$	ltmC-278	GAAACTGCCAATCGAGCATA	ltmC-279	TTCTTGCAATCATTTTGCAATTG
$ltmF^{d}$	ltmF-359	GAATTATGTTACTCTTGGGG	ltmF-360	AAGTTGGCACATAGGTCTTC
$ltmQ^{d}$	ltmQ-313	CTACCAGGACAGGCGTGACGTCC	ltmQ-282	CAGAGGTTTAACCCTCTTGACGC
$ltmP^{d}$	ltmP-280	ATGGCTGTCATTCATACAACAGCTATG	ltmP-281	AGCGTCCCGGACAGGCATATCTCCCA
<i>ltmP</i>	ltmP-F1	ACATGGATCTGATTGTCATTCC	ltmP-R1	TACGATGCGCAAGTGCTTCTGG
<i>ltmJ</i> ^d	ltmJ-205	CCAAGCATCGATTTGTCACC	ltmJ-206	AATCTGATCGCCATCTTTGC
$ltmE^{d}$	ltmE-356	CCGAGTTTGATGACCTGCTG	ltmE-341	TTCCGCTTCCGAGTAGACTC
$lolC^{e}$	lolC-3a	GGTCTAGTATTACGTTGCCAGGG	lolC-5b	TCTAAACTTGACGCAGTTCGGC
lolA	lolA-F1	GAGACACTAGAGAAATGGCAGCTGC	lolA-R1	GGCATCCATGGTGGCGAAGATGTG
lolF	lolF-F	CTCTGATATGAAGACTCCTGAGC	lolF-R	GCCAAGCGGAGTTCAGATCATCC
lolD	lolD-F	CTCGACGTTTCAACAGATTGCAG	lolD-R	GTCTTTGAAGACAAGCCAGTCC
lolU	lolU-F	CGATGGTTGGATCAGTCGTTGC	lolU-R	GAGCTGATGCGGCATTGGCATC
lolT	lolT-F	CACTGACCTCCAAGTATACTTGC	lolT-R	CGTCATCCCGACCTCTTTCGGAT

lolE	lolE-F1	ACCAAGCCAACGGATATCTTCGC	lolE-R1	ACGTCTTTGGTCCGTCTTGTTAG
lolP	lolP-F1	GTTCTAAACATCGTGACTGGGC	lolP-R1	GGTAGGTCAGCATCTTGTCAACG
lolO	lolO-F1	GTGAACTGGCAGTAGTCCGTATG	lolO-R2	AATCCATGCCAGTGTCGGGAATG
perA	perA A2-F	CGTCGTGGTAACGCACGCAAACG	perA A2-R	CAGTCTGCCTTGCCGACCGGGGT
perA	perA T2-F	TCTTCAGGCATCGCAGGAAC	perA T2-R	TCGGCCACCTCCAGCCTGATG
perA	perA red-F2	GAGATCAGTTCGCAGTTGTCAG	perA red-R	CTAGCCTCCAGATCTTGTGAAAG
dmaW	dmaW-F4	GTGTACTTTACTGTGTTCGGCATG	dmaW-6R	GTGGAGATACACACTTAAATATGGC
cloA	cloA-F	GGATGAACTTGTCAGGTGACGAG	cloA-R	GTGATCAGGGATACCTTTGATTAC
easH	easH-F	AGATATGGCATCGTGACCAGCC	easH-R	GGCATGTAGCATCAAATGGTGTC
lpsA	lps1-F5'	ATGTCCGTGGATGGTGAGCAAAC	lps1-R5'	ATGCAATGGGTGCCTGTCCGTTC
lpsA	lps1-midF	CGCTGCTCTCTGTCATGCAGAAG	lps1-midR	GTTCCTCATCCAACATCTCGATC
lpsA	lps1-F3'	CGATCACCCAACTTTACATGATAC	lps1-R3'	ACAAGTCATGGTCCGGATGTGTTG
$lpsB^{f, g}$	p12-R	TACCCACTGCCTCGAACTTG	p12-F	CCGTCTTCCCGTATACCGAA
\mathbf{SSR}^{h}	B10.1	CGCTCAGGGCTACATACACCATGG	B10.2	CTCATCGAGTAACGCAGGCGACG
$\mathbf{SSR}^{\mathrm{h}}$	B11.1	CATGGATGGACAAGAGATTGCACG	B11.2	TTCACTGCTACAATTCTGTCCAGC
$\mathbf{SSR}^{\mathrm{i}}$	A1AG12-F	CCCCGACAATCTAGCATACCTTCG	A1AG12-R	CGGTGATGATGACAAGCCTTGGAC

^aCraven KD, Hsiau PTW, Leuchtmann A, Hollin W, Schardl CL. 2001. Multigene phylogeny of *Epichloë* species, fungal symbionts of grasses. Ann. Mo. Bot. Gard. **88:**14-34.

^bYoung CA, Bryant MK, Christensen MJ, Tapper BA, Bryan GT, Scott B. 2005. Molecular cloning and genetic analysis of a symbiosis-expressed gene cluster for lolitrem biosynthesis from a mutualistic endophyte of perennial ryegrass. Mol. Gen. Genomics **274**:13–29.

^cPrimers designed from the following accession numbers HQ680587 (*mtAC*) and HQ680590 (*mtBA*)

^dYoung, CA, Tapper BA, May K, Moon CD, Schardl CL, Scott B. 2009. Indole-diterpene biosynthetic capability of *Epichloë* endophytes as predicted by *ltm* gene analysis. Appl. Environ. Microbiol. **75**:2200–2211.

^eSpiering MJ, Wilkinson HH, Blankenship JD, Schardl CL. 2002. Expressed sequence tags and genes associated with loline alkaloid expression by the fungal endophyte *Neotyphodium uncinatum*. Fungal Genet. Biol. **36**:242–254.

^fTanaka A, Tapper BA, Popay A, Parker EJ, Scott B. 2005. A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol. Microbiol. **57:**1036–1050.

^gJohnson R, Voisey C, Johnson L, Pratt J, Fleetwood D, Khan A, Bryan G. 2007. Distribution of NRPS gene families within the *Neotyphodium/Epichloë* complex. Fungal Genet Biol 44:1180–1190.

^hMoon CD, Tapper BA, Scott B. 1999. Identification of *Epichloë* endophytes in planta by a microsatellite-based PCR fingerprinting assay with automated analysis. Appl. Environ. Microbiol. **65**:1268-1279.

ⁱvan Zijll de Jong E, Guthridge KM, Spangenberg GC, Forster JW. 2003. Development and characterization of EST-derived simple sequence repeat (SSR) markers for pasture grass endophytes. Genome. **46:**277-290.

Table S2: Genbank accessions of tefA and tubB sequences from Epichloë and Neotyphodium species used

for phylogenetic analyses in this study

		GenBank Accession			
		nur	number		
Endophyte	Isolate	tubB	tefA		
Neotyphodium coenophialum	Greek-type 1 (G1)	JX028244	JX028257		
		JX028245	JX028258		
		JX028246	JX028259		
N. coenophialum	(G4)	JX028247	JX028260		
-		JX028248	JX028261		
		JX028249	JX028262		
N. coenophialum	(G5)	JX028250	JX028263		
		JX028251	JX028264		
		JX028252	JX028265		
FaTG-2 (<i>Neotyphodium</i> sp.)	(G2)	JX028253	JX028266		
		JX028254	JX028267		
FaTG-2 (<i>Neotyphodium</i> sp.)	(G3)	JX028255	JX028268		
		JX028256	JX028269		
Epichloë amarillans	E273	AF457466	AF457505		
E. baconii	ATCC 76552	L06961	AF231193		
E. baconii	ATCC 90167	L78279	AF231194		
E. baconii	ATCC 200745	L78270	AF231196		
E. festucae	ATCC 90660	AF250746	AF231214		
E. festucae	ATCC 90661	L06955	AF231210		
E. festucae	E28	L06956	AF231213		
E. festucae	E434	L78286	AF231212		
E. typhina	ATCC 200738	L78288	AF231222		
E. typhina	ATCC 200739	L78292	AF231223		
E. typhina	ATCC 200740	L78274	AF231225		
E. typhina	ATCC 200736	X52616	AF231220		
E. typhina	ATCC 200851	L78280	AF231226		
E. typhina	ATCC 201667	AF062429	AF231229		
E. typhina	ATCC 201669	L78284	AF231231		
E. typhina	ATCC 201666	L78285	AF231228		
		L06964	AF457511		
N. coenophialum	ATCC 90664	L06951	AF457512		
-		X56847			
FaTG-2 (<i>Neotyphodium</i> sp.)	4078=Tf14	L06963	AF457531		
· · · · · · · · · · · · · · · · · · ·		L06952	AF457532		