Nucleotide sequence analysis of the L gene of Newcastle disease virus: homologies with Sendai and vesicular stomatitis viruses

Khatijah Yusoff, Neil S.Millar, Philip Chambers and Peter T.Emmerson

Department of Biochemistry, The University, Newcastle upon Tyne NE1 7RU, UK

Received March 11, 1987; Revised and Accepted April 23, 1987

ABSTRACT

The nucleotide sequence of the L gene of the Beaudette C strain of Newcastle disease virus (NDV) has been determined. The L gene is 6704 nucleotides long and encodes a protein of 2204 amino acids with a calculated molecular weight of 248822. Mung bean nuclease mapping of the 5' terminus of the L gene mRNA indicates that the transcription of the L gene is initiated 11 nucleotides upstream of the translational start site. Comparison with the amino acid sequences of the L genes of Sendai virus and vesicular stomatitis virus (VSV) suggests that there are several regions of homology between the sequences. These data provide further evidence for an evolutionary relationship between the <u>Paramyxoviridae</u> and the <u>Rhabdoviridae</u>. A non-coding sequence of 46 nucleotides downstream of the presumed polyadenylation site of the L gene may be part of a negative strand leader RNA.

INTRODUCTION

Paramyxoviruses such as NDV have genomes which are nonsegmented negative-sense strands of RNA, approximately 15 kb long (1). The gene organization, control of mRNA and protein synthesis, RNA replication and viral assembly of paramyxoviruses are broadly similar to the corresponding functions of the rhabdovirus vesicular stomatitis virus (VSV), which has been more intensively studied (2-6). Both families of viruses have large (L) genes that occupy most of the 5' half of the genome. The L gene encodes the L protein which has a molecular weight greater than 200 K (5). The L protein is the least abundant of virion proteins of VSV (7,8) and the paramyxovirus Sendai virus (9) which suggests that it has an enzymatic rather than a structural role. Although the precise functions of the L protein are not known, it is assumed to be the viral RNA-dependent RNA polymerase. The L and P proteins of NDV, which are analogous to L and NS proteins of VSV respectively, reconstitute an active transcriptive complex when added to viral nucleocapsids which have been stripped of these proteins (10-11). There is evidence that the analogous proteins of VSV are responsible for

synthesis of viral mRNA and capping, methylation, and polyadenylation of newly synthesized viral mRNAs (12-15). Since the L protein is 5-10 times larger than the P or NS proteins it may well perform most of these processes.

The complete nucleotide sequences of the L genes of VSV and Sendai virus, another paramyxovirus, have been determined recently (16-18). Comparison of those sequences to that of NDV may help us to understand the functions of the L protein. Here, we report the nucleotide sequence of the L gene of NDV.

MATERIALS AND METHODS

DNA sequencing

Details of the construction and characterization of cDNA clones to the L gene of NDV strain Beaudette C have been reported (19). In addition to the nine clones previously assigned to the L gene, a clone (designated 4.14) was selected from the colony bank by hybridization with an 868 bp PstI-HindIII fragment of clone 3.23 which extended the sequence past the 3' end of the L gene. The dideoxy chain termination method was used for DNA sequencing (20), but in several instances it was necessary to substitute deoxyguanosine triphosphate with deoxy-7-deazaguanosine triphosphate (Boehringer Mannheim) in order to resolve ambiguous regions of the sequence (21). Oligonucleotide sequencing primers made on an Applied Biosystems model 381A DNA synthesiser were used in addition to a 17-base universal primer (Pharmacia). The sequence of both strands of DNA was determined by using M13 mp8, mp9, mp18 and mp19 phage vectors. The sequence data were assembled and analysed using the computer programs of Staden (22) and Queen and Korn (23). Mapping of the mRNA 5'terminus

Chick embryo fibroblast (CEF) cells were infected with NDV strain Beaudette C at a multiplicity of about 50 p.f.u./cell (24). Total cellular RNA was isolated from cells at nine hours post-infection by phenol extraction at 70°C. A restriction fragment of plasmid 3.73, which spans the HN/L gene junction, was isolated from an 8% polyacrylamide gel by electroelution (19). The restriction fragment extends from an <u>Eco</u>RI site [86-81 bp upstream from the start of the HN/L intergenic region (25)] to an <u>Xba</u>I site (position 305 to 310, Fig. 1). The 5' termini were labelled with [3^2 P] ATP using polynucleotide kinase. The labelled end at the <u>Eco</u>RI site was removed by cleavage with <u>Hinc</u>II [67 bp upstream from the start of the HN/L intergenic region (25)] to give a 376 bp fragment used for nuclease mapping. Total RNA from infected or uninfected cells was added to labelled restriction fragment

н к у к а	когилия	T G R T W R M A S	A P V L K G Q S G P E R A E	SIRLSYQ HQIILPE	SHTCLH SHLSS
AAGTGGCAATGAGATACAAGGCA	AAACAGCTCATGGTAAATAGT	ACGGGTAGGACATGGCGAG	CTCCGGTCCTGAAAGGGCAGJ	GCATCAGATTATCCTACCAG	110 120
10 20	30 40	50 60	70 80	90 100	
H W S S T N Y P L V K H K L Accattggtcaagcacaaactac 130 140	F I T G N L Y Y W K L T TTTATTACTGGAAATTAACTG 150 160	G L P L P D E GGCTACCGCTTCCTGATGA 170 180	C D F D H L 1 ATGTGACTTCGACCACCTCAT 190 200	L S R Q W K J TCTCAGCAGACAATGGAAAAJ 210 220	AAATACTTGAATCGGC 230 240
S P D T E R H	I K L G R A V	H Q T L N H N	S R I T G V I	L H P R C L E E	LASIE
CTCTCCTGATACTGAGAGAATGA	TAAAACTCGGAAGGGCAGTAC	Accaaactctcaaccacaa	TTCTAGAATAACCGGAGTACT	CCACCCCAGGTGTTTAGAAGJ	ACTGGCTAGTATTGA
250 260	270 280	290 300	310 320	330 340	350 360
V P D S T N K	P R K I E K K	I Q I H N T R	Y G E L P T F	L C T H I E B	K L L G S
GGTCCCTGATTCAACCAACAAAT	TTCGGAAGAATTGAGAAGAAGA	TCCAAATTCACAACACGAG	Atatggagaactgttcacaac	GCTGTGTACGCATATAGAGAJ	Gaaactgctggggtc
370 380	390 400	410 420	430 440	450 460	470 480
S W S N N V P	R S E E P N S	I R T D P A P	W P H S K W S	G T A K P A W I	H I K Q I
Atcctggtctaacaatgtccccc	GGTCAGAGGAGTTCAACAGCA	TCCGTACGGATCCGGCATT	CTGGTTTCACTCAAAATGGTC	Cacagecaagttigeatgget	CCATATAAAACAGAT
490 500	510 520	530 540	550 560	570 580	590 600
Q R H L I V A	A R T R S A A	N K L V M L T	H K V G Q V E	V T P E L V I	V T H T N
CCAGAGGCATCTGATTGTGGCAG	Ctaggacaaggtctgcggcca	Acanattggtgatgctaac	CCATAAGGTAGGCCAAGTCTT	TGTCACTCCTGAACTTGTCAT	TGTGACGCATACGAA
610 620	630 640	650 660	670 680	690 700	710 720
E N K P T C L	T Q E L V L M	Y A D M M E G	R D M V N I I	S T T A V H L	R S L S E
Tgagaacaagttcacatgtctta	CCCAGGAACTTGTATTGATGT	Atgcagatatggatggg	Cagagatatggtcaacataat	ATCAACCACGGCGGTGCATCT	Cagaagcttatcaga
730 740	750 760	770 780	790 800	810 820	830 840
K I D D I L Q	L I D A L A K	D L G N Q V Y	D V V S L H E	G P A Y G A V	Q L L E P
Gaaaattgatgacattttgcagt	Taatagacgctctggcaaaag	Acttgggcaatcaagtcta	Cgatgttgtatcactaatgga	Gggatttgcatacggagctgt	CCAGCTGCTCGAGCC
850 860	870 880	890 900	910 920	930 940	950 960
S G R P A G H	PPAPNLQ	ELKDILI	G L L P N D I	A E S V T H A	IATVF
GTCAGGTAGATTTGCAGGACATT	TCTTCGCATTCAACCTGCAGG	Agcttaaagacattctaat	CGGCCTCCTCCCCAATGATAT	Pagcagaatccgtgactcatgc	AATAGCTACTGTATT
970 980	990 1000	1010 1020	1030 1040	1050 1060	1070 1080
S G L E Q N Q	A A E H L C L	L R L W G H P	LLESRIA	A K A V R S Q	H C A P K
Ctctggtttagaacagaatcaag	CAGCTGAGATGTTGTGCCTGT	TGCGTCTGTGGGGTCACCC	Actgcttgagtcccgtattgc	Agcaaaggcagtcaggagcca	ANTGTGCGCACCGAA
1090 1100	1110 1120	1130 1140	1150 1160	1170 1180	1190 1200
II V D P D M I	L Q V L S P P	K G T I I N G	Y R K K N A G	V W P R V K V	D T I Y G
AATGGTGGACTTTGATATGATCC	TTCAGGTACTGTCTTTCTTCA	Agggaacaatcatcaacgg	Atacagaaagaatgcagg	TGTGTGGCCGCGAGTCAAAGT	GGATACAATATATGG
1210 1220	1230 1240	1250 1260	1270 1280	1290 1300	1310 1320
K I I G Q L H	A D S A B I S	H D I M L R E	Y K S L S A L	E F E P C I E	Y D P V T
GAAGATCATTGGGCAACTACATG	CAGATTCAGCAGAGAGTTTCAC	Acgatatcatgttgagaga	GTATAAGAGTTTATCTGCACT	Tgaatttgagccatgtataga	ATACGACCCTGTCAC
1330 1340	1350 1360	1370 1380	1390 1400	1410 1420	1430 1440
N L S N P L K	D K A I A H P	N D N W L A S	P R R N L L S	E D Q K K H V	КЕАТ S
Taacctgagcatgttcctaaaag	Acaaggcaatcgcacacccta	Acgataattggcttgcctc	GTTTAGGCGGAACCTTCTCTC	CGAAGACCAGAAGAAAACATGT	Халалдалдсалсттс
1450 1460	1470 1480	1490 1500	1510 1520	1530 1540	1550 1560
T H R L L I E	F L E S M D F	D P Y K E M E	Y L T T L E Y	L R D D V A	V S Y S L
Gactaatcgcctcttgatagagt	TTTTAGAGTCAAATGATTTTG	Atccatataaagagatgga	Atatctgacgacccttgagta	CCTTAGAGATGACGATGTGGC	Agtatcatactcgct
1570 1580	1590 1600	1610 1620	1630 1640	1650 1660	1670 1680
K E K E V K V	N G R I P A K	L T K K L R N	C Q V M A E G	ILADQIA	PPFQG
Caaagagaaggaagtgaaagtta	Atggacggatcttcgctaago	Tgacaaagaagttaaggaa	CTGTCAGGTGATGGCGGAAGG	Gatcctagccgaccagattgc	Acctitictitcaggg
1690 1700	1710 1720	1730 1740	1750 1760	1770 1780	1790 1800
N G V I Q D S	I S L T K S T	L A M S Q L S	PNSNKKR	I T D C K E R	V S S N R
AAATGGAGTCATTCAGGATAGCA	Tatcgttgaccaagagtacgc	Tagcgatgagtcaactgtc	TTTTAACAGCAATAAGAAACG	Tatcactgactgtaaagaaag	Agtatettcaaaccg
1810 1820	1830 1840	1850 1860	1870 1880	1890 1900	1910 1920
N H D P K S K	N R R R V A T	PITTDLQ	R Y C L N W R	YOTIKLP	A H A I N
Caatcatgatccgaagagcaaga	Accgtcggagagttgcaacct	TCATAACAACTGACCTGCA	Aaagtactgtcttaattggag	Atatacagacaatcaaactgtt	CGCTCATGCCATCAA
1930 1940	1950 1960	1970 1980	1990 2000	2010 2020	2030 2040
OLNGLPH	F F E W I H L	R L M D T T M	FVGDPPM	PPSDPTD	C D L S R
TCAGTTGATGGGCCTACCTCACT	TCTTTGAGTGGATTCACCTAA	Gactgatggacactacaat	GTTCGTAGGAGACCCTTTCAA	TCCTCCAAGTGACCCTACTGA	CTGTGACCTCTCAAG
2050 2060	2070 2080	2090 2100	2110 2120	2130 2140	2150 2160
V P N D D I Y	I V S A R G G	I E G L C Q K	L W T H I S I	A A I Q L A A	A R S H C
Agtccctaatgatgacatatata	TTGTCAGTGCCAGAGGGGGGTA	TCGAAGGATTATGTCAGAA	GCTATGGACAATGATCTCTAT	TGCTGCAATCCAACTTGCTGC	Agctagatcgcattg
2170 2180	2190 2200	2210 2220	2230 2240	2250 2260	2270 2280
R V A C H V Q C	G D N Q V I A	V T R E V R S	D D 8 P E N V	L T Q L H Q A	S D N F F
TCGCGTTGCCTGTATGGTACAGG	GTGATAATCAAGTAATAGCAG	TAACGAGAGAGGGTAAGATC	Agacgactctccggagatggt	GTTGACACAGTTGCATCAAGC	Cagtgataattitett
2290 2300	2310 2320	2330 2340	2350 2360	2370 2380	2390 2400

CANGO	E L I Gaattaat 2410	H TCA1	V N IGTCAATC 2420	H L ATTTGA 243	I G FTGGC D	H N CATAAT 2440	L K TTGAA	D R GGACCG 2450	E TGAA	T I ACCATC 2460	R	S D T CAGACAG 2470	r P ATTO	F I S TTCATATA 2480	Y S ACAGCA 249	K R AACGA 0	1 F ATCTTC 2500	K D	G A TGGAGCA 2510	I L S ATCCTCAG 2520
TCAR	V L J GTCCTCAA 2530	. N AAA7	S S PTCATCTA 2540	K L AATTAG 255	V M Taatg D	V S GTGTCA 2560	G D GGTGA	L S FCTCAG 2570	E TGAA	N T AACACC 2580	V GTAN	M S (TGTCCTC 2590	C A STGCC	N I A Caacattge 2600	A S CCTCTA 261	T V CTGTA 0	A R GCACGO 2620	L C CTATG	EN CGAGAAC 2630	G L P GGGCTTCC 2640
CAAGO	D F C GACTTCTG 2650	Y TTAC	Y L TATTTAA 2660	N Y ACTATA 267	I M FAATGA D	S C AGTTGC 2680	V Q GTGCA	T Y Gacata 2690	F CTTT	D S GACTCT 2700	E GAGT	P 5 1 TCTCCT/ 2710	(N	N N 2 2720	SH CGCACC 273	P D CCGAT 0	L N CTTAAC 2740	Q S CAGTC	W I GTGGATT 2750	E D I GAGGACAT 2760
S CTCT	F V H TTTGTGCA 2770	і s стся	Y V TATGTTC 2780	L T TGACTC 279	P A CTGCC	Q L CAATTA 2800	G G GGGGG	L S ACTTAG 2810	N TAAC	L Q CTTCAA 2820	Y	S R I CAAGGCT 2830	, у ГСТАС	T R I Cactagaa 2840	N I ATATCG 285	G D GTGAC 0	PG CCGGGG 2860	T T SACTAC	A P TGCTTTT 2870	A E I GCAGAGAT 2880
K	R L E CGACTAGA 2890	AGCA	V G GTGGGAT 2900	L L Tactga 291	S P GTCCT/ D	N I AACATT 2920	M T Atgaci	N I FAATAT 2930	L CTTA	T R Actagg 2940	P	P G I CTGGGAJ 2950	I G NTGGJ	D W A Gattggg 2960	A S CCAGTC 297	L C TTTGC 0	N D AACGAC 2980	P Y CCATA	S F CTCTTTC 2990	N P E AATTTTGA 3000
T GACTO	V A S GTTGCAAG 3010	CCCA	N I AACATTG 3020	V L 1 TTCTTA 3030	K K NGAAA D	H T CATACG 3040	Q R CAAAGI	V L NGTCCTA 3050	F	е т GAAACT 3060	C TGTT	S N 1 Caaatco 3070	CTT/	L S (TTGTCTG(3080	G V SAGTGC 309	H T Acaca 0	E D GAGGAT 3100	N E AATGA	GGCAGAA 3110	E K A GAGAAGGC 3120
L ATTGO	A E F SCTGAATT 3130	стто	L N CTTAATC 3140	Q E AAGAGG 315	I Igatto D	H P CATCCC 3160	R V CGCGT	A H IGCGCA 3170	A TGCT	I N Atcatg 3180	E GAGG	A S S CAAGCTO 3190	5 V TGTA	G R I NGGTAGGAN 3200	R K GAAAGC 321	Q I AAATT 0	0 G CAAGGO 3220	L V CTTGT	D T TGACACA 3230	T N T ACAAACAC 3240
V CGTA	I K I ATTAAGAT 3250	TGCA	L T CTTACTA 3260	R R 1 GGAGGC 327	P L CACTAG	G I GGCATC 3280	K R NAGAGO	L M GCTGAT 3290	R GCGG	I V ATAGTC 3300	N AATT	Y 5 8 ATTCTA 3310	5 M Scato	H A I Scatgcaat 3320	I L IGCTGT 333	F R TTAGA 0	D D GACGA1 3340	V P GTTTT	S S TTCCTCC 3350	N R S AATAGATC 3360
N CAACO	H P L CACCCCTT 3370	AGTO	5 S TCTTCTA 3380	N N O Atatgti 3390	C S GTTCT()	L T CTGACA 3400	L A	D Y GACTA 3410	A TGCA	R N CGGAAT 3420	R	S W 2 GCTGGTC 3430	S P CACCI	L T (TTGACGGG 3440	G G GAGGCA 345	R K GGAAA 0	I L ATACTO 3460	G V GGTGT	S N ATCTAAT 3470	P D T CCTGATAC 3480
GATA	E L V GAACTOGT 3490	AGAG	G E GGTGAGA 3500	I L 3 TTCTTM 3510	S V GTGTA	S G NGCGGAN 3520	G C GGGTGG	T R CACAAGA 3530	ATGO	D S GACAGC 3540	G I	D E (Atgaac) 3550) P \GTT1	T W I ACTTGGT 3560	F H ICCATC 357	L P TTCCA 0	S N AGCAA1 3580	I E	L T Attgacco 3590	D D T GATGACAC 3600
S CAGCI	K N F AAGAATCO 3610	TCCC	M R Satgagag 3620	V P 2 TACCAT 363	r L MTCTO	G S GGGTCA 3640	K T NAGACI	Q E \CAGGA0 3650	R GAGG	R A Agaget 3660	GCCT	S L A Cacttgo 3670	GAAA	I A H Atageter 3680	I M TATGT 369	S P CGCCA 0	H V CATGTO 3700	K A	A L TGCCCTA 3710	R A S AGGGCATC 3720
S ATCCO	V L I STGTTGAT 3730	W CTGG	A Y GCTTATG 3740	G D I GGGATA 3750	N E Atgam)	V N GTAAAT 3760	W T TGGACI	A A IGCTGC 3770	L TCTT	T I ACGATT 3780	A I GCAA	K S F AATCTCC 3790	R C SATGI	N I 1 TAATATAA 3800	4 L ACTTAG 381	E Y Agtat 0	L R CTTCGC 3820	L L	S P GTCCCCT 3830	L P T TTACCCAC 3840
GGCTG	G N L Gggaatct 3850	TCAA	H R CATAGAC 3860	L D 1 Tagatgi 3870	D G ATGGT/)	I T ATAACT 3880	Q N CAGATO	T P GACATT 3890	CACC	P A CCTGCA 3900	S I	L Y F TCTACAG 3910	1 C 66761	H L CACCTTA	Г Р Саттса 393	T Y Catat 0	Р Н Сслато 3940	I L	K G CAAAGGC 3950	Y S L Inttcact 3960
K GAAGI	K E S NAGGAGTO 3970	AAAG	R G AGGGGGAA 3980	M W I TGTGGT 3990	P I TTATC/	N R AACAGA 4000	V M STCATO	L L SCTCTT 4010	G GGGT	L S TTATCT 4020	L CTAA	I E E TCGAATC 4030	GATC	P P P TTTCCAAT 4040	I T IGACGA 405	T T CAACC 0	R T AGGACA 4060	Y D	E I Tgagatci 4070	T L H Acattgca 4080
L TCTA	H S K Catagtaa 4090	ATTI	S C AGTTGCT 4100	C I I GTATCAG 4110	R E GGGAAC	A P SCACCTO 4120	V A STTGCC	V P GTTCC 4130	F	E L GAGCTA 4140	L (CTTG	G V J GGGTGGG 4150	ACCO	E L I Gagetaac 4160	GACAG 417	V T TGACC 0	S N TCAAAC 4180	K F	/1 Y TATGTATO 4190	D P S GATCCTAG 4200
CCCTO	V S E Statcgga 4210	GCGA	D P GACTTTG 4220	A R I CGAGAC1 4230	D TTGACT	L A TTAGCTI 4240	I P ATCTTO	K S CAAGAG1 4250	Y TTAT	E L GAGCTT 4260	NI	L E S TGGAGTO 4270	ATAT	P T I CCCACGA1 4280	LE INGAGC 429	L M Taatgi 0	N I AACATT 4300	L S CTTTC	I S AATATCC/ 4310	S G K NGCGGGAA 4320
GTTG/	I G Q ATTGGCCA 4330	S GTCI	V V GTGGTTT 4340	8 Y I CTTATG/ 4350	D E Atgaac	D T SATACCI 4360	8 I ICCATI	K N 100000000 4370	D FGAC	A I GCCATA 4380	I N ATAG	V Y E TGTATGA 4390	CAAT	T R P ACCCGAAJ 4400	W TTGGA 441	I S TCAGTO 0	E A GAAGCT 4420	Q N CAGAA	S D TTCAGATO 4430	V V R GTGGTCCG 4440
CTTA	P E Y	TGCA	A L AGCACTTG 4460	E V I AAGTGC 4470		D C ACTGT 4480	S Y	0 L CAACTO 4490	CTAT	Y L FATCTG 4500	R NGAGI	TAAGAGG	CCTA	D N 1 GACAATA7 4520	453	L Y FATAT <i>i</i> 0	H G ATGGGT 4540	GATT	Y K ATACAAGI 4550	N N P ATATGCC 4560
G AGGAJ	I L L ATTCTACT 4570	TTCC	N I AACATTG 4580	CAGCTAN 4590	F I CAATAI	CTCATO 4600	CCGTO	1 H CATTCA1 4610	TCA	AGGTTA 4620	CATG	CAGTGGG 4630	CCTG	GTCAACCI 4640	4650	GATCA	4660	CTTGC	AGATACGO 4670	GATTTTAT 4680
CGAA	M S A ATGTCTGC 4690	. K	L L CTGTTAG 4700	V S (TATCTT 471	C T SCACTO	R R CGACGT 4720	V I STGATO	8 G TCCGGG 4730	L	Y 8 FATTCA 4740	G 1 GGGA	N K Y Ataagta 4750	D	L L CTGCTGTT 4760	P P CCCAT 477	S V CTGTC1 D	L D TTAGAT 4780	D N GATAA	L N CCTGAATO 4790	E K N Gagaagat 4800

L	QLIS	RLC	СГА	TVLP	A T T	REI	PKII	RGLS	A E E	ĸcsv	LTE	YL
GCTT	CAGCTGATATC 4810	CCGGTTATGC 4820	TGTCTGTAC	ACGGTACTCTT 4840	TGCTACAAC	AGAGAAATC	4870	GAGGCTTATCT 4880	GCAGAAGAG/ 4890	4900	ACTTACTGAG 4910	4920
L	SDAV	KPL	LSP	DQVS	SIN	SPN	IITI	PPAN	LYY	MSRK	SLN	LI
ACTG	4930	4940	4950	4960	4970	4980	4990	5000	5010	5020	5030	5040
R	ERED	KDS	ILA	LLFP	QEP	LLE	F P S V	V Q D I	GAR	V K D P	FTR	Q P
CAGGO	SANAGGGAGGA 5050	SOGO	SOTO	5080	CCAAGAGCCA 5090	5100	5110	IGCAAGATATT 5120	GGTGCTCGAC 5130	5140	ATTCACCCGA 5150	CAACC 5160
٨	AFLO	ELD	LSA	PARY	DAF	TLS	отни	PELT	S P N	PEED	YLV	RY
TGCGG	SCATTTTTGCA 5170	AGAGTTAGAT 5180	TTGAGTGCT	S200	TGACGCATTO 5210	S220	5230	S240	5250	CGGAGGAAGA 5260	CTACTTAGTA 5270	CGATA 5280
г.	FRGI	6 7 8	s s s		5 H L	1. S. V.			HGN	S I. Y I.	A E G	5 6
CTTG	TTCAGAGGAAT 5290	AGGGACTGCA	TCCTCCTCT 5310	GGTATAAGGC	ATCCCATCTC 5330	CTTTCTGTA	CCCGAGGTAAC 5350	GATGTGCAAGA 5360	CACGGGAAC1 5370	CCTTATACTT 5380	AGCTGAAGGA 5390	AGCGG 5400
AGCC/	I M S L ATCATGAGTCT 5410	TCTCGAACTG	H V P CATGTACCA 5430	H E T I Catgaaactat 5440	Y Y N CTATTACAA1 5450	T L P ACGCTCTTT 5460	S N E P CAAATGAGA1 5470	N P P Igaaccccccg 5480	Q R H CAGCGACATI 5490	F G P T TCGGGCCGAC 5500	РТО СССАЛСССАС 5510	F L TTTTT 5520
IN GAAT	S V V Y FCGGTTGTTTA	R N L		V T C K Staacatgcaa	D G F GGATGGATTI	V Q E	F R P L	. W R E	N T E	E S D L	T S D GACCTCAGAT	K A
	5530	5540	5550	5560	5570	5580	5590	5600	5610	5620	5630	5640
v	GYIT	S A V	PYR	S V S L	ь н с	DIE	IPPO	S N Q	SLL	DQLA	INL	S L
AGTGO	5650	S660	SCCCTACAGA	5680	SCTGCATTG1 5690	SACATTGAA	S710	5720	AGCTTACTAG 5730	5740	5750	5760
I		VRE	6 6 V	V T T K	VLY		* * * *	ст. т. н	NLP	A P C S	T K G	v 1
GATTO	SCCATGCATTC 5770	CGTAAGGGAG 5780	GGCGGGGGTAG	STGATCATCAA 5800	AGTGTTGTAT 5810	GCAATGGGAT	5830	TCTACTCATG	AACTTGTTCG 5850	CTCCGTGTTC 5860	5870	TACAT 5880
TCTCI	CTAATGGTTA	A C R TGCATGTAGA	G D M	E C Y L GAGTGTTACCT	GGTATTTGTC	M G Y	L G'G I	P T F V TACATTTGTA	II E V CACGAGGTGG	V R H A TGAGGATGGC	K T L	V Q STGCA
	5890	5900	5910	5920	5930	5940	5950	5960	5970	5980	5990	6000
R	HGTL	LSK	SDE	ITLT	RLF	T S Q	RQRV	TDI	LSS	PLPR	LIK	YL
GCGGG	6010	6020	6030	6040	CAGGTTATTC 6050	6060	6070	GACAGACATC 6080	CTATCCAGTC 6090	6100	6110	6120
P	KNID		T F A	6 6 0 P	V • P P							
GAĜAJ	AGAATATTGA	CACTGCGCTG	ATTGAAGCTO	GGGGACAGCO	GTCCGTCCA	TTCTGTGCAG	AGAGTTTGGT	GAGCACGCTG	GCGGACATAA	CTCAGATAAC	CONGATCATTO	SCTAG
	0130	0140	6130	0100	6170	0180	6190	6200	6210	6220	6230	6240
н	IDTV	IRS	V I Y	M E A E	GDL	A D T	VFLF	трү	NLS	трск	ккт	SL
TCAC	ATTGACACAGT 6250	CATCCGGTCT 6260	GTGATATAT# 6270	TGGAACTGA	GGTGATCTC 6290	GCTGACACAG 6300	6310	TACCCCTTAC. 6320	6330	CTGACGGGAAN 6340	\AAGAGAACA1 6350	CACT 6360
K	Q C T R	Q I L ACAGATCCTA	E V T GAGGTTACAA	I L G L	R V E	D L N GATCTCAATA	K I G D			K G M I	S N E	
	6370	6380	6390	6400	6410	6420	6430	6440	6450	6460	6470	6480
I	PLRT	YLK	н s т	СРКҮ	LKA	VLG	1 T K L		FTD	T S V L	YLT	R A
TATCO	6490	ATACTTGAAG 6500	CATAGTACCI 6510	GCCCTAAATA 6520	6530	GTCCTAGGTA 6540	6550	CAAAGAAATG 6560	TTTACAGACA 6570	CCTCTGTATTC 6580	6590	GTGC 6600
Q	Q K F Y	н к т	IGN		YYS	NCP	s					
TCĀAC	6610	CATGAAAACT	ATAGGCAATG 6630	CAGTCAAAGG	TATTACAGT	AACTGTGACT	CTTAACGAAA	ATCACATATT	AATAGGCTCC	TTTTCTGGCC/	ATTGTATCCT	TGGT
										0,00	0/10	0/20
GATTT	AATTATACTA	TGTTAGAAAA	AAATTGAACT	CCGACTCCTT	GAGCTCGAA	TTCGAACTCA	AATAAATGTC	TT				
							0/30					

Figure 1. Nucleotide sequence of the L gene of NDV strain Beaudette C, and deduced amino acid sequence of the L protein. The cDNA sequence is shown in the positive (mRNA) sense. The semi-conserved 11-nucleotide start and 10-nucleotide polyadenlyation signals are underlined. The deduced amino acid sequence of the major open reading frame as well as a second, smaller potential open reading frame, are shown above the nucleotide sequence.

and dried under vacuum on a 'UNIVAP' rotary evaporator and dissolved in 30 ul hybridization buffer (0.04 M PIPES, pH 6.4, 0.4 M NaCl, 0.001 M EDTA, 80% formamide). Samples were incubated at 85° C for 15 minutes to denature the

Nucleic Acids Research

DNA and then at 50° C for 3 hours to allow hybrid formation, essentially as described by Maniatis <u>et al.</u> (26). The hybridized products were then diluted ten-fold into ice-cold nuclease buffer (30 mM Na acetate, 50 mM NaCl, 1 mM ZnCl₂, 5% glycerol, 0.001% Triton X-100) and incubated for 30 minutes at 37° C with 50 units of mung bean nuclease. After phenol extraction and isopropanol precipitation, the DNA fragments protected from nuclease action were analysed by electrophoresis on 6% denaturing polyacrylamide gels (27). Fragment sizes were determined by comparison with the migration of polynucleotides of known length generated by a dideoxy sequencing reaction run in parallel.

RESULTS

The nucleotide sequence and predicted amino acid sequence of the NDV L gene is shown in Fig. 1. The L gene is 6704 nucleotides long and is presumed to extend from a typical NDV mRNA transcriptional start site (position 45 to 55) to a typical polyadenylation site (position 6738 to 6748). The sequence of this mRNA start site 5'-ACGGGTAGGAC-3' matches the consensus sequence 5'-ACGGGTAGAAG-3' of the mRNA start sites for the NP, P, M, F and HN genes of NDV at nine of the eleven positions (25,28-31).

The L gene nucleotide sequence contains a very large open reading frame starting at an ATG codon at position 57 to 59 and continuing to a termination codon TAA at position 6668 to 6670 (Fig. 1). The sequence around this ATG codon conforms well to the consensus (5'-purine-N-N-A-U-G-G-3') for functional initiation codons in eukaryotes (32,33). This open reading frame encodes a protein of 2204 amino acids with a predicted molecular weight of 248822 which is in good agreement with the estimated molecular weight of the L protein of NDV (220 K), derived from its mobility on SDS gels (5). A small open reading frame in a different phase starts upstream of the proposed start site of the L message at the ATG codon position 9 to 11, Fig. 1. Translation of this small open reading frame would generate a rather hydrophobic polypeptide of 50 amino acids with a predicted molecular weight of 5.9 K which does not correspond to any known viral polypeptide.

In an earlier report (25), it was suggested on the basis of a provisional S1 mapping experiment, that the mRNA start site for the NDV L gene is at position 1 in the sequence shown (Fig. 1). Using mung bean nuclease (Fig. 2) we have located the transcriptional start site at position 45 (Fig. 1). A fragment of 264 bp was protected against mung bean nuclease by RNA from NDV-infected CEF (Fig. 2, lane 2) while no protected bands other than a trace of the starting material were seen in a control using uninfected

Figure 2. Mapping of the 5' terminius of the L mRNA. Lane 1: the original 32P 5' end-labelled, 376 bp <u>HincII-Xba</u>I restriction fragment (see Methods), indicated by upper arrow. Lane 2: restriction fragment annealed to the RNA from NDV-infected CEF cells, mung bean nuclease protected fragment of 264 bp, indicated by lower arrow. Lane 3: control using RNA from uninfected cells. A dideoxy sequencing reaction (lanes T,C,G and A) was run in parallel to allow determination of fragment sizes.

Figure 3. Dot matrix homology plots of the L amino acid sequences. Comparisons of NDV with Sendai virus and VSV are shown in (a) and (b), respectively. In both cases a window of 99 and a proportional score of 1025 were used with the DAIGON computer program (Staden, 1984). CEF cellular RNA (Fig.2, lane 3). The sequence resembling the mRNA start site at base 1 is discussed later.

The polyadenylation site, 5'-TTAGAAAAAA-3', matches a consensus sequence reported previously for NDV (19). There is a non-coding region of 70 nucleotides between the end of the long open reading frame and the proposed polyadenylation site (Fig. 1). Downstream of the proposed polyadenylation site is another non-coding region of 49 nucleotides which is discussed later.

Comparison of the predicted NDV L amino acid sequence to the L amino acid sequences of Sendai virus (16) and VSV (18) using the dot matrix homology computer program DIAGON (22) are shown in Fig. 3. The diagonal lines on the plots suggest extensive homology between the L amino acid sequences of NDV and Sendai virus (Fig. 3a) and to a lesser extent with that of VSV (Fig. 3b).

An alignment of the L amino acid sequence of NDV to those of Sendai virus and VSV is shown in Fig. 4. Gaps were inserted where necessary to maximise homology. If the extra gaps positioned to align the VSV sequence to those of NDV and Sendai virus are disregarded, the overall level of amino acid identities between NDV and Sendai virus is 27% in this alignment but the proposed sequence alignment can be roughly sub-divided into four regions with different levels of homology. The first 660 positions (matches plus gaps) show 24% identity, the second 650 positions show 39% identity, the third 600 positions show 21% identity and the remaining 350 positions show 17% identity.

Additional gaps must be inserted to align the VSV L amino acid sequence (residues 226 to 1243) into the sequence alignment (Fig. 4). Two regions of homology between VSV and the paramyxovirus sequences have been identified corresponding to amino acids 226 to 581 and 598 to 1243 of the VSV L sequence. There are 127 positions in which the amino acid residues are identical in the three proteins. These 'three-way matches' occur in the two blocks of sequence where the L protein of VSV has been aligned to those of NDV and Sendai virus. The number of glycine residues conserved in three-way matches is striking: 19/127 of the three-way matches are glycines (15% of the total) compared to the overall abundance of glycine in these regions of the three viral sequences (about 5% in all cases). Lysine and arginine residues are also present in three-way matches at a somewhat higher level than might be expected on the basis of their relative abundances.

1	MD G Q E S S Q N P S DTL Y P E CHI LN S PI V R CKI A O LH V LL D V N Q PY R L K DTD S I T V HKI R N G	Sen
1	MA S S G P E R A E H QTT I L P E S H L S S PL Y K HKL L Y Y W KLT G L P L PD E C D F DH L T L S R Q WKK I L E	NDV
61	С LS PRQI KIRS [С М К А LQ R TI К D L D В Y T F E P Y PT Y S Q E LL R L D I P E I C D К I В S V F A V S D R L	Sen
61	S A S P D T E R M I K L C B K A V H Q T L N H N S B I T G V L H P R C L E E L A S I E V P D S T N K F B K I E K K I Q I H	NDV
121	TRELSSOFODLUVLNIIFKOLGNIEGREGYDPLODIGTIPEITDKYSRNRUYRPFLTWFSIK	Sen
121	NTRYGELFTRUCTHIIEKKLUGSSUSNNVPRSEEFNSIIRTDPAFWFHSKWSTAKFAWLHIK	NDV
181	YDMRWMQKTRPGGPLDTSFIISHNLLECKSYTLVTYGDLVMILNKLTLTGYILTPELVLMYC	Sen
181	QIQRHL IVAARTRSAAUKLVMLTHKYGQVFVTPELVIVTHTNENKFTCL <u>TQELVLMYA</u>	NDV
226	MDRNFLLMVK	VSV
241	DVVEGR NNMSAACHLDKKSIGITS KOGERLWELVDSLFSSLCERIVIVIALLEPLSLA	Sen
239	DHMEGR DMVNIISTAVHLRSLSE KIDDILOULIDALLAKDLCNOVVDVUSLHEFFAYG	NDV
236	DVIIGEMOVVVSHVCRIDDNLFSECDIFSLLWLIVRTORKIVEROCMFSKDLTIKMVEDICNL	VSV
298	LIQ TH DEPVIP LIPEGAFFH RHVITELOTVLTSRDVYTDAEAD TIVESLLAIFHBTSIDEKAE	Sen
296	AVOLTEPSOFF FACHEPFAFFMLOGLKDILIG	NDV
296	LLPHDIARSSHFHVPODFHFFEMFTHLASVD ECAKLDRGIRFLHOOTHSJVKIVOLTV	VSV
357	∃ FSFERTFGIFSLEAV[TAADLKV RAННҮАОКАЦК LКТLУВСНАУ[FCTI] I N GYRERH GGQV	Sen
353	Н LCL_DHLTV GHPLLESRIAAKAVKSOHCAPKHYDPFDH I LOVLLSPLKCTII H GYRKKN KLGVV	NDV
351	[] V GSFNHUGHPLTIDYYEFCELGLINSGVT MKKDICDVS Y AKALASDLAHIVVEFOFFDH KKKKK	VSV
417	РРСРЕРЛИЧСЬЕЬКИ АОСЯИТАТЗУВСАЙОНУТ ТЗРІСРКЕРИКУРІВРОЬОВ БЫТІУИКОК	Sen
413	РИГУКУЛТІТСКІІСОЦПАРАВАЦІЯНДІЙ КОКАІСЬКИ БУІСАЦІСЬКИ ВРСІВУ ПОТУТИЦІИ КАКАІСЬКИ	NDV
410	Е УУИ КОПСЬИНАНРЕК SLAVK ВИТИРТАА ОЙУОРКОКИНАЦІРТІКСЕРСЬІРСЬКИ БУІСА	VSV
476	ALSPRKEAÜDSVYPDISNUY YKAPESEETRIRULEVFLINDEN IPN PEETIN TVESGDUL	Sen
472	AITAHPN DNULAISFRIRULESED OKKH VKEATSITNIRULITEFLESNDIPDIPTKETH KELTTEFL	NDV
469	STI	VSV
532 532 519	К [] <u>Е</u> Е Р. Н. Т. У. З. L. К. Е. К. ЁЈ [К] О. Е ГО М. [Г. А. К. Н. Т] У [К] <mark>Н</mark> [Я А ЧС Ў] (ЈА Е Т [_ L. А) К. С [Т. В.	Sen NDV VSV
592	LILKIR LITT LSV SG V PRIDSVYLMISKSSEK RMEG MENKHSGGY WOEKK RSRHEFKATDSST	Sen
592	LITK STLAMSG LSFN BMKKRITDCKER VSSM RMHOPKSKN RAR	NDV
579	VIKKK MEDOSUS GOGLKK	VSV
651	」 с(¥ ET L S C) (ТТ Б ЦКК Y С L Ж Ж Р Е В] т А L Ф С О В С ПЦ ; Г Б Г Р К Т Г Р Б ШИ М ПР У L В В С Т Т ¥ У Б Р Р	Sen
634	У К Т В I Т Т Б Ц О К Y С L № К Y С Т Х Ц Е Р А Н А Ц И Ц К Ц К Г М Г Р Б У I I И Я Ц Ц В Т Т П Р У С Б Р	NDV
595	У Е А I С I А М Н Т В У Е К М М Н Ю В К Ц В И С Р У Р В И Ю О Р К С Ц Р Х С Т В В Т Ц В Г Р Е Б К S Ц Т У В С В	VSV
711	У СРРУ АГЛЯМ НЯ ОЦЦО D Н А D S G[] F [] Н Н Р В G G I E G Y [G G K L V T] L [I S I] S A [] H L A A V R V G V R V S A M V	Sen
689	F N P P S [] P T D C D L S R V P N D D [L] Y L] V S A R G G I E G L C G K L V T] M I S I J A L I O L A A A R S H C R V A C M V	NDV
653	P D L H R V H N N T L I I N S T S G R V C V G G G E [] G [] G [] S I L N L L V [] S M R M X I R N T A V K V L A	VSV
771	GGDNOJALAVT SRVPVAOTYKO KKHHVYEELTEVPGALRHVMFDVOHELKENETTISS	Sen
749	GGDNOVIAVT REVRISDDSPEH VLITOLHOASDAVERELIEVMHLTOUMLKDBETTIBS	NDV
712	GGDNOVIAVT REVRISDDSPEH VLITOLHOASDAVERTATKELJEVUNELOUMLKDBETHOBA	VSV
828	K MFPVYSK RILY YD G KIL POGCL KAL JKCVP FYSBE JL V DEN RSACUSNIISTSI	Sen
806	TFFFIYSK RIFKD G AILJSOVL KN S5KLVM MYSGCD JS BN TV MSC GANIASLV	NDV
772	DYL MYDKIPF FREDVIJR GLE TLANVSBN TCVTM ND OF PLCANIAMSZUST NALTVALH FALE	VSV
881	П GYSPILGIY СІАLҮКТСООР СІЗLGИТІЙРТІ SPITVRD ОУ FKGKNU LRCAVLIPA MYC	Sen
859	NGLPKDFCIY [Y]LNYINSCVOTYFD SEPSYNNNS NPD LNOSWIEDISPI VNSYVLTPAJOL	NDV
828	ЦРГІЛАНІ ОЦЛЯЦТСТ FARLLIM NNDPALROSLYEVODIKIPS LHSST[DIXANLT]LOPPI IC.	VSV
939	GFNYHSITSRCFYFNIGDPAVAFALADLKRFIRADLLDKQV LYRWN NQE FÖDSSFL	Sen
917	CLSNUQYSRLYTRNIGDPGTTAFABIKRLEAVOLLSPNI HINILTRF PCHCDWA	NDV
886	GVSJGHSUSRFLIRAFFDPVTESLS FWRFTHWHARSEHLKEMSAVFGNDEIAKFRITHID	VSV
993	DWASDPYSICN LPHSQSITTIIKWITARSVLQ ESPNPLLSGLPFFEITSGEEDLWLASFL	Sen
971	STICNDPYSIPN FETVASPNIVLKKHTORVLIFE TCSNPLLSGVHTEDONEABEEKALAEFL	NDV
945	KLVEDPTSLMITAMGMSPANLLKTEVKKCLIESPQTIRMQVIKDATIYLYHEEDR LRSFL	VSV
1050	н ракуті цратулнаті цамізі таутара АГА бін цоттик s. чій АСЗУ які саст. Славі у мур.	Sen
1028	цмаєутінрау Аліпін в АСЗУ часня сасостуратимії у Гілата в Ріссткатіматі у КІС	NDV
1004	у sin Picter Paper exelfras at reicova na contistip form Schi (Tim NS) якіх.	VSV
1110	ОЧЕТ L Т R T L R K P V K D N I E Y E Y M C S V E L A V G L R G K U M I H L T Y G R P I H G L E T F D P L E L I R	Sen
1088	Н A M L I F R D D V F S S N R I SU M H L V S S M M C S L I L A D Y A M M M S M S P L T G G R K L I O V S N P D T I E L V E	NDV
1060	V S S L I H L G K L H R N G S C K M V T L C S A T I H A D T L M Y K S N G R T V I G T V Y I P H H L E M L	VSV
1168	бі ғі ғобығиск. (Сибығбалар I (ҰТҰҚТІ ғой Тарый Тарыссра Каларина)	Sen
1148	ағі суқасастарық аларық алар	NDV
1111	аған жетисалерин тысғи тарық аларық алары	VSV
1228	ΟΥ ΥΡΝΙΟΊ ΚΕΡΑΓΚΙΑ ΤΙ ΠΊΙΑ ΜΕΎΥ ΤΥ ΑΤΥ ΟΤ ΡΕΠΙΙ SUM ΕΛΑΙΓΕΛΟΙΠΑΝΙΟ SUE BUKKULITEYY SUB T	Sen
1206	ΑΚ ΙΑ ΗΜΟΣΡΗ ΥΚΑΑΙΙΛΑ S SYLIW ΑΤ 30 ΜΕΎΥΝΥΤΑΛΟ ΤΙ ΑΚ SIR CNI Η ULEYLINLISHE PLIATO	NDV
1166	ΡΥΕΛΕΣΚΎΤΟΙ ΙΚΓΛΑΤΗΣΙΕΛΙ SUF PY EPD SKLAMTI LSNIHSLT O ΕΣΥΥΤΚΆΡΟ ΠΟ ΡΚΑΤΟ	VSV
1287	ТИ Ц SH И Ц К ЮТ АГТО И КРК SA ЛГЦ У ЙАХ ЯР Г ПТ I S И D И НАККЕ А GESKOT И КУХОО ЦН Ц Т G L S L	Sen
1265	_И Ц О Ц И Д О Ц С И И Г ПТ РАХ Ц И В С И К Л И У РИ I С К GYS L К KESK R G И И Р I И В И Ц Ц G L S L	NDV
1224	S А ЦН ЯГ S T S И И SH C Ц И K BOLS	VSV
1346	FËFNHRYKKOSLOKPLILHLIILHNOCCIHËSPOEANIPPRSTLDLEITOENNKLITOPOP	Sen
1324	IESIFPHTTTRTYDEITLHLIISKFSCCINEARPVAYFFELGVAPELRIVTSUKFMYDPSC	NDV
1406 1384	L К D V[D] L E L F S K V R D V V H T V D H T Y V S D D[E] V I R A T[S] (T A H T[] A D T H S O L[D] R[D] N L K E H I [A] L V V S E C[] F A R L D L A I F K S Y E L N L E S Y F T I EL H N I LS] S S G K L [] G O S V V S Y[D] ED T S I K N D A I I	Sen NDV
1466	N D D D V N S LÎITÊFH V IÐ VPLFC S T F G G I L V N Q F ATSLT GLN IR GRE ETIN G H V V R I LKD T S H	Sen
1444	V Y D N T R N WIJSEA Q N SD Y V R L F E Y A A L E V L L D C SYQL YYLR V R G L D NI V L Y M G D L Y KH M P G	NDV

1526	A V L K V L S H A L S H P K I P K R P W N A G V V I P V I G P H L S N Q D K I L L A L S V C E Y S V D L P H H D W Q G G	Sen
1504	I L L S N I A A T I <u>S H P</u> V L H S B L H A V G L V N H N G S H Q L A D T D P L B M S A K L L V S C T R R V I S G L Y S G	NDV
1586	V Р L E I F I C D M D PD V A D M R R S S F L A RH L A Y L C S L A E I S R D G PR L E S M N S L E R L E S L L S Y L L	Sen
1564	M K Y D L L F P S V L D D N L M E K M L Q L I S R L C C L Y Y U F A T T R E I P K I R G L S A E E K C S V L T E Y L	NDV
1646	LTFLDDPFVLRYSQLTGLV IKVFPSTLTTIRKSSIKVLARTAGIGVPEVLEDWDPEADM	Sen
1623	LSDAVKPLLSPDQVSSIMSPMIITPPANLYTMSRKSLNLTABEAE DKDSILALLFP QE	NDV
1703	AL LDGIAABIQQNIPLGHQTRAFFFWGLRVSKSQVLRLÅGTKBITRGBTIGRSGVGLTLFFD	Sen
1680	PLLBFPSVQDIGARVKDPPTRQPAAPLQ BLDLSAPAR YDAPTLSQI HPBLTSPMPBE	NDV
1763	G R Y L S H Q L R L PGI I M ST SC L K A L ELT Y L L S P L Y D K D K D R L Y L G E G A G A M L SC Y D A T L G P C I	Sen.
1737	D Y L Y R Y L PRG I GT A SSS Y Y K A S H L L S Y P E Y R C A R H G M S L Y L A E G SG A I M S L L E L H Y P H E T	NDV
1823	ИТТИЗБАТЗСРАИ GORELNITPAEV ALVGKKUN MYTS LGORVKVUPNGNPGSTW	Sen
1797	Ц <u>УТИ</u> ТUFSNEMNPY <u>GB</u> HFGPTPTQFLNSVJIRNUQAE <mark>VTI</mark> CKDGFVQEFRPLWRENTEESD	NDV
1877	I G NDB C B A LI W N B L Q N SSI GLYH C DNBG G D H K D D Q Y Y L H B H Y S Y I R I A Y L Y G D R D Y Y LI S	Sen
1857	L T SDK A Y G Y IT S A Y P I R SY SLL <u>H C D</u> I BI P P G S N Q S L L D Q L A I N L S L <u>I A</u> M H S Y R B G G Y Y I I	NDV
1937	KIAPRIGTDUTROLSLYLRYUDEVNLIVLKTSNPÅSTEHYLLISNPKSDIIEDSKT VL	Sen
1917	KVLYANGYYPHLLNNLPA PCSTKGYILSNGYACRGDHECYLVPVN	NDV
1995	ASLLPIS KEDSIKIEKWILIEKAKAHEWYTRELREGSS SIGMIRPTHQALQTPGPEP	Sen
1962	GYLGGPTPVHE VVRMAK TLVQRHGTILSESDEITLTRIPTSQRQRV TDILSS PI P	NDV
2052	NLIYKL SROP L STM NIA D THN CHIAF NR VLK DTIPE WARTTES DKRLKLTGKYDLYPYR	Sen
2017	RLIKYLRKNIDTALLEAGG Q PYR PPC AESLYSTL ADIT QII ASHID TYIR SYIYM BA	NDV
2110	DSGKLKTTISRALVISVISLSMSTRLVTÖSFPDOKPEARLOLGITVSLSSREIRMLRVITKT	Sen
2077	EGDLADTVF UFTPINLSTDGKKRTSLKOCTROI UBVTILOLAVEDLNKIGDVISL	NDV
2170	LLDRPEDIIHSIITYRPLTKBI KILLMKILGAYK HPGARQNETITYIDDG SL	Sen
2132	VLKGMISMEDLIPLKTYLKHSTCPKYLKAVLGITKLKEMPTDTSVLYLLTRAQQKPYNKTI	NDV
2220 2192	Ср тертріўз Смачкодлізыков	

Figure 4. Comparison of the L amino acid sequences of NDV, Sendai virus (Sen) and VSV. The amino acid sequences are numbered from their N-termini, shown on the left hand side of the figure. Only the central region of VSV (residues 226-1243) which shows good homology to NDV and Sendai virus is shown. At positions where identical amino acids occur the residues are boxed.

The unmodified L protein has a net charge of +27 at pH 7.0 (assuming a charge of +0.5 on histidine residues) and an estimated pI of 7.28. A hydropathy plot of the NDV L amino acid sequence using the procedure of Kyte and Doolittle (34) is shown in Fig. 5. This plot is similar to the hydropathy plot of the L protein of Sendai virus and to a lesser extent to that of VSV (data not shown). There is a highly hydrophilic region in the NDV L protein sequence at position 602 to 633. The corresponding hydrophilic region is considerably more extensive in the L protein of Sendai virus but is absent from that of VSV. The amino acid alignment of Fig. 4 locates this hydrophilic region in an area where extensive insertions or deletions have occurred between the various proteins. The two regions where good homology can be detected between all three L protein sequences flank this highly variable area.

Figure 5. Hydropathy plots of the NDV L amino acid sequence. Hydrophobic regions are above and hydrophilic regions below the horizontal line, which is the average hydropathy of a large number of sequenced proteins.

DISCUSSION

The nucleotide sequence of the NDV L gene is 6704 nucleotides long and encodes the L protein of approximately 249 K. Apart from the major open reading frame of 2204 amino acids, corresponding to the L protein, a second open reading frame of 50 amino acids is shown in Fig. 1. There is evidence from a previous S1 nuclease mapping experiment using a labelled fragment ending at the TaoI site (position 192, Fig. 1) which suggested that nucleotides 1 and 45 both represented the 5' ends of viral transcripts (25). If a genuine mRNA start occurred at position 1, corresponding to the sequence resembling an mRNA start sequence at bases 1 to 11, the resulting mRNA would encode the smaller open reading frame, which begins at the ATG codon at position 9 to 11. A sequence of seven A residues follows this open reading frame (position 218 to 227) and this resembles the consensus NDV polyadenylation sequence that contains six A residues (25). If such a transcript did terminate at this site it would not appear as a protected band in the mung bean nuclease mapping experiment described here (Fig. 2), using a fragment labelled at the <u>Xba</u>I site (position 309, Fig. 1). Work is now underway to investigate the possibility of further transcriptional start sites in the NDV genome. This small hydrophobic, 50 amino acid sequence is neither homologous to the small hydrophobic (SH) protein recently detected in SV5 (35) nor to the polypeptides which may be encoded upstream of the L gene 10 20 30 40 50 leader RMA (+ sense) 5'- A C C A A'A C A C A G A G A A C A C A C A C A A C A A C A A C A A C A A C A C A A C A C A C A A C A A C A C A A C A C A C A C A C A C A A C A A C

Figure 6. Comparison of positive strand leader RNA sequence with putative negative strand leader RNA.

of Sendai virus (17) and at present there is no evidence that this polypeptide is generated.

We have also mapped the 5' end of the HN mRNA using mung bean nuclease. The results indicate that there is a 31 bp intergenic region between the F and HN genes, rather than the dinucleotide intergenic region which was previously proposed on the basis of sequence homology (19). These results agree with the recently published sequence of HN from the B1 strain of NDV (31). At the junction of the F and HN gene there is, however, a similar situation to that described at the HN/L junction. A sequence resembling an mRNA start sequence in the non-coding region is followed by an open reading frame of 41 amino acids that overlaps HN, which in turn is followed by a sequence of six A residues (25). The significance of these overlapping reading frames at the F/HN and HN/L junctions is not yet clear.

The complementary sequence to the non-coding region at position 6749 to 6777, downstream of the polyadenylation site, is compared to the positive strand leader RNA sequence of NDV (36) in Fig. 6, and may be part of a negative strand leader RNA similar to that demonstrated for VSV (37). Approximately 50% of the bases are identical including nine of the thirteen most 3' proximal residues. These sequences could act as signals for termination of transcription in both positive strand leader RNAs of Sendai virus are identical in eleven of the twelve most 5' proximal bases (14,38). The six most 5' proximal bases found in the positive strand leader of NDV (36) do not show homology to our sequence (Fig. 6) which suggests that our clone (4.14) may not quite reach the 5' terminus of the NDV genome.

In our alignment of the three L amino acid sequences (Fig. 4) the central region (position 634 to 1283 of NDV) is 39% conserved between NDV and Sendai virus, compared to approximately 20% conservation of the viral NP, M, F and HN proteins (25,28-30) and is thus probably the most highly conserved viral protein sequence, given the known variability of the P proteins (39). Four peptides that show strong homology between the three viruses are located in the NDV sequence at positions 543 to 554 (7/12 three-way matches), 715 to

725 (7/10 three-way matches), 749 to 755 (6/7 three-way matches) and 1192 to 1199 (5/8 three-way matches). The region corresponding to positions 543 to 560 of the NDV L protein was identified by Morgan and Rakestraw (17) as being a well conserved region between Sendai virus and VSV.

The L protein of NDV is probably multifunctional in the processes of viral transcription and replication, perhaps including initiation, elongation, termination, polyadenylation, capping and methylation activities, as has been shown for VSV (12-15). It may be that the regions of high homology between NDV, Sendai and VSV are those that perform functions common to all the L proteins. These conserved regions could act as catalytic sites or binding sites for small host metabolites, while the variable regions of L may be those that interact with other viral proteins such as P or NS. The P and NS proteins are themselves known to be highly variable and appear to mutate at a high frequency (39,40). None of the well conserved regions that we have detected, match any of the presently identified consensus sequences for nucleotide-protein interacting sites, although the sequences Gly-Gly-Ile-Glu-Gly (NDV positions 715 to 719) and Gly-Ser-Lys-Thr (NDV positions 1194 to 1197) are reminiscent of the ATP binding sites with the consensus sequence Gly-X-Gly-X-X-Gly and Gly-Lys-Thr/Ser respectively (41-43).

Conserved regions which are present in all three viral sequences may have important enzymatic or conformational functions. Conserved glycines may be important in maintaining protein structure, as glycines occur at tight turns around alpha-helices or between the strands of beta-sheets (43-45). The abundance of conserved glycines in the regions of homology between NDV, Sendai virus and VSV L proteins suggests similar conformations in these regions. For example, the conserved region in the amino acid alignment corresponding to NDV positions 531 to 594 is predicted to be rich in alphahelix (44). The conserved Gly-Arg-(hydrophobic) residues within this region (at position 551 to 553 in the NDV sequence) could form a turn in this largely alpha-helical part of the L proteins. This region could thus have a conformation of helix-turn-helix similar to that present at the DNA binding site of several bacterial repressor proteins (45), and could be important in the interaction of the L proteins with viral RNA.

The above considerations suggest that most of the RNA synthetic and modification activities are located in the N-terminal two-thirds of the L protein. The strongly hydrophilic region extending from position 602 to 633 in the NDV L protein, which is variable amongst the three viruses, is located between the two regions conserved in all three sequences and may form a bridge linking these two conserved regions, which could thus be considered as separate domains. The domain nearer the C-terminus is more highly conserved than the domain nearer the N-terminus (39% and 26% identities between NDV and Sendai virus; 14% and 9% three-way matches, respectively). The most variable regions of the L proteins are located at the C-terminal third of the sequences. These regions may have virus-specific functions such as interactions with the respective NP and P or NS polypeptides.

The amino acid sequence homologies detected between the L proteins of the two paramyxoviruses NDV and sendai virus and the rhabdovirus VSV, are evidence that an evolutionary relationship exists between the <u>Paramyxoviridae</u> and <u>Rhabdoviridae</u>, and strongly suggests that these groups of viruses have evolved from a common ancestor.

ACKNOWLEDGEMENTS

We thank June Ramsay and Kate Brown for technical assistance and the North of England Cancer Research Campaign for financial support. N.S.M. was supported by an SERC studentship.

REFERENCES

- 1. Kolakofsky, D., Boy de la Tour, E., and Delius, H. (1974) J. Virol. <u>13</u>, 261-268.
- Choppin, P. W. and Compans, R. W. (1975) In 'Comprehensive Virology' (Fraenkel-Conrat, H. and Wagner, R. R. eds.) pp.75-178, Plenum Press, New York.
- 3. Wagner, R. R. (1975) In 'Comprehensive Virology' (Fraenkel-Conrat, H. and Wagner, R. R. eds.) pp.1-80, Plenum Press, New York.
- 4. Ball, L. A. and White, C. N. (1976) Proc. Natl. Acad. Sci. USA <u>73</u>,442-446.
- 5. Collins, P. L., Hightower, L. E. and Ball, L. A. (1980) J.Virol. <u>35</u>, 682-693.
- Abraham, G. and Banerjee, A. K. (1976) Proc. Natl. Acad. Sci. USA <u>73</u>, 1504-1508.
- 7. Bishop, D. H. L. (1977) In 'Comprehensive Virology' (Fraenkel-Conrat, H. and Wagner, R. R. eds.) pp. 117-278, Plenum Press, New York.
- Thomas, D., Newcomb, W. W., Brown, J. C., Wall, J. S., Hainfield, J. F., Trus, B. L. and Steven, A. C. (1985) J. Virol. <u>54</u>, 598-607.
- 9. Lamb, R. A., Mahy, B. W. J. and Choppin, P. W. (1976) Virology <u>69</u>, 116-131.
- Hamaguchi, M., Yoshida, T., Nishikawa, K., Naruse, H. and Nagai, Y. (1983) Virology <u>128</u>, 105-117.
- 11. Emerson, S. U. and Yu, Y.-H. (1975) J. Virol. 15, 1348-1356.
- Horikami, S. M. and Moyer, S. A. (1982) Proc. Natl. Acad. Sci. USA <u>79</u>, 7694-7698. 13. Schubert, M., Keene, J. D., Herman, R. C. and Lazzarani, R.A. (1980) J. Virol. <u>34</u>, 550-559.
- 14. Schubert, M. and Lazzarani, R. A. (1981) J. Virol. <u>38</u>, 256-262.
- 15. Hunt, D. M., Smith, E. F. and Buckley, D. W. (1984) J. Virol. <u>52</u>, 515-521.

- 16. Shioda, T., Iwasaki, K. and Schibuta, H. (1986) Nucleic Acids Res. 14, 1545-1563.
- 17. Morgan, E. M. and Rakestraw, K. M. (1986) Virology 154, 31-40.
- 18. Schubert, M., Harmison, G. G. and Meier, E. (1984) J. Virol. <u>51</u>, 505-514.
- 19. Chambers, P., Millar, N. S., Bingham, R. W. and Emmerson, P. T. (1986) J. Gen. Virol. 67, 475-486.
- 20. Sanger, F., Nicklen, S. and Coulson, A. R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.
- 21. Mizusawa, S., Nishimura, S. and Seela, F. (1986) Nucleic Acids Res. 14. 1319-1324.
- 22. Staden, R. (1984) Nucleic Acids Res. 12, 521-538.
- 23. Queen, C. and Korn, L. J. (1984) Nucleic Acids Res. 12, 581-599.
- 24. Chambers, P. and Samson, A. C. R. (1982) J. Gen. Virol. 58, 1-12.
- 25. Millar, N. S., Chambers, P. and Emmerson, P. T. (1986) J. Gen. Virol. 67, 1917-1927.
- 26. Maniatis, T., Fritsch, E. F. and Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York.
- 27. Biggin, M. D., Gibson, T. J. and Hong, C. F. (1983) Proc. Natl. Acad. Sci. USA 80, 3963-3965.
- 28. Chambers, P., Millar, N. S., Platt, S. G. and Emmerson, P.T. (1986) Nucleic Acids Res. 14, 9051-9061.
- 29. Chambers, P., Millar, N. S. and Emmerson, P. T. (1986) J. Gen. Virol. 67, 2685-2694.
- 30. Ishida, N., Taira, H., Omata, T., Mizumoto, K., Hattori, S., Iwasaki, K. and Kawakita, M. (1986) Nucleic Acids Res. 14, 6551-6564.
- 31. Jorgensen, E. D., Collins, P. L. and Lomedico, P. T. (1987) Virology 156, 12-24.
- 32. Kozak, K. (1981) Nucleic Acids Res. 9,5233-5252.
- 33. Kozak, K. (1986) Cell <u>44</u>, 283-292.
- 34. Kyte, J. and Doolittle, R. F. (1982) J. Mol. Biol. 157, 105-132.
- 35. Hiebert, S. W., Paterson, R. G. and Lamb, R. A. (1985) J. Virol. <u>55</u>, 744-751.
- 36. Kurilla, M. G., Stone, H. O. and Keene, J. D. (1985) Virology 145, 203-212.
- 37. Lepert, M., Rittenhouse, L., Perrault, J., Summers, D. F. and Kolakofsky, D. (1979) Cell <u>18</u>, 735-747.
- 38. Shioda, T., Hidaka, Y., Kanda, T., Shibuta, H., Nomoto, A. and Iwaski, K. (1983) Nucleic Acids Res. 11, 7317-7330.
- 39. Spriggs, M. K. and Collins, P. L. (1986) J. Gen. Virol. <u>51</u>, 515-524. 40. Gill, D. S. and Banerjee, A. K. (1985) J. Virol. <u>55</u>, 60-66.
- 41. Walker, J. E., Saraste, M., Runswick, M. J. and Gay, N. J. (1982) EMBO J. 1, 645-951.
- 42. Fry, D. C., Kuby, S. A. and Milvan, A. S. (1986) Proc. Natl. Acad. Sci. USA <u>83</u>, 907-911.
- 43. Wierenga, R. K., Terpstra, P. and Hol, W. G. J. (1986) J. Mol. Biol. <u>187</u>, 101-107.
- 44. Garnier, J., Osguthorpe, D. J. and Robson, B. (1978) J. Mol. Biol. <u>120</u>, 97-120.
- 45. Pabo, C. O. and Sauer, R. T. (1984) Annu. Rev. Biochem. <u>53</u>, 293-321.