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List of Variables

k scission rate
kg Boltzmann constant
T Temperature
CNT length
Lo length of initial (monodisperse) CNT population
n number of CNTs with a given length L
No initial (monodisperse) number of CNTs with given length L,
a constant in dependence on scission rate k on length L
m slope of log(L) vs. log(t), m = (-1/q)
v velocity of fluid
r position in space relative to bubble center
\ velocity of bubble wall
Vi normal velocity of differential element of a CNT
R radius of bubble wall
R; initial position of bubble wall
Rinax maximum position of bubble wall

Rerit critical position of bubble wall where adiabatic phase of cycle begins



Pa
Pao
Phuik
Phubble
Py
Pgas

Pgas,O

—

force

tensile force on a CNT

critical force for breaking a CNT

force on a BD bead j

elastic modulus of CNT

number of beads in Brownian Dynamics simulation
moment of inertia of a CNT

percentage of CNTSs that experience a minimum radius of curvature under &
diameter of CNT

translational diffusivity of a CNT of length L
rotational diffusivity of a CNT

width of CNT wall

distance along the length of a CNT

exponent for k ~ L

acoustic pressure

amplitude of acoustic pressure

pressure in the bulk fluid

pressure inside the bubble

vapor pressure of the liquid

partial pressure of the gas inside the bubble

partial pressure of the gas inside the bubble at time t=0
time

time / bubble lifetime

CNT length

CNT persistence length

distance from CNT center of mass to bubble center
maximum d experienced by a CNT

initial d

critical d; (associated with critical maximum strain rate)
stress in a CNT

tensile strength of CNT

strain rate in fluid

critical strain rate necessary to stretch or buckle a CNT

maximum strain rate experienced by CNT center of mass during cycle

parameter describing relationship between onset of buckling and onset of compressive breaking

slope for log(maximum strain rate) vs. log(d;)

surface tension



P density of the liquid

& minimum radius of curvature experienced by a CNT

Eavg minimum radius of curvature experienced by a CNT, averaged over all trials

& crit critical breaking value of the minimum radius of curvature experienced by a CNT
K adiabatic index

U fluid viscosity

1) sonication frequency

Supplementary Movie

Mov. S1:

Movie showing an example CNT simulation for P, = 1500 kPa, d; = 60 um, L= 3000 nm, L, =50 pm, N
= 121. The right graph shows the single-cycle bubble diameter as a function of dimensionless time. On
the left, the CNT orientation is shown (the bubble center lies in the —x direction). The CNT begins the
collapse in a tangential orientation and remains in that orientation until it buckles. The small radius of
curvature in at the end of the bubble collaps suggests that the CNT breaks.



Supplementary Figures
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Fig. S1:

Numerical algorithm used to compute the dynamics of CNTs near a cavitating bubble during sonication.
The dynamics of the bubble are computed first, and the corresponding flow field drives the Brownian
Dynamics simulation of many CNTs for a given parameter set (L, L, di, N). Full simulation details are
given in Refs. [1, 2].



Max CNT distance vs. Initial CNT distance
(Acoustic Pressure = 4500 kPa)
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Fig. S2:

The maximum distance of the CNT from the bubble center (at the end of the bubble expansion) plotted
against the CNT initial distance from the bubble center. If the initial distance is too small, the CNT is
entrained by the advancing bubble wall (Region 1). The initial orientation and random forces are
immaterial during bubble growth. Here, P, = 4500 kPa, L = 1.5 um, L, = 20 um, and N = 33. Similar
results are seen for other bubble parameter sets.
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Fig. S3:

A simulation is shown for Py = 4500 kPa, di = 60 um, L = 3 um, L, =50 pm, N = 121. The upper left
graph shows the double-cycle bubble diameter as a function of dimensionless time. Simulation snapshots
are shown for the three times marked on the graph. In each snapshot, the bubble center lies in the -x
direction. The CNT begins in a tangential orientation and remains in that orientation until it undergoes
disruptive buckling.



Pa =4500 kPa di =60um Length =1250 nm Lp =50um Beads =51 €084 position = 1147.853 um
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Fig. S4:

A simulation is shown for Pao = 4500 kPa, d; = 60 um, L=1250 nm, L, = 50 um, N = 51. The upper left
graph shows the double-cycle bubble diameter as a function of dimensionless time. Simulation snapshots
are shown for the three times marked on the graph. In each snapshot, the bubble center lies in the -x
direction. The CNT begins in a tangential orientation and remains in that orientation until it buckles in a
specific spot. The small radius of curvature in the final snapshot suggests that the CNT snaps.



Pa =4500 kPa di =60um Length =1000 nm Lp =50um Beads =41 €084 position = 1147.861 um

_——d—___'_\
1400+ B o S R S \_\
™
r——————__—_ﬂf\\
L ] ]
1050 |
B
S N0 ____P\\
£ o} | |
K]
ST (—_—\\.\\
30} 1 ™
bubble radius =l
X screenshots
0 ; . 0 &
1] 02 0.4 06 08 1 ric_o_m)
t
y X
t°=0.993 position = 365.518 um tt=1 position = 64.893 um
\;—————J—_——_f_#\\\
™
J T \\\
|
&0 ,_——————_—_4_"{—_\\\
P -\
\__,———f—‘——___’__—d_\\\
™
%‘
t{c_o_m)
y x

Fig. S5:

A simulation is shown for Pno = 4500 kPa, di = 60 um, L= 1 pm, L, = 50 um, N = 41. The upper left
graph shows the double-cycle bubble diameter as a function of dimensionless time. Simulation snapshots
are shown for the three times marked on the graph. In each snapshot, the bubble center lies in the -x
direction. The CNT begins in a tangential orientation and rotates toward a radial orientation while
developing only a small degree of curvature. The only way for the radially oriented CNT to break is via
stretching.
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Fig. S6:

A simulation is shown for P, = 4500 kPa, d; = 60 um, L=750 nm, L, =50 um, N = 31. The upper left
graph shows the double-cycle bubble diameter as a function of dimensionless time. Simulation snapshots
are shown for the three times marked on the graph. In each snapshot, the bubble center lies in the -x
direction. The CNT begins in a tangential orientation and rigidly rotates toward a radial orientation. The
only way for the radially oriented CNT to break is via stretching.
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Fig. S7:

The maximum strain rate &,,,, experienced by a CNT is shown as a function of d;* for several values of
Pao. (L=1.5pm, L, =20 um, N = 33). This log-log relationship is independent of initial orientation.
Note that the maximum strain rate is hot monotonic with acoustic pressure P,, because of the transition
from a single cycle bubble to a double cycle bubble.
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Fig. S8:

For di = 70 um and P, = 4500 kPa, we simulate 960 CNTs at each value of L and L,. The phase diagram
depicts the minimum radius of curvature experienced by CNTs during the bubble cycle (averaged over all
trials).



ROC vs. d-init, Lp=30um
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Fig S9:

For L, = 30 um and P, = 4500 kPa, we simulate 960 CNTs at each value of L and d;. The diagram
depicts the average of the minimum radius of curvature experienced by CNTSs during the bubble cycle
(averaged over all trials).
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Fig S10:

Enlarged version of Fig. 4a.
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Fig S11:

Enlarged version Fig. 4b.
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Fig S12:

Enlarged version of Fig. 4c.
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Fig S13:

Enlarged version of Fig. 4d.
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