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Differential equation model in Figure 5A 
 
While equations 1-4 in the main text were derived from standard descriptions of 
transcription, translation, and mass-action kinetics, the derivation of Equation 5 
deserves more detail. Consider three protein species, an activator (A), repressor 
(R), and non-specific factor (X) which recognize the same promoter binding site. 
If these proteins are in equilibrium with DNA, then: 
 
(S1)      

 
A + DNAfree

   A :DNA  

(S2)      
 
R + DNAfree

   R :DNA  

(S3)       X + DNAfree
   R :DNA  

 
The dissociation constants of A, R, and X are Kd ,A , Kd ,R , and Kd ,X , respectively, 
and this results in: 
 
(S4)      [A]⋅[DNA] free = Kd ,A ⋅[A :DNA]  
(S5)      [R]⋅[DNA] free = Kd ,R ⋅[R :DNA]  
(S6)      [X]⋅[DNA] free = Kd ,X ⋅[X :DNA]  
 
 
The occupancy of A at the binding site is given by: 
 

(S7)           OA =
[A :DNA]

[DNA] free + [A :DNA]+ [R :DNA]+ [X :DNA]
 

 

By definition, Kd =
1
Ka

. Using this relation and substituting (S4-S6) into (S7) we 

obtain: 
 

(S8)          OA =
Ka,A[A]

1+ Ka,A[A]+ Ka,R[R]+ Ka,X[X]
 

 
 

We can then write the rate of change of target transcription, d[M ]TARGET
dt

, as 

 

(S10)   

d[M (t)]TARGET
dt

= µAOA(t)+ µROR(t)+ µXOX (t)−
1
τ
[M (t)]TARGET

, 
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where we have assumed first-order degradation of transcripts. We then set µR = 0
and Ka,X[X]= x0  where x0 is an effective parameter of the affinity and 
concentration of the non-specific factor. This results in  
 

(S11)   

d[M (t)]TARGET
dt

=
µAKa,A[A(t)]+ µXx0

1+ x0 + Ka,A[A(t)]+ Ka,R[R(t)]
− 1
τ
[M (t)]TARGET

 
 
which is the functional form of Equation 5 in the main text. Descriptions of 
parameters for the full model in the text are contained in Table S1.  
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Table S1: Parameter values and descriptions for simulations in Figure 5A 
 

 
Parameter Description Value 

MCBF1(t)  number of co-factor mRNAs 0 (at t = 0) 

PCBF1(t)  number of co-factor proteins 0 (at t = 0) 

PCBF1,MET 4,COMPLEX (t)  number of trans-activator complexes 0 (at t = 0) 

MTARGET (t)  number of target transcripts produced 0 (at t = 0) 

PMET 4,TOTAL  number of activator proteins 0 or 2000 

µ1(t)  rate of transcription of CBF1 downstream of PGAL1 
0 min-1 prior to pulse, 

4 min-1 after pulse 

µ2  
strength of activation of MTARGET (t)  by 

PCBF1,MET 4,COMPLEX (t)  
3 min-1 

µ3  strength of activation of MTARGET (t)  by x0  1 min-1 

 mRNA half-life 10 min 

 protein half-life 20 min 

 

effective parameter (time delay between activator 

complex formation and finding the correct binding 

site, recruiting RNA polymerase, and transcription 

initiation) 

5 min 

 translation rate 3 min-1 

 

effective parameter that accounts for fast formation of 

Cbf1p dimers, formation of active complexes with 

Met4p, and a slow dissociation of these complexes 

3 min-1 

Ka  strength of TF binding 1  

x0  
effective parameter of the affinity and amount of non-

specific factor 
1 
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Differential equation model of a Met4p/Met32p feed-forward loop 
 

(S12)   
dMMET 4 (t)

dt
= µ1(t)−

1
τ1
MMET 4 (t)  

(S13)   
dPMET 4 (t)

dt
= β1MMET 4 (t)−γ 1PMET 4 (t)PMET 32 (t)−

1
τ 2
PMET 4 (t)  

(S14)   
dMMET 32 (t)

dt
= φ1

Ka,1PMET 4 (t −τ 3)
1+ Ka,1PMET 4 (t −τ 3)

⎛

⎝⎜
⎞

⎠⎟
− 1
τ1
MMET 32 (t)

 

(S15)   
dPMET 32 (t)

dt
= β1MMET 32 (t)−γ 1PMET 4 (t)PMET 32 (t)−

1
τ 2
PMET 32 (t)

 

(S16)   
dPMET 4,MET 32,COMPLEX (t)

dt
= γ 1PMET 4 (t)PMET 32 (t)−

1
τ 2
PMET 4,MET 32,COMPLEX (t)

 

(S17)      dMOUTPUT (t)
dt

= φ2
Ka,2PMET 4,MET 32,COMPLEX (t −τ 3)

1+ Ka,2PMET 4,MET 32,COMPLEX (t −τ 3)
⎛

⎝⎜
⎞

⎠⎟
− 1
τ1
MOUTPUT (t)
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Table S2: Parameter values and descriptions for simulations in Figure S4.  
 

Parameter Description Value 

MX (t)  number of mRNA molecules of species X 0 (at t = 0) 

PX (t)  number of proteins of species X 0 (at t = 0) 

φ1  strength of activation of MMET 32 (t)  by PMET 4 (t)  varies 

φ2  
strength of activation of MOUTPUT (t) response to 

PMET 4,MET 32,COMPLEX (t)  
varies 

µ1(t)  rate of transcription of MET4 downstream of PGAL1 
0 min-1 prior to pulse, 

4 min-1 after pulse 

 mRNA half-life 10 min 

 protein half-life 20 min 

 

effective parameter accounting for the time delay between 

the activator localizing to the nucleus, finding the correct 

binding site, recruiting RNA polymerase, and initiating 

transcription 

5 min 

 translation rate 3 min-1 

Ka  strength of TF binding 1 

 
effective parameter of Met4p-Met32p complex formation 

with slow dissociation  
3 min-1 
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Supplemental Figure Legends  
 
Figure S1: Gene expression data overview.  (A) Clustered heatmap of 
methionine-limited GEV experiments collected in this study. 872 genes were 
floored to a log2-transformed value of 0 in each array and removed prior to 
clustering the remaining 5384 genes. (B) The number of genes that are 
upregulated >2-fold (red), repressed >2-fold (green), and the sum of both (black) 
at each time point when GEV is induced in DBY12142 (Control).    
 
Figure S2: Cbf1p switches between a repressor and a co-activator of 
Cluster 9 genes based on choice of nutrient limitation.  Cells were grown 
under either 20 mg/L phosphate-limited (P) or 7.5 mg/L methionine-limited (M) 
growth. Cbf1p overexpression experiments are sampled out to 90 minutes. The 
phosphate-limited Cbf1p experiment samples are at t = 0, 5, 15, 30, 45, and 90 
minutes following β-estradiol addition to the culture. The methionine-limited 
Cbf1p experiment samples are at t = 0, 2.5, 5, 15, 30, 45, 60, and 90 minutes. 
The GEV-only controls have an additional time-point at 2 hours. The phosphate-
limited GEV-only experiment samples are at t = 0, 2.5, 5, 18, 30, 45, 60, 90 and 
120 minutes. The methionine-limited GEV experiment samples are at t = 0, 2.5, 
5, 15, 30, 45, 60, 90, and 120 minutes. Previously identified targets of Cbf1p are 
indicated in orange (p< 0.005; MacIsaac et al, 2006) and cyan (Lee et al, 2010).  
 
Figure S3: The transcriptional responses of Cluster 3 and Cluster 5 genes 
to Cbf1p induction under phosphate (P) or methionine (M) limitation. 
 
Figure S4: Simulations of feed-forward architecture. (A) Met4p stimulates the 
production of MET32 transcript (and thus, Met32p protein). Met4p then forms a 
complex with Met32p and stimulates the production of a target gene (marked 
OUTPUT). (B) Numerical modeling of schematic in (A). The model can be found 
in Equations S12-S17 in the Supplement. The parameters φ1 and φ2 are the 
strength of stimulation of MET32 transcription by Met4p and the strength of 
stimulation of OUTPUT transcription by the Met4p-Met32p complex, respectively.   
 
Figure S5: Heatmap of clustered transcription factor activities calculated 
with MatrixREDUCE. The activities are shown for t = 2.5, 5, 15, 30, 45, 60, and 
90 minutes following β-estradiol pulse from the time-zero transformed data in Fig 
2.   
 
Figure S6: Comparison of expression data with biochemically-determined 
TF targets. (A) The fraction of biochemically-determined (YEASTRACT) direct 
targets induced or repressed at least 2-fold in response by a TF. (B) The number 
of targets activated (A), repressed (R), or both activated and repressed (B) at 
least 2-fold by a single TF.  
 
Figure S7: Construction of GEV-inducible alleles. Linear fragments of 
KanMX4-PGAL1 DNA were PCR amplified with homology to genomic targets. 
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Homology is chosen to place the new promoter and drug cassette between the 
first ATG of the TF open reading frame and the TF’s native promoter.  
 
Figure S8: Growth of met6∆ strain with different levels of methionine. (A) 
Final optical density (measured in Klett units) of methionine auxotroph strain 
grown in YNB + varying amounts of methionine for 2 days. (B) Histograms of cell 
volumes from steady-state (chemostat) cultures with 3.75, 7.5, or 15 mg/L of 
methionine. (C) Density of steady-state cultures determined by Klett and Coulter 
Counter.  
 


