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$1. Coordinate Transformations of Smoluchowski functions.
When transforming to a new system, the basis vectors g; of the transformed
coordinate system can be written as a linear combination of the original Cartesian

standard basis f(j,

g=2 =%, (S1)

(covariant basis vectors). The new basis vectors are in general local and dependent
on the coordinates, as they would be for example in a transformation to polar
coordinates.

Probability distributions (both equilibrium and time dependent) are scaled

by the determinant of the Jacobian of the coordinate transformation?,

J.@PGED e, =G pE0 o) (S2)

p@E.n=
where J_, =0dx;/dz; and J,, =dz,/0x ;. This Jacobian factor is included in the
probability distribution to retain the functional form of the Smoluchowski equation.
For example, in polar coordinates the integral over the probability would be written

as J drd@p(r,0), consistent with the form of the Cartesian integral. The ‘missing’

familiar volume element r is absorbed into p(r,08). Importantly, this additional
Jacobian factor implies that although the potential transforms as a scalar, from the

definition of the equilibrium probability, we see that:

Py @) =Z"exp(-BV(D))I.(@)|=Z "exp(-BV (@) - B J.@)) _, .- (S3)
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Hence, when one solves the Smoluchowski equation in the z coordinate space, the
effective potential sampled is modified compared to the potential sampled in the

original x coordinate space by,

Vi@ =(V(®)-p"In
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The transformed diffusion tensor is given by?!2 Dl,f(z) = 21 a—’a—’Dlm(x)H(z)
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, Or in matrix notation:
D'()=J,®HD@®I, @, . (S5

The derivatives of a scalar function f are related through the chain rule,

E)i = aiai, and can be written compactly as
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Again, the notation of the derivative will retain the same form in all coordinate
systems, hence the avoidance of using the coordinate system-specific grad operator.
Also, to calculate the change in the free energy F along some coarse variable of
interest, the derivative is taken as in eq S6. For instance, to follow the gradient in the

space of @, ¥ dihedral angles of a peptide backbone, positions are changed

according to the vector (0F/0®, oF /).

S$2. Committor Along a Path
For isotopic diffusion tensors, the equation for the committor (eq 4)

simplifies to
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In isotropic systems both the potential and diffusion are scalar functions of the
coordinates, and hence one can define the drift vector in terms of an effective

potential, W (x)=V(x)— B "'In(D(x)). The drift vector can now be written with

components drift; = —ﬂD(x)ao_}xl. We parameterize a path x(s)by its arc length

1

varying from 0 to s¢. The unit tangent to a path pointing towards srhas components
dx;/ds.
To derive the equation for q along a path, we start by noting the general

relation for the change in g along a path parameterized by its arc length s:

dq dq dx,
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Along the path tangent to dq/ dx one therefore has ||dq/ dx ||=dq/ds (where ||...]|

denotes the Euclidian vector norm), because the tangent vector satisfies

% = g—q”&q/&)?”l and q is increasing along the path to s¢. The first sum in eq S7 is a
s o,

dot product between the vectors dg/dx and drift. This dot product is therefore
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:—[)’D(x)ﬂHal cos(@(s)), where ¢(s) is the angle
ds|| dx

between the drift vector and the tangent to the path. However, using eq S8 for W

instead of g, we see that cos(¢(s)) = e since the tangent vectors have unit
S
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length. Therefore, the first sum in eq S7 simplifies to 2‘4%drifti :—ﬁD(x)d— 7
iox, s ds



For the second sum in eq S7 we first define the second derivative with

respect to s:

d’ q dx, dx; dq d’x,
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Since dq/ dx is tangential to the path, the second sum is a dot product between the
tangent and the normal of the path (components d’x,/ds”) and because these two
vectors are always perpendicular, the sum is zero. The results up to this point are
exact. To simplify the first sum in eq S9, we assume that the isocommittor surface
around the path remains perpendicular for finite width, so that as one moves a small
distance along the isocommittor surface, the gradient of g has the same magnitude

as it does along the path. Then taking a discrete limit of the gradients of g around

2
the path demonstrates that this sum is equivalent to 2% if the path is straight.

Comparing with eq S7, we see that, under the above assumptions, we have

2
- dd—W% + % =0 along the path. Integration with ¢(0) =0 gives the resultin eq
s ds ds

12 of the main text.

Without the above assumption, we can write,

d’q dq dx, dx; d’q d’q
a4 dq 510
ds’ Zl dx} ZU ds ds dxdx, zld (510)

The term in brackets captures changes in the curvature of g along the path due to
the non-zero curvature of the path itself. With the condition that the isocommittor
surfaces remain perpendicular for some epsilon around the path, this term in

brackets is zero for straight paths. Hence eq 12 of the main text is exact for straight



paths. If we assume this deviation term in brackets is a function of the path rather
than the committor function, and define it along the path as g(s), then comparing

with eq S7 we get — C;—W%+ Z— g(s). The solution to this equation is given by
s ds ds

J. ds'exp(+BW (s' ))[l+ J ds”exp(—ﬁW(s"))g(s")]
j ds'exp(+BW (s’ ))[1+ J ds"exp( ,BW(S"))g(S")]

(S11)

For straight paths g(s)=0 and the equation simplifies to eq 12 of the main text.

$3. Equation for the MRP with arbitrary diffusion.

Berkowitz et al.3 solved for the MRP solution by using the Euler-Lagrange
formalism to maximize the flux over all possible paths of different arc lengths s
They specifically solved the resulting equation for cases with isotropic diffusion. To
extend their formalism to general diffusion tensors, we reproduce here their Euler-

Lagrange equations

d| d . _o\1/2 0 . _a\1/2
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where k is the dimension component out of N dimensions, the friction tensor f is
related to D through fD=kgT, the dot indicates differentiation with respect to ¢,

which varies from 0 to 1 along the path. The actual path length of the optimal path is

2
the arc length s related to ¢ through ds = (ZN%

/2
. . An important constraint
dt Lodt

when solving for the MRP is that at each point along the string, the arc length has
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been properly chosen such that ZN(ﬂj =1. This means that z

ds
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The second derivatives are defined by % = ds vy, dx,
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Expanding eq S12 and using the additional relations, one obtains the equations
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If the diffusion is diagonal but anisotropic, the equation simplifies to
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For isotropic diffusion, this again simplifies to eq 7 of the main text. It is important
that the path be found as a function of s rather than t, because the equations for the
components in t are not all linearly independent.
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