SUPPLEMENTARY INFORMATION

Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication

Guido Pagani¹, Micah J. Green², Philippe Poulin³, Matteo Pasquali^{1,*}

¹Department of Chemical and Biomolecular Engineering, Department of Chemistry, The Smalley Institute for Nanoscale Science & Technology, Rice University, 6100 Main, Houston, TX 77005
²Department of Chemical Engineering, Texas Tech University, 6th and Canton, MS3121, Lubbock, TX 79409

³Universite de Bordeaux, CNRS, Centre de Recherche Paul Pascal, Avenue Schweitzer, 33600 Pessac,

France

*corresponding author, email: mp@rice.edu

List of Variables

k	scission rate
k_B	Boltzmann constant
Т	Temperature
L	CNT length
L_0	length of initial (monodisperse) CNT population
n	number of CNTs with a given length L
n_0	initial (monodisperse) number of CNTs with given length L_0
а	constant in dependence on scission rate k on length L
m	slope of $log(L)$ vs. $log(t)$, $m = (-1/q)$
v	velocity of fluid
r	position in space relative to bubble center
V	velocity of bubble wall
v_n	normal velocity of differential element of a CNT
R	radius of bubble wall
R_i	initial position of bubble wall
<i>R_{max}</i>	maximum position of bubble wall
R _{crit}	critical position of bubble wall where adiabatic phase of cycle begins

F	force
F _{tens}	tensile force on a CNT
F_c	critical force for breaking a CNT
F_{j}	force on a BD bead j
E	elastic modulus of CNT
Ν	number of beads in Brownian Dynamics simulation
I_M	moment of inertia of a CNT
$y(\xi_c)$	percentage of CNTs that experience a minimum radius of curvature under ξ_c
D	diameter of CNT
D_t	translational diffusivity of a CNT of length L
D _{rot}	rotational diffusivity of a CNT
w	width of CNT wall
S	distance along the length of a CNT
q	exponent for $k \sim L^q$
P_A	acoustic pressure
P_{A0}	amplitude of acoustic pressure
P_{bulk}	pressure in the bulk fluid
P_{bubble}	pressure inside the bubble
P_{v}	vapor pressure of the liquid
P_{gas}	partial pressure of the gas inside the bubble
$P_{gas,0}$	partial pressure of the gas inside the bubble at time $t=0$
t	time
<i>t</i> *	time / bubble lifetime
L	CNT length
L_p	CNT persistence length
d	distance from CNT center of mass to bubble center
d_{max}	maximum d experienced by a CNT
d_i	initial d
$d_{i,c}$	critical d_i (associated with critical maximum strain rate)
σ	stress in a CNT
σ_{break}	tensile strength of CNT
Ė	strain rate in fluid
έ _c	critical strain rate necessary to stretch or buckle a CNT
έ _{max}	maximum strain rate experienced by CNT center of mass during cycle
α	parameter describing relationship between onset of buckling and onset of compressive breaking
β	slope for $log(maximum strain rate)$ vs. $log(d_i)$
γ	surface tension

ρ	density of the liquid
ξ_c	minimum radius of curvature experienced by a CNT
ξ _{c,avg}	minimum radius of curvature experienced by a CNT, averaged over all trials
ξ _{c,crit}	critical breaking value of the minimum radius of curvature experienced by a CNT
К	adiabatic index
μ	fluid viscosity
ω	sonication frequency

Supplementary Movie

Mov. S1:

Movie showing an example CNT simulation for $P_{A0} = 1500$ kPa, $d_i = 60 \mu m$, L = 3000 nm, $L_p = 50 \mu m$, N = 121. The right graph shows the single-cycle bubble diameter as a function of dimensionless time. On the left, the CNT orientation is shown (the bubble center lies in the -x direction). The CNT begins the collapse in a tangential orientation and remains in that orientation until it buckles. The small radius of curvature in at the end of the bubble collaps suggests that the CNT breaks.

Supplementary Figures

Fig. S1:

Numerical algorithm used to compute the dynamics of CNTs near a cavitating bubble during sonication. The dynamics of the bubble are computed first, and the corresponding flow field drives the Brownian Dynamics simulation of many CNTs for a given parameter set (L, L_p , d_i , N). Full simulation details are given in Refs. [1, 2].

Fig. S2:

The maximum distance of the CNT from the bubble center (at the end of the bubble expansion) plotted against the CNT initial distance from the bubble center. If the initial distance is too small, the CNT is entrained by the advancing bubble wall (Region 1). The initial orientation and random forces are immaterial during bubble growth. Here, $P_{A0} = 4500$ kPa, $L = 1.5 \mu$ m, $L_p = 20 \mu$ m, and N = 33. Similar results are seen for other bubble parameter sets.

Fig. S3:

A simulation is shown for $P_{A0} = 4500$ kPa, $d_i = 60 \mu m$, $L = 3 \mu m$, $L_p = 50 \mu m$, N = 121. The upper left graph shows the double-cycle bubble diameter as a function of dimensionless time. Simulation snapshots are shown for the three times marked on the graph. In each snapshot, the bubble center lies in the -*x* direction. The CNT begins in a tangential orientation and remains in that orientation until it undergoes disruptive buckling.

Fig. S4:

A simulation is shown for $P_{A0} = 4500$ kPa, $d_i = 60 \mu m$, L=1250 nm, $L_p = 50 \mu m$, N = 51. The upper left graph shows the double-cycle bubble diameter as a function of dimensionless time. Simulation snapshots are shown for the three times marked on the graph. In each snapshot, the bubble center lies in the -*x* direction. The CNT begins in a tangential orientation and remains in that orientation until it buckles in a specific spot. The small radius of curvature in the final snapshot suggests that the CNT snaps.

Fig. S5:

A simulation is shown for $P_{A0} = 4500$ kPa, $d_i = 60 \ \mu\text{m}$, $L = 1 \ \mu\text{m}$, $L_p = 50 \ \mu\text{m}$, N = 41. The upper left graph shows the double-cycle bubble diameter as a function of dimensionless time. Simulation snapshots are shown for the three times marked on the graph. In each snapshot, the bubble center lies in the -*x* direction. The CNT begins in a tangential orientation and rotates toward a radial orientation while developing only a small degree of curvature. The only way for the radially oriented CNT to break is via stretching.

A simulation is shown for $P_A = 4500$ kPa, $d_i = 60 \mu m$, L=750 nm, $L_p = 50 \mu m$, N = 31. The upper left graph shows the double-cycle bubble diameter as a function of dimensionless time. Simulation snapshots are shown for the three times marked on the graph. In each snapshot, the bubble center lies in the -*x* direction. The CNT begins in a tangential orientation and rigidly rotates toward a radial orientation. The only way for the radially oriented CNT to break is via stretching.

Fig. S7:

The maximum strain rate $\dot{\varepsilon}_{max}$ experienced by a CNT is shown as a function of d_i^3 for several values of P_{A0} . ($L = 1.5 \mu m$, $L_p = 20 \mu m$, N = 33). This log-log relationship is independent of initial orientation. Note that the maximum strain rate is not monotonic with acoustic pressure P_{A0} because of the transition from a single cycle bubble to a double cycle bubble.

Fig. S8:

For $d_i = 70 \ \mu\text{m}$ and $P_{A0} = 4500 \ \text{kPa}$, we simulate 960 CNTs at each value of *L* and L_p . The phase diagram depicts the minimum radius of curvature experienced by CNTs during the bubble cycle (averaged over all trials).

Fig S9:

For $L_p = 30 \,\mu\text{m}$ and $P_{A0} = 4500 \,\text{kPa}$, we simulate 960 CNTs at each value of L and d_i . The diagram depicts the average of the minimum radius of curvature experienced by CNTs during the bubble cycle (averaged over all trials).

Enlarged version of Fig. 4a.

Enlarged version Fig. 4b.

Enlarged version of Fig. 4c.

Fig S13:

Enlarged version of Fig. 4d.

REFERENCES

A. Montesi, Interplay of Flow and Microstructure in Complex Fluids: Semiflexible Polymer [1]

Solutions and Emulsions, Chemical Engineering, Rice University, Houston, TX, 2005.
 G. Pagani, Modeling the dynamics of carbon nanotubes in sonicated fluids, M.S. Thesis, Facolta' di Ingegneria, Universita' di Bologna, Bologna, Italy, 2009.