Supporting Information

Jia et al. 10.1073/pnas.1204623109

Fig. S1. UV-Vis. transmission spectra of BiVO₄ thin film electrodes prepared by calcination at 673 K for 2 h. Concentration of precursor solution, (A) 20 mmol L⁻¹, (B) 50 mmol L⁻¹, (C) 50 mmol L⁻¹, (D) 200 mmol L⁻¹, and (E) 300 mmol L⁻¹.

Fig. S2. Thermogravimetric-differential thermal analysis for precursor of BiVO4 thin film. Rate of temperature rising, 10 K min⁻¹.

Fig. S3. Main formation process of BiVO₄ thin film from a precursor solution.

Fig. 54. Current vs. potential curves of (*A*) BiVO₄ and (*B*) CoO-modified BiVO₄ thin film electrodes under visible light irradiation. Calcination condition, 673 K for 2 h. Electrolyte, 0.1 mol L⁻¹ of an aqueous K₂SO₄ solution (phosphate buffer, pH = 6.9); sweep rate, 20 mV s⁻¹; light source, 300 W Xe-lamp with a cut-off filter ($\lambda > 420$ nm).

Fig. S5. X-ray photoelectron spectra of Co2p and P2p. (A) Before and (B) after photoelectrochemical water splitting.