Supplementary Information

Supplementary Figure Legends:

Supplementary Figure 1. (A) 293T stable cells expressing various FLAG-tagged clock proteins were exposed to serum shock before immunoblotting of FLAG-tagged proteins, PER1-FLAG, PER2-FLAG, and BMAL1-FLAG.

Supplementary Figure 2. (A) CRY1 protein induction by serum shock was observed in three additional cell types: NIH3T3, PMH (primary mouse hepatocytes) and MEF (mouse embryonic fibroblasts). (B) Testing the specificity of CRY1 antibody. Hepa-1 cells were first transfected with either *shCon* or *shCry1* vector for 48 hr and then treated with 2-hr serum shock. The endogenous CRY1 protein levels were determined by immunoblotting with anti-CRY1.

Supplementary Figure 3. (A) The mRNA levels of major human core clock genes in 293T cells after serum shock treatment were determined by QPCR: *Bmal1, Clock, Per1* and *Dbp*. The data were plotted as Mean \pm S.D. (n=3). * *p*-value < 0.05 by Students' *t*-test. (B) The mRNA level of *Fbxl3* in 293T cells after serum shock treatment was determined by QPCR. The data were plotted as Mean \pm S.D. of triplicates. * *p*-value < 0.05 by Student's *t*-test. (C) The effects of *Fbxl3* depletion on the CRY1 protein following serum shock treatment. Hepa-1 cells were transfected with *shLacz* or *shFbxl3* before treatment with serum shock. The protein levels for both CRY1 and FBXL3 were detected by immunoblotting.

Supplementary Figure 4. (A) The mRNA levels of Usp2a were significantly induced in Hepa-1 cells upon serum shock. The data were plotted as Mean \pm S.D. of triplicates. * *p*-value < 0.05.

(**B**) Serum shock induced the expression of USP2a, the 69-kD isoform of USP2 protein, in Hepa-1 cells.

Supplementary Figure 5. USP2a does not regulate the de-ubiquitination process of clock proteins, CRY2, BMAL1 and PER1. The expression vectors encoding the clock genes were co-transfected with Myc-tagged *Usp2a* expression vector in the *shUsp2a*-expressing *293T* stable cell line (the same cell line used in Figure 2C). Following the transfection, cells were then treated with MG132 and subjected to denaturing IP for detecting clock protein-ubiquitin conjugates. The input level of CRY2-FLAG, BMAL1-FLAG and PER1-FLAG were detected by immunoblotting with anti-FLAG antibody.

Supplementary Figure 6. The mRNA expression of Usp2a and Cry1 in Hepa-1 cells after synchronization by serum shock. The cells were harvested at the indicated times following 2-h serum shock. The mRNA levels of Usp2a and Cry1 were determined by the QPCR. The results were plotted as Mean \pm Range (n=2).

Supplementary Figure 7. (A) Adenoviral-CRY1 mediated dose-dependent over-expression of FLAG-CRY1 protein in Hepa-1 cells. (B) Over-expression of CRY1 in Hepa-1cells down-regulates its target genes *Per2* and *Dbp*. The data were plotted as Mean \pm S.D. of triplicate samples. * *p*-value < 0.05 by Students' *t*-test.

Supplementary Figure 8. (A) The mRNA expression pattern of *Dbp*, the other CRY1 target, in the synchronized Hepa-1 cells that were infected with adenovirus expressing either *shLacZ* or *shUsp2a*. AUC analysis for *Dbp* expression during the entire time course was calculated and shown on the right. * *p-value*< 0.05. (B) The mRNA expression pattern of *Rev-erba* in synchronized Hepa-1cells that were infected with adenovirus expressing either *shLacZ* or

shUsp2a. AUC analysis for *Rev-erba* expression during the entire time course was calculated and shown on the right. There was no statistically significant difference between the two groups.

Supplementary Figure 9. (A) The *Bmal1*-luc activity was inhibited by over-expression of Usp2a-WT but not 290CA mutant. The luciferase activities were measured and calculated 72 hr after transfection. The data were plotted as Mean \pm S.D. (n= 4). * p value < 0.05 by Student's t-test. (B) Effect of Usp2a overexpression on the period and amplitude of the *Bmal1*-luciferase in U2OS cells. Manipulation of USP2a protein level was achieved by transfection with Usp2a expression vector before synchronization by dexamethasone and forskolin. A representative of three replicates was shown in bioluminescence graph. Amplitude and period length of three replicates were shown as Mean \pm S.D. for each treatment. * p value < 0.05 was determined by Student's t-test.

Supplementary Figure 10. (A) TNF- α treatment (10 ng/mL) inhibited BMAL1/CLOCKmediated activation of the *Per2*-luc reporter activity in Huh7 cells. (B) TNF- α treatment lowered *Dbp* but not *Cry1* mRNA levels in Huh7 cells. (C) TNF- α dose-dependently induced the CRY1 protein in HepG2 cells. The cells were treated with TNF- α for 16 hr and then harvested for immunoblotting assay. The CRY1 proteins were detected in both cytoplasmic and nuclear fractions. (D) TNF- α treatment did not affect the endogenous REV-ERB α protein in Huh7 cells. (E) The endogenous *Usp2a* mRNA levels in Huh7 cells following transfection with either *shUSP2a* or *shRNA* control vector. The samples were collected 72 hr post transfection. The data were plotted as Mean ± S.D. of triplicate samples. * *p*-value < 0.05 by Student's *t*-test.

Ε