Total Synthesis of Diazonamide A

Robert R. Knowles, Joseph Carpenter, Simon B. Blakey, Akio Kayano, Ian K. Mangion, Christopher J. Sinz and David W. C. MacMillan*

Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544

General Information

Commercial reagents were purified prior to use following the guidelines of Perrin and Armarego.¹ All solvents were purified according to the method of Grubbs.² Non-aqueous reagents were transferred under nitrogen or argon via syringe or cannula. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator using a water bath. Chromatographic purification of products was accomplished using forced-flow chromatography on ICN 60 32-64 mesh silica gel 63 according to the method of Still.³ Thin-layer chromatography (TLC) was performed on Silicycle 0.25 mm silica gel F-254 plates. Visualization of the developed chromatogram was performed by fluorescence quenching or by anisaldehyde, ceric ammonium molybdate, or potassium permanganate stain.

¹H and ¹³C NMR spectra were recorded on a Bruker 500 (500 MHz and 125 MHz) unless otherwise noted. Chemical shifts (δ) are reported from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃: δ 7.26, C₆D₆: δ 7.15,

¹ Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals; 3rd ed., Pergamon Press, Oxford, 1988.

² Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics, 1996, 15, 1518.

³ Still, W. C.; Kahn, M.; Mitra, A. J. J. Org. Chem. 1978, 43, 2923.

CD₃OD: δ 4.78, 3.31: CD3CN δ 1.94). Data are reported as follows: chemical shift (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, br = broad, m = multiplet), integration, coupling constants (Hz), and assignment. ¹³C chemical shifts are reported in ppm from tetramethylsilane with the solvent as the internal standard (CDCl₃: δ 77.0, C₆D₆: δ 128.0, CD₃OD: δ 49.0: CD₃CN δ 118.3). Unless noted otherwise, the reported ¹H NMR signals were assigned using standard 2D NMR techniques or by a direct comparison to the ¹H NMR spectra of corresponding starting materials. IR spectra were recorded on a Perkin Elmer Spectrum 100 FTIR spectrometer and are reported in terms of frequency of absorption (cm^{-1}) . Mass spectra were obtained from the Princeton University Mass Spectral facility, and from the California Institute of Technology Mass Spectral facility. Gas liquid chromatography (GLC) was performed on Hewlett-Packard 6850 and 6890 Series gas chromatographs equipped with a split-mode capillary injection system and flame ionization detectors using a J&W Scientific DB-1701 (30 m × 0.25 mm) column as noted. High performance liquid chromatography (HPLC) was performed on Hewlett-Packard 1100 Series chromatographs using a Chiralcel AD column (25 cm) and AD guard (5 cm) as noted. Optical rotations were measured on a Jasco P-1010 polarimeter with $\left[\alpha\right]_{D}^{25}$ values reported in degrees; concentration (c) is in g/100 mL.

7-(benzyloxy)-3-bromo-1-(4-methoxybenzyl)-1H-indole: To a room

temperature solution of 7-benzyloxyindole (5.0 g, 22.4 mmol) in 90 mL of DMF was added bromine (1.18 mL, 22.84 mmol) dropwise over the course of ten minutes. After 20 minutes the solution was cooled to 0 °C and KOtBu (5.78 g, 51.5 mmol) was added in a single portion. 30 minutes later PMBCl (3.65 mL, 26.88 mmol) was added dropwise over several minutes by syringe, after which the reaction mixture was allowed to warm to room temperature. After 6 hours the reaction was judged complete by TLC and the reaction mixture was diluted with 300 mL of diethyl ether and washed with 100 mL of 1% Na₂S₂O₃. The organic portions were washed three times with water and then once with brine before being dried over sodium sulfate. The organic portion was then concentrated in vacuo to yield a viscous yellow oil. These crude extracts could then be recrystallized from a hot mixture of 10% ethyl acetate in hexanes to afford 7.27 g (77%) of the title compound as a white crystalline solid. IR (Film): 2931, 1611, 1574, 1512, 1497, 1453, 1422, 1383, 1322, 1248, 1209, 1175, 1080, 1056, 1033, 988, 875, 818, 774, 727, 695, 625 cm⁻¹; ¹H NMR: (300 MHz, CDCl₃) δ 7.38–7.25 (m, 5H, ArHs), 7.19 (dd, 1H, J = 0.9, 7.8 Hz, ArH), 7.07 (t, 1H, J = 7.8 Hz, ArH), 7.04 (s, 1H, C(2)-H), 6.95–6.88 (m, 2H, ArH), 6.80–6.72 (m, 3H, ArH), 5.51 (s, 2H, PhCH₂), 5.12 (s, 2H, PMBCH₂), 3.77 (s, 3H, MeO-Ar) ¹³C NMR: (300 MHz, CDCl₃) δ 158.9, 146.6, 136.7, 130.9, 129.9, 128.6, 128.1, 127.8, 125.7, 120.8, 114.0, 112.3, 104.6, 90.4,

70.5, 55.3, 52.2 HRMS (EI+) exact mass calculated for $[M+\bullet]$ (C₂₃H₂₀NO₂Br) requires *m/z* 421.0677, found *m/z* 421.0672.

7-(benzyloxy)-1-(4-methoxybenzyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-

2-yl)-1*H***-indole 2**: To a solution of *n*-butyllithium (7.34 mL, 10.65 mmol, 1.2 eq, 1.45M in hexanes) in 80 mL of THF at -78 °C was added 7-(benzyloxy)-3-bromo-1-(4-methoxybenzyl)-1*H*-indole (3.75 g, 8.88 mmol, 1.0 eq) in 10 mL of THF dropwise via syringe over 10 minutes. After 15 minutes, freshly distilled 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3.62 mL, 17.76 mmol, 2.0 eq) was added via syringe. This reaction mixture was allowed to warm to ambient temperature over 3 hours. At this point, 100 mL of a saturated aqueous solution of NH₄Cl was added to the reaction mixture and the layers were separated. The aqueous layer was washed 3 × 100 mL with

EtOAc. The combined organic layer was washed with 100 mL of brine, dried over sodium sulfate, and concentrated *in vacuo*. The residual oil was then recrystallized from a hot solution of 10% EtOAc in hexanes to give the title compound as an off-white crystalline solid (3.40 g, 82% yield). The remaining mass was recovered as debrominated starting material. IR (Film): 2976, 1613, 1573, 1539, 1513, 1495, 1454, 1379, 1290, 1267, 1247, 1206, 1144, 1107, 1059, 1009, 783, 735, 696, 681 cm⁻¹; ¹H NMR: (300 MHz, CDCl₃) δ 7.66 (dd, 1H, J = 0.6, 8.1 Hz, ArH), 7.48 (s, 1H, C(2)-H), 7.35–7.22 (m, 5H, ArH), 7.03 (t, 1H, J = 8.1Hz, ArH), 6.91–6.87 (m, 2H, ArH), 6.78–

6.65 (m, 3H, Ar**H**), 5.52 (s, 2H, PhC**H**₂), 5.09 (s, 2H, PMBC**H**₂), 3.75 (s, 3H, **Me**O-Ar), 1.35 (s, 12H, 4x**Me**) ¹³C NMR: (300 MHz, CDCl₃) δ 158.7, 146.6, 138.8, 137.0, 135.3, 131.3, 128.5, 128.4, 128.1, 127.9, 127.8, 126.9, 120.8, 115.7, 113.8, 104.1, 82.8, 70.3, 55.3, 52.2, 25.0 HRMS (EI+) exact mass calculated for [M+•] (C₂₉H₃₂BNO₄) requires *m/z* 469.2424, found *m/z* 469.2416.

(S)-methyl3-(4-hydroxy-3-iodophenyl)-2-((S)-3-methyl-2-

(triisopropylsilyloxy) butanamido)propanoate 3: 3-Iodotyrosine methyl ester (15.4 g, 47.95 mmol), acid 3a (11.96 g, 43.59 mmol), EDC (9.19 g, 47.95 mmol), and HOBt (6.47 g, 47.95 mmol) were combined in a 500 mL round bottom flask and 190 mL of DMF was added. After 12 hours the reaction mixture was diluted with 500 mL of ether and washed with 3 × 500 mL of water. The combined organic fractions were washed with brine and concentrated. The resulting oil was purified on silica gel (30% ethyl acetate in hexanes) to yield the title compound as a colorless oil (21.2 g, 82% yield). IR (Film): 3402, 2944, 2867, 1746, 1654, 1603, 1505, 1462, 1415, 1347, 1292, 1215, 1099, 1058, 882, 822, 684 cm⁻¹; ¹H NMR: (300 MHz, CDCl₃) δ 7.44 (d, 1H, J = 2.1 Hz, ArH ortho to iodide), 7.05 (br s, 1H, NH), 6.99 (dd, 1H, J = 2.1, 8.55 Hz, ArH para to iodide), 6.87 (d, 1H, J = 8.5 Hz, ArH meta to iodide), 5.82 (s, 1H, OH), 4.87 (m, 1H, NHCH), 4.15 (d, 1H, J = 3.3 Hz, CHOTIPS), 3.69 (s, 3H, CO₂Me), 2.91 (m, 2H,

ArCH₂), 1.99 (m, 1H, CH(CH₃)₂), 1.1–1.0 (m, 21H, TIPS), 0.93 (d, 3H, J = 7.2 Hz, CH(CH₃)₂), 0.861 (d, 3H, J = 7.2 Hz, CH(CH₃)₂), ¹³C NMR: (75 MHz, CDCl₃) δ 172.88, 171.6, 154.5, 139.2, 131.0, 130.0, 115.3, 85.6, 78.3, 52.6, 52.4, 37.4, 34.2, 18.2, 18.1, 17.9, 17.5, 12.6 HRMS (FAB+) exact mass calculated for [M+H] (C₂₄H₄₁NO₅SiI) requires *m/z* 578.1799, found *m/z* 578.1791; $[\alpha]_D^{25} = -5.75$ (c = 1.0 CHCl₃).

(*S*)-3-methyl-2-(triisopropylsilyloxy)butanoic acid 3a: To (*S*)-2-hydroxy valeric acid (5.0 g, 42.3 mmol) in a stirred solution of DMF (22 mL) was added triisopropylsilyl chloride (22 mL, 102 mmol) and imidazole (1.38 g, 204 mmol). After 24 hours, MeOH (210 mL) and 1M aqueous K_2CO_3 (64 mL) were added to this slurry, and after 4 h the resultant solution was diluted with 400 mL H₂O, acidified to pH 4, and extracted 3 × 300 mL with EtOAc. The combined organic fractions are washed with brine and concentrated. The resulting oil is purified of remaining TIPSOH by vacuum distillation of this impurity (85 °C, min. 10 mTorr) to yield the title compound as a colorless oil (9.7 g, 82% yield). IR (Film): 2963, 2945, 2869, 1723, 1465, 1388, 1234, 1152, 1068, 997, 882, 825, 681 cm⁻¹; ¹H NMR: (300 MHz, CDCl₃) δ 4.26 (d, 1H, J = 3.6 Hz, CHOTIPS), 2.06 (m, 1H, CH(CH₃)₂), 1.10–0.97 (m, 27H, TIPS, CH(CH₃)₂), ¹³C NMR: (75 MHz, CDCl₃) δ 173.2, 65.9, 33.7, 17.9, 17.8, 17.7, 17.0,

15.3, 12.2; HRMS (FAB+) exact mass calculated for [M+H] (C₁₄H₃₁O₃Si) requires *m/z* 275.2043, found *m/z* 275.2041; $[\alpha]_D^{25} = -16.81$ (c = 1.0 CHCl₃).

(S)-methyl3-(3-(7-(benzyloxy)-1-(4-methoxybenzyl)-1H-indol-3-yl)-4 hydroxyphenyl)-2-((S)-3-methyl-2-(triisopropylsilyloxy)butanamido)propanoate 4: A 100 mL round bottom flask with stirbar is charged with Pd(dppf)Cl₂ (0.633 g, 0.7755 mmol), K₃PO₄ (8.78 g, 41.36 mmol) and indole boronic ester 2 (8.74 g, 18.62 mmol) in a glove box. This flask was capped with a rubber septa and brought out of the box where in it was placed under a balloon of argon. To the flask is added aryl iodide 3 (5.976 g, 10.34 mmol) in 60 mL of degassed 1,4-dioxane. To this solution is then added 6 mL of degassed water and the resulting solution is stirred at 40 °C for 2 hours. After the reaction was judged complete by TLC analysis, the reaction mixture was diluted with 200 mL of diethyl ether and washed sequentially with 100 mL portions of water, saturated NH₄Cl solution, and brine. The organic portion is dried over sodium sulfate and concentrated *in vacuo*. These crude extracts were purified by column chromatography (4% Et_2O/CH_2Cl_2) to yield the title compound (6.38 g, 78%) as a white amorphous solid. IR (Film): 3409, 2945, 2867, 2360, 1747, 1654, 1612, 1570, 1512, 1456, 1385, 1248, 1209, 1175, 1063, 882, 821 cm⁻¹; ¹H NMR; (300 MHz, CDCl₃) § 7.34–6.68 (m, 17H, ArH and NH); 5.59 (s, 2H, OCH₂Ph), 5.34 (s, 1H,

ArOH), 5.15 (s, 2H, OCH₂-*p*MeOPh), 4.90 (ddd, 1H, J = 6.0, 6.3 and 8.4 Hz, CHCO₂Me), 4.14 (d, 1H, J = 3.3 Hz, CHOTIPS); 3.77 (s, 3H, ArOMe); 3.66 (s, 3H, CO₂Me); 3.05 (m, 2H, CH₂Ar); 1.93 (ddq, 1H, J = 3.6, 7.2, and 7.9 Hz, CHMe₂); 1.10– 0.98 (m, 21H, TIPS); 0.88 (d, 3H, J = 6.9 Hz, CH(Me)Me); 0.79 (d, 3H, J = 6.9 Hz, CH(Me)Me) ¹³C NMR: (300 MHz, CDCl₃) δ 172.4, 171.8, 158.8, 152.5, 146.9, 136.7, 131.0, 129.2, 129.1, 128.6, 128.1, 128.0, 127.8, 127.5, 126.5, 121.1, 120.9, 115.4, 113.9, 112.7, 110.9, 104.6, 78.1, 76.6, 70.4, 55.2, 52.5, 52.2, 52.1, 37.7, 33.9, 18.0, 17.9, 17.7, 17.2, 12.3; HRMS (FAB+) exact mass calculated for [M+•] (C₄₇H₆₀N₂O₇Si) requires *m/z* 792.4170, found *m/z* 792.4175; $[\alpha]_D^{25}$: -9.39 (c = 1.03, CHCl₃).

(*S*)-3-(3-(7-(benzyloxy)-1-(4-methoxybenzyl)-1*H*-indol-3-yl)-4-hydroxyphenyl)-2-((*S*)-3-methyl-2-(triisopropylsilyloxy)butanamido)propanoic acid 4a: To a solution of 4 (9.50 g, 11.98 mmol) in THF/MeOH/H₂O (130 mL, 10:2:1) was added LiOH•H₂O (2.01 g, 47.9 mmol) with stirring. After the reaction was judged complete by TLC analysis (4 h), the reaction mixture was diluted with 300 mL of diethyl ether, acidified with 1N HCl to pH 2, and washed with 100 mL of brine. The organic portion was dried over sodium sulfate and concentrated *in vacuo*. These crude extracts were purified by column chromatography (40% EtOAc/Hexanes with 1% AcOH) to yield the title compound (9.24 g, 99%) as a white amorphous solid. IR (Film): 3402, 2944,

2867, 1723, 1641, 1613, 1572, 1513, 1454, 1385, 1248, 1209, 1176, 1063, 909, 882, 821, 732 cm⁻¹; ¹H NMR: (300 MHz, CDCl₃) δ 7.35–6.73 (m, 17H, Ar**H** and N**H**); 5.57 (s, 2H, OC**H**₂Ph), 5.13 (s, 2H, OC**H**₂-pMeOPh), 4.89 (dd, 1H, J = 7.2, 12.9 Hz, C**H**CO₂H), 4.16 (d, 1H, J = 3.3 Hz, C**H**OTIPS); 3.76 (s, 3H, ArO**Me**); 3.17 (dd, 1H, J = 5.4, 14.7 Hz, C**H**₂Ar); 3.05 (dd, 1H, J = 7.2, 14.4 Hz, C**H**₂Ar); 1.92 (m, 1H, C**H**Me₂); 1.04–0.98 (m, 21H, TIPS); 0.83 (d, 3H, J = 6.9 Hz, CH(**Me**)Me); 0.74 (d, 3H, J = 6.9 Hz, CH(**Me**)Me); ¹³C NMR: (75 MHz, CDCl₃) δ 175.8, 173.5, 158.8, 152.6, 146.9, 136.7, 131.3, 131.1, 129.2, 129.1, 128.6, 128.2, 128.0, 127.8, 127.2, 126.5, 121.3, 120.9, 115.6, 113.9, 112.7, 110.9, 104.5, 78.0, 70.4, 55.2, 52.6, 52.1, 37.0, 33.9, 18.0, 17.9, 17.6, 17.2, 12.3; HRMS (FAB+) exact mass calculated for [M+•] (C₄₆H₅₈N₂O₇Si) requires *m*/*z* 778.4013, found *m*/*z* 778.4034 [α]²⁵ = –28.48 (c = 0.53, CHCl₃)

(*S*)-*S*-ethyl2-(2-(*tert*-butoxycarbonylamino)-3-methylbutanamido) ethanethioate: To a 0 °C solution of commercially available *N*-Boc-valinylglycine (2.96 g, 10.79 mmol) in 50 mL of CH₂Cl₂ under argon was added NEt₃ (3.91 mL, 28.054 mmol) followed by isobutyl chloroformate (1.66 mL, 12.95 mL). After 1 hour at 0 °C was added ethanethiol (1.67 mL, 2.0 mmol) and the reaction was warmed to room temperature and stirred for ten hours. The reaction mixture was then diluted with NaHCO₃ and extracted 3 × 100 mL of CH₂Cl₂. The combined organic layer was washed with 200 mL of brine and concentrated. The resulting oil was recrystallized

from a hot solution of 10% ethyl acetate in hexanes to give the title compound as a white crystalline solid in 85% yield (2.90 g). IR (Thin Film): 3310, 3077, 2968, 2932, 1688, 1663, 1525, 1392, 1366, 1298, 1247, 1170, 1094, 1043, 1016, 966 cm⁻¹; ¹H NMR: (300 MHz, CDCl₃) δ 6.66 (br s, 1H, NH), 5.03 (br s, 1H, NHBoc), 4.19 (d, 2H, J = 5.4 Hz, NHCH₂), 4.00 (dd, 1H, J = 6.0, 8.4 Hz, CHNHBoc), 2.91 (q, 2H, J = 7.5 Hz, SCH₂), 2.21 (m, 1H, CHMe(Me)), 1.44 (s, 9H, OtBu), 1.25 (t, 3H, J = 7.5 Hz, SCH₂CH₃), 0.98 (d, 3H, J = 6.9 Hz, CHMe(Me)), 0.94 (d, 3H, J = 6.9 Hz, CHMe(Me)); ¹³C NMR: (75 MHz, CDCl₃) δ 196.9, 172.2, 156.2, 80.3, 60.1, 49.2, 30.9, 28.5, 23.4, 19.6, 17.9, 14.8; HRMS: (FAB+) exact mass calculated for [M+H] (C₁₄H₂₇N₂O₄S) requires *m/z* 319.1702, found *m/z* 319.1692; $[\alpha]_D^{25} = -17.01$ (c = 1.0 CHCl₃).

(*S*)-*S*-ethyl 2-(2-amino-3-methylbutanamido)ethanethioate trifluoroacetate salt: Trifluoroacetic acid (39.7 mL) was added to N-Boc-valine-glycine thioester (12.6 g, 39.7 mmol) with stirring at room temperature. After 30 minutes the solution was concentrated *in vacuo*. The resulting solid was repeatedly triturated with Et₂O the dried *in vacuo* to yield the title compound as a white crystalline solid in 96% yield (12.0 g). IR (Thin Film): 2972, 2941, 1668, 1471, 1202, 1181, 1137, 971, 838, 799, 722 cm⁻¹; ¹H NMR: (300 MHz, CD₃OD) δ 4.28 (d, 1H, J = 17.4 Hz, NHCH₂), 4.06 (d, 1H, J = 17.4 Hz, NHCH₂), 3.77 (d, 1H, J = 5.7 Hz, CHNH₂), 2.91 (q, 2H, J = 7.5 Hz, SCH₂),

2.25 (m, 1H, CHMe(Me)), 1.23 (t, 3H, J = 7.5 Hz, SCH₂CH₃), 1.10 (d, 3H, J = 6.9 Hz, CHMe(Me)), 1.07 (d, 3H, J = 6.9 Hz, CHMe(Me)); ¹³C NMR: (75 MHz, CD₃OD) δ 196.8, 169.0, 156.2, 58.5, 30.3, 22.7, 17.7, 16.6, 13.9; HRMS: (EI+) exact mass calculated for [M+H] (C₉H₁₉N₂O₂S) requires *m/z* 219.1167, found *m/z* 219.1171; [α]_D²⁵ = -0.95 (c = 1.0 MeOH)

Thioester 5: To a solution of **4a** (8.96 g, 11.5 mmol) and valine-glycine-thioester •TFA (4.71 g, 15.0 mmol) in DMF (120 mL) was added HOBt (2.02 g, 15.0 mmol), EDC•HCl (2.87 g, 15.0 mmol), and NaHCO₃ (3.86 g, 46.0 mmol) with stirring. After the reaction was judged complete by TLC analysis (7 hours), the reaction mixture was diluted with 500 mL of diethyl ether and washed with 200 mL of saturated NH₄Cl, H₂O, and brine. The organic portion was dried over sodium sulfate and concentrated *in vacuo*. These crude extracts were purified by column chromatography (40% EtOAc/hexanes) to yield the title compound (10.7 g, 95% yield) as a white amorphous solid. IR (Film): 3288, 2962, 2943, 2868, 1642, 1612, 1513, 1455, 1385, 1262, 1248, 1209, 1176, 1064, 909, 882, 823, 732 cm⁻¹; ¹H NMR: (300 MHz, CDCl₃) δ 7.35–6.49 (m, 19H, ArH and NH); 5.57 (s, 2H, OCH₂Ph); 5.15 (s, 2H, OCH₂-pMeOPh); 4.62 (dd, 1H, J = 7.2, 12.9 Hz, CH₂CHCONH); 4.30 (dd, 1H, J = 5.6, 8.6 Hz, NHCHCHMe₂); 4.16 (d, 1H, J = 3.0 Hz, CHOTIPS); 3.98 (t, 2H, J = 4.8 Hz, NHCH₂);

3.76 (s, 3H, ArOMe); 3.08 (m, 2H, CH₂Ar); 2.82 (q, 2H, J = 7.5 Hz, SCH₂); 2.21 (m, 1H, NHCHCHMe₂); 1.92 (m, 1H, OCHCHMe₂); 1.19 (t, 3H, J = 7.5 Hz, SCH₂CH₃); 1.04–0.98 (m, 21H, TIPS); 0.89–0.83 (m, 9H, OCHCH(Me)Me, NHCHCH(Me)Me); 0.74 (d, 3H, J = 6.9 Hz, OCHCH(Me)Me); ¹³C NMR: (300 MHz, CDCl₃) δ 196.9, 173.8, 171.0, 170.9, 158.8, 152.5, 146.9, 136.7, 131.2, 131.0, 128.9, 128.6, 128.3, 128.1, 127.8, 127.7, 126.5, 121.7, 120.9, 115.7, 113.9, 112.7, 110.8, 104.6, 78.0, 70.4, 58.5, 55.2, 54.8, 52.2, 48.9, 37.2, 34.0, 29.8, 23.0, 19.4, 18.0, 17.5, 17.0, 14.5, 12.4; HRMS (FAB+) exact mass calculated for [M+•] (C₅₅H₇₄N₄O₈SiS) requires *m*/*z* 978.4996, found *m*/*z* 978.4966; [α]_D²⁵ = –17.13 (c = 2.18, CHCl₃).

Aldehyde 7: (2*R*, 5*R*)-2-*tert*-butyl-5-benzyl-3-methylimidazolidin-4-one•TCA 6 (1.88 g, 4.59 mmol) and phenol 5 (15.0 g, 15.3 mmol) were dissolved in 77 mL of CHCl₃/MePh/CH₃OH (10:10:1). This mixture was cooled to -78 °C. To this cold solution was added freshly distilled propynal (8.1 g, 8.81 mL, 150 mmol). The reaction was warmed to -50 °C and stirred for 50 hours before being diluted with 200 mL Et₂O and 50 mL of pH 7 buffer. The layers were separated and the organic portions were washed with brine and dried over sodium sulfate. Following concentration *in vacuo*, the crude reaction extracts were purified by flash chromatography (75% Et₂O in pentane) to afford the title compound as an amorphous white solid as a >20:1 mixture

of diastereomers (13.6 g, 86%). IR (Film): 3409, 3300, 2962, 2942, 2868, 1692, 1648, 1512, 1494, 1466, 1385, 1248, 1175, 1100, 1064, 973, 911, 882, 822, 733, 683 cm⁻¹; ¹H NMR: (300 MHz, CDCl₃) δ 9.45 (d, 1H, J = 7.5 Hz, CHO); 7.33–6.72 (m, 16H, Ar-H, CH=CHCHO); 6.46 (d, 1H, J = 8.1 Hz, CONH); 5.93 (s, 1H, OCHN); 5.88 (dd, 1H, J = 15.9, 7.8 Hz, CH=CHCHO); 5.22 (d, 1H, J = 15.3 Hz, NCH₂-pMeOPh); 5.01 (m, 2H, OCH₂Ph); 4.59–4.46 (m, 3H, CHNHCO, NCH₂-pMeOPh); 4.23 (dd, 1H, J =8.2, 5.8 Hz, NHCH₂); 4.15 (d, 1H, J = 3.3 Hz, CHOTIPS); 4.03 (dd, 1H, J = 5.8, 1.0 Hz, NHCH₂); 3.76 (s, 3H, ArOMe); 3.11–2.82 (m, 4H, CH₂Ar, SCH₂); 2.18 (m, 1H, NHCHCHMe₂); 1.95 (m, 1H, OCHCHMe₂); 1.22 (t, 3H, J = 7.5 Hz, SCH₂CH₃); 1.05 (m, 21H, TIPS); 0.90–0.83 (m, 9H, OCHCH(Me)Me, NHCHCH(Me)Me); 0.71 (d, 3H, J = 6.9 Hz, OCHCH(Me)Me); ¹³C NMR: (300 MHz, CDCl₃) δ 196.8, 196.6, 193.3, 173.8, 173.4, 171.0, 170.7, 158.9, 158.1, 155.3, 152.5, 146.9, 145.2, 137.3, 136.6, 136.5, 133.0, 131.8, 131.2, 130.3, 129.9, 129.7, 129.2, 129.0, 128.3, 128.0, 127.8, 127.5, 126.5, 121.7, 121.3, 121.0, 116.9, 115.7, 114.0, 113.9, 113.6, 112.7, 110.8, 110.3, 107.0, 104.6, 78.0, 70.8, 70.4, 61.6, 58.5, 55.2, 54.8, 51.1, 49.0, 37.5, 33.9, 30.3, 23.1, 19.3, 18.1, 17.5, 17.0, 14.6; HRMS (FAB+) exact mass calculated for [M+H] (C₅₈H₇₇N₄O₉SiS) requires m/z 1033.518, found m/z 1033.518; $[\alpha]_D^{25} = -46.19$ (c = 1.20, CHCl₃).

Amine 7a: To a vigorously stirred solution of aldehyde 7 (4.8 g, 4.64 mmol) in a 1:1 mixture of dichloromethane and pH 7 phosphate buffer (75 mL each) at 0 °C was added freshly recrystallized DDQ (2.10 g, 9.29 mmol). The resulting dark heterogeneous reaction mixture was allowed to warm to ambient temperature over the course of two hours, after which time it was diluted with ethyl acetate and washed with a saturated solution of Na₂SO₃, followed by a saturated solution of NaHCO₃ and brine. The layers were separated and the aqueous layer wash washed with three times with 50 mL of ethyl acetate. The combined organic layer was washed with brine and dried over sodium sulfate. Purification by flash chromatography on silica gel (35%-40% EtOAc in hexanes) gave the desired product as an amorphous off-white solid in 84% yield (3.54 g). IR (Film): 3301, 2962, 2942, 2868, 1691, 1648, 1498, 1466, 1387, 1206, 1058, 975, 882, 823, 749, 683 cm⁻¹; ¹H NMR: (300 MHz, CDCl₃) δ 9.61 (d, 1H, J = 7.5 Hz, CHO); 7.41–6.67 (m, 12H, Ar-H, CH=CHCHO); 6.56 (d, 1H, J = 8.7 Hz, CONH); 6.24 (d, 1H, J = 2.4 Hz, OCHN); 6.14 (dd, 1H, J = 15.6, 7.5 Hz, CH=CHCHO); 5.04 (s, 2H, OCH₂Ph); 4.59 (m, 1H, CONHCHCH); 4.24 (dd, 1H, J = 8.6, 5.6 Hz, NHCH₂); 4.14 (m, 1H, CONHCHCH₂); 4.03 (d, 1H, J = 5.7 Hz, CHOTIPS); 3.93 (m, 1H, NHCH₂); 3.15–2.80 (m, 4H, CH₂Ar, SCH₂); 2.17 (m, 1H, NHCHCHMe₂); 1.92 (m, 1H, OCHCHMe₂); 1.22 (t, 3H, J = 7.5 Hz, SCH₂CH₃); 1.05 (m, 21H, TIPS); 0.90–0.82 (m, 9H, OCHCH(Me)Me, NHCHCH(Me)Me); 0.72 (d, 3H, J = 6.9 Hz, OCHCH(Me)Me); ¹³C NMR: (300 MHz, CDCl₃) δ 196.6, 193.5, 173.3, 170.7, 170.4, 158.2, 155.4, 137.1, 136.6, 133.1, 130.2, 129.7, 129.5, 129.4, 129.3, 129.2, 128.6, 128.1, 127.6, 125.0, 121.0, 116.4, 112.3, 110.4, 103.0, 78.0, 70.4, 63.7, 58.5, 54.6, 49.0, 37.5, 33.9, 30.3, 23.1, 19.0, 18.1, 18.0, 17.9, 17.5, 17.0, 14.6, 12.4; HRMS

(FAB+) exact mass calculated for [M+H] (C₅₀H₆₉N₄O₈SiS) requires m/z 913.4605, found m/z 913.4632; $[\alpha]_D^{25} = -61.30$ (c = 3.08, CHCl₃).

Aldehyde 8: To a solution of amino aldehyde 7a (3.54 g, 3.87 mmol), pyridine (0.78 mL, 9.68 mmol) and DMAP (165 mg, 1.35 mmol) in 77 mL of dichloromethane at 0 °C was added trifluoroacetic anhydride (0.82 mL, 5.81 mmol) dropwise by syringe under argon. After 30 minutes the reaction was diluted with 200 mL of ethyl acetate and washed with 60 mL of saturated sodium bicarbonate solution. The layers were separated and the organic fraction was washed with brine and dried over sodium sulfate. Purification by flask chromatography on silica gel (40% ethyl acetate in hexanes) gave the title compound product as an amorphous yellow solid in 87% yield (354 mg). IR (Film): 3406, 3306, 2962, 2868, 1731, 1695, 1650, 1492, 1463, 1387, 1292, 1204, 1183, 1154, 1058, 981, 882, 823, 738, 684 cm⁻¹; ¹H NMR: (300 MHz, CDCl₃) δ 9.65 (d, 1H, J = 7.2 Hz, CHO); 7.47–6.54 (m, 13H, Ar-H, CH=CHCHO, OCHN); 6.24 (dd, 1H, J = 15.9, 7.2 Hz, CH=CHCHO); 5.19 (dd, 2H, J = 18.6, 6.4 Hz, OCH₂Ph); 4.59 (m, 1H, CONHCHCH); 4.24–4.03 (m, 4H, NHCH₂, CHOTIPS, CONHCHCH₂); 3.12–2.86 (m, 4H, CH₂Ar, SCH₂); 2.13 (m, 1H, NHCHCHMe₂); 1.95 $(m, 1H, OCHCHMe_2); 1.23 (t, 3H, J = 7.5 Hz, SCH_2CH_3); 1.05 (m, 21H, TIPS); 0.90-$ 0.86 (m, 9H, OCHCH(Me)Me, NHCHCH(Me)Me); 0.75 (d, 3H, J = 6.6 Hz,

OCHCH(**Me**)Me); ¹³C NMR: (300 MHz, CDCl₃) δ 196.2, 192.7, 173.2, 170.5, 170.1, 157.3, 151.6, 149.6, 136.3, 135.2, 131.0, 130.8, 129.2, 128.6, 128.2, 128.0, 127.0, 124.9, 116.3, 114.4, 110.5, 100.4, 78.0, 70.8, 63.3, 58.5, 54.4, 49.0, 37.6, 33.9, 30.6, 23.1, 18.9, 18.1, 18.0, 17.5, 17.1, 14.6, 12.4; ¹⁹F NMR: (75 MHz, CDCl₃) δ –70.0 (s, 3F, CF₃); HRMS (FAB+) exact mass calculated for [M+H] (C₅₂H₆₈N₄O₉F₃SiS) requires *m/z* 1009.443, found *m/z* 1009.444; [α]_D²⁵ = –133.69 (c = 0.37, CHCl₃).

Aldehyde 9: A stream of ozone was passed through a solution of α,βunsaturated aldehyde 8 (601 mg, 0.59 mmol) in 14 mL of dichloromethane and 1.4 mL of methanol at -78 °C for 45 minutes. The solution was bubbled through with oxygen for ten minutes and then quenched by the addition of triphenylphospine (0.44 g, 1.67 mmol). After warming to room temperature overnight the reaction mixture was concentrated *in vacuo* and loaded directly onto a silica gel column. Elution with 35% ethyl acetate in hexanes afforded the desired product (517 mg, 88%) as an amorphous white solid. IR (Film): 3301, 2963, 2868, 1729, 1649, 1492, 1464, 1406, 1292, 1252, 1204, 1182, 1159, 985, 882, 823, 738, 684 cm⁻¹; ¹H NMR: (300 MHz, CDCl₃) δ 10.1 (s, 1H, CHO); 7.46–6.42 (m, 12H, Ar-H, OCHN); 5.18 (dd, 2H, J = 17.7, 12.0 Hz, OCH₂Ph); 4.59 (m, 1H, CONHCHCH); 4.24–3.96 (m, 4H, NHCH₂, CHOTIPS, CONHCHCH₂); 3.14–2.87 (m, 4H, CH₂Ar, SCH₂); 2.14 (m, 1H, NHCHCHMe₂); 1.92

(m, 1H, OCHCHMe₂); 1.24 (t, 3H, J = 7.5 Hz, SCH₂CH₃); 1.04 (m, 21H, TIPS); 0.93– 0.84 (m, 9H, OCHCH(Me)Me, NHCHCH(Me)Me); 0.69 (d, 3H, J = 6.6 Hz, OCHCH(Me)Me); ¹³C NMR: (300 MHz, CDCl₃) δ 196.4, 191.7, 173.4, 170.6, 170.4, 156.7, 149.5, 136.2, 132.1, 131.4, 130.7, 129.0, 128.5, 128.0, 127.0, 125.2, 124.0, 115.7, 115.0, 114.0, 110.8, 100.0, 78.0, 70.8, 58.6, 54.4, 49.0, 37.5, 33.9, 30.4, 23.2, 19.2, 18.0, 17.9, 17.8, 17.5, 17.0, 14.6, 12.3; ¹⁹F NMR: (75 MHz, CDCl₃) δ –70.3 (s, 3F, CF₃); HRMS (FAB+) exact mass calculated for [M+H] (C₅₀H₆₆N₄O₉F₃SiS) requires *m/z* 983.4272, found *m/z* 983.4238; $[\alpha]_D^{25} = -93.42$ (c = 0.47, CHCl₃).

Alcohol 10: A flame-dried 1000 mL flask was charged with aldehyde 9 (2.1 g, 2.14 mmol) and MgBr₂•Et₂O (1.65 g, 6.41 mmol) under Ar. To this flask was then added THF (425 mL) followed by Et₃N (2.98 mL, 21.4 mmol) and TMSCI (0.68 mL, 5.34 mmol) with stirring. After 75 minutes 1N HCl (100 mL) was added and stirred for 10 minutes. The solution was diluted with EtOAc and pH 7 buffer, and washed with brine. The organic fractions were concentrated and the resulting oil purified by column chromatography (33% ethyl acetate in hexanes) to afford 1.49 g of the title compound (67%) as an off-white solid. IR (Film): 3401, 2962, 2868, 1732, 1681, 1644, 1490, 1462, 1288, 1204, 1181, 1160, 1125, 1099, 1057, 982, 881, 832, 752, 736, 684 cm⁻¹; ¹H NMR: (300 MHz, CDCl₃) δ 7.50–6.86 (m, 10H, Ar-H); 6.77 (d, 1H, J = 8.4 Hz, Ar-H); 6.63 (s, 1H, OCHN); 5.36 (d, 1H, J = 10.2 Hz, CONH); 5.16 (dd, 2H, J

= 17.7, 12.3 Hz, OCH₂Ph); 4.89 (d, 1H, J = 9.3 Hz, CHC(O)SEt); 4.48 (d, 1H, J = 6.0 Hz, CHOH); 4.36 (m, 1H, CONHCHCH); 4.18–4.10 (m, 2H, CHOTIPS, CONHCHCH₂); 3.04 (dd, 1H, J = 12.3, 4.6 Hz, CH₂Ar); 2.85 (q, 2H, J = 7.5 Hz, SCH₂CH₃); 2.65 (t, 1H, J = 12.3 Hz, CH₂Ar); 2.05 (m, 1H, NHCHCHMe₂); 1.92 (m, 1H, OCHCHMe₂); 1.20 (t, 3H, J = 7.5 Hz, SCH₂CH₃); 1.06–0.94 (m, 30H, TIPS, OCHCH(Me)Me, NHCHCH(Me)Me); 0.84 (d, 3H, J = 6.6 Hz, OCHCH(Me)Me); ¹³C NMR: (300 MHz, CDCl₃) δ 199.8, 172.3, 170.4, 169.9, 158.6, 149.4, 136.7, 136.4, 129.8, 129.7, 128.5, 128.4, 128.3, 127.9, 127.3, 127.1, 126.4, 126.2, 117.9, 114.2, 110.9, 97.8, 77.9, 72.5, 70.8, 64.6, 58.9, 55.8, 40.2, 33.8, 30.1, 23.9, 19.3, 18.2, 18.0, 17.9, 17.8, 17.6, 17.5, 14.2, 12.2; ¹⁹F NMR: (75 MHz, CDCl₃) δ –69.7 (s, 3F, CF₃); HRMS (FAB+) exact mass calculated for [M+H] (C₅₀H₆₆N₄O₉F₃SiS) requires *m*/*z* 983.4272, found *m*/*z* 983.4243; $[\alpha]_D^{25} = -129.17$ (c = 0.27, CHCl₃).

Ketone 10a: To a solution of 10 (46 mg, 0.047 mmol) in 1.0 mL of CH_2Cl_2 was added Dess–Martin periodinane (59 mg, 0.14 mmol). After 30 minutes the solution was diluted with EtOAc and washed with a saturated solution of NaHCO₃. The organic fractions were concentrated and the resulting oil purified by column chromatography to afford 37 mg of the title compound (80%) as an off-white solid. IR (Film): 3408, 3272, 2925, 2868, 1735, 1651, 1516, 1492, 1465, 1293, 1204, 1184, 1163, 1057, 967, 881, 737, 682 cm⁻¹; ¹H NMR: (300 MHz, CDCl₃) δ 7.56–6.78 (m, 12H, Ar-H, OCHN); 5.76

(m, 2H, CONH, CHC(O)SEt); 5.16 (dd, 2H, J = 18.3, 12.3 Hz, OCH₂Ph); 4.45 (m, 1H, CONHCHCH); 4.18 (d, 1H, J = 3.3 Hz, CHOTIPS); 4.02 (m, 1H, CONHCHCH₂); 2.95–2.75 (m, 4H, CH₂Ar, SCH₂CH₃); 2.05 (m, 1H, NHCHCHMe₂); 1.92 (m, 1H, OCHCHMe₂); 1.20 (t, 3H, J = 7.5 Hz, SCH₂CH₃); 1.06 (m, 24H, TIPS, NHCHCH(Me)Me); 1.01–0.95 (m, 6H, OCHCH(Me)Me, NHCHCH(Me)Me); 0.88 (d, 3H, J = 6.3 Hz, OCHCH(Me)Me); ¹³C NMR: (300 MHz, CDCl₃) δ 196.3, 195.9, 172.4, 170.9, 169.8, 158.6, 149.0, 136.4, 132.2, 131.2, 130.3, 128.5, 128.4, 128.3, 128.2, 127.9, 127.0, 125.0, 124.2, 118.0, 114.5, 111.4, 96.7, 78.0, 73.7, 70.8, 61.8, 59.2, 55.2, 39.2, 33.8, 29.9, 23.8, 19.1, 18.4, 18.1, 18.0, 17.7, 17.5, 14.1, 12.4; ¹⁹F NMR: (75 MHz, CDCl₃) δ –70.0 (s, 3F, CF₃); HRMS (FAB+) exact mass calculated for [M+H] (C₅₀H₆₄N₄O₉F₃SiS) requires *m/z* 981.4115, found *m/z* 981.4107; [α]_D²⁵ = – 179.9 (c = 0.30, CHCl₃).

Oxazole 11: To a solution of **10a** (125 mg, 0.127 mmol) in benzene (11 mL) was added DAST (1.1 mL) dropwise by syringe. The solution was stirred at room temperature for 3 hours before being diluted with EtOAc and a saturated solution of NaHCO₃. The layers were separated and the aqueous layer was washed with ethyl acetate 3×50 mL. The combined organics were washed with brine and concentrated. The resulting oil was purified on silica gel (20% EtOAc in hexanes) to yield the title

compound (99 mg, 81%) as a pale yellow solid. IR (film): 3405, 3286, 2926, 2868, 1739, 1656, 1494, 1463, 1291, 1251, 1201, 1157, 990, 879 cm⁻¹; ¹H NMR: (300 MHz, CDCl₃): δ 7.63 (d, 1H, J = 1.5 Hz, Ar-H), 7.40–7.26 (m, 5H, Ar-H), 7.18–7.08 (m, 2H, Ar-H), 6.99–6.93 (m, 2H, Ar-H), 6.84 (s, 1H, OCHN), 6.78 (d, 1H, J = 8.4 Hz, Ar-H), 5.26-5.11 (m, 3H, OCH₂Ph, CONHCHCH), 4.71 (m, 1H, CONHCHCH₂), 3.96 (d, 1H. J = 3.0 Hz. CHOTIPS), 3.42 (t. 1H. J = 12.3 Hz. CH₂Ar), 2.99–2.75 (m. 2H. SCH_2CH_3), 2.64 (dd, 1H, J = 12.3, 3.3 Hz, CH₂Ar), 2.43 (m, 1H, NHCHCH(CH₃)₂), $1.72 \text{ (m, 1H, OCHCH(CH_3)_2)}, 1.18 \text{ (t, 3H, J} = 7.5 \text{ Hz, SCH}_2\text{CH}_3), 1.07 \text{ (m, 24H, TIPS}$ and NHCHCH(CH₃)₂), 0.91–0.87 (m, 6H, NHCHCH(CH₃)₂, OCHCH(Me)Me), 0.63 (d, 3H, J = 7.2 Hz, OCHCH(Me)Me); ¹³C NMR: (75 MHz, CDCl₃) δ 186.2, 172.4, 171.7, 160.8, 156.8, 150.2, 149.7, 136.8, 136.2, 134.0, 130.4, 130.2, 129.4, 129.2, 128.8, 128.7, 128.6, 128.1, 127.6, 127.4, 115.0, 114.6, 110.7, 100.3, 77.9, 71.0, 60.9, 55.3, 53.5, 39.0, 34.0, 28.9, 23.0, 19.8, 18.3, 18.2, 18.0, 17.5, 17.0, 14.4, 12.6; HRMS: (FAB+) exact mass calculated for [M+H] ($C_{50}H_{62}$ F₃N₄O₈SiS) requires m/z 963.4010, found m/z 963.3998; $[\alpha]_D^{25} = -61.01$ (c = 0.55, CHCl₃).

Acid 11a: To a solution of 11 (84 mg, 0.087 mmol) in THF/MeOH/H₂O (4.4 mL, 10:2:1) was added LiOH•H₂O (36.5 mg, 0.87 mmol) with stirring. After the reaction was judged complete by TLC analysis (2 hours), the reaction mixture was

diluted with 50 mL of diethyl ether, acidified with 1N HCl to pH 2, and washed with 20 mL of brine. The organic portion was dried over sodium sulfate and concentrated in vacuo. These crude extracts were purified by column chromatography (50%) EtOAc/Hexanes to 10% MeOH in CH₂Cl₂) to yield the title compound (71 mg, 99%) as a white amorphous solid. IR (Film): 3405, 2917, 2849, 1654, 1498, 1464, 1289, 1251, 1209, 1068, 882, 754, 684 cm⁻¹; ¹H NMR: (300 MHz, CD₃OD): δ 7.54–7.26 (m, 6H, Ar-H), 7.18 (dd, 1H, J = 8.2, 1.6 Hz, Ar-H), 6.94 (s, 1H, OCHN), 6.87–6.65 (m, 4H, Ar-H), 5.08 (s, 2H, OCH₂Ph), 4.93 (m, 1H, CONHCHCH), 4.53 (m, 1H, CONHCHCH₂), 4.16 (d, 1H, J = 3.9 Hz, CHOTIPS), 3.15 (t, 1H, J = 12.3 Hz, CH₂Ar), 2.85 (dd, 1H, J = 12.3, 3.8 Hz, CH₂Ar), 2.36 (m, 1H, NHCHCH(CH₃)₂), 2.05 (m, 1H, OCHCH(CH₃)₂), 1.09 (m, 24H, TIPS and NHCHCH(CH₃)₂), 1.04–1.01 (m, 6H, NHCHCH(CH₃)₂, OCHCH(Me)Me), 0.87 (d, 3H, J = 6.9 Hz, OCHCH(Me)Me); 13 C NMR: (75 MHz, CD₃OD) δ 172.7, 172.6, 165.9, 160.0, 157.2, 154.0, 144.0, 138.3, 137.0, 133.0, 130.6, 130.1, 130.0, 128.7, 128.2, 127.9, 127.6, 127.4, 127.3, 120.3, 114.9, 112.1, 110.2, 103.9, 70.2, 61.5, 55.6, 53.8, 38.6, 33.8, 28.6, 19.1, 17.6, 17.5, 17.1, 17.0, 16.6, 12.2; HRMS: (FAB+) exact mass calculated for [M+Na] $(C_{46}H_{58}N_4O_8SiNa)$ requires m/z 845.3921, found m/z 845.3914; $[\alpha]_D^{25} = -100.66$ (c = 0.493, CHCl₃).

Ketoamide 13: To a flame-dried flask wrapped in foil to protect from light were combined thioester 11 (200 mg, 0.208 mmol), indole 12 (229 mg, 0.623 mmol), silver trifluoroacetate (276 mg, 1.248 mmol), and NaHCO₃ (114 mg, 1.352 mmol). The flask was sealed and degassed DMF (4.2 mL) was added via syringe. The reaction was heated to 40 °C in the dark for 2 hours and then diluted with EtOAc (100 mL) and H_2O (20 mL). The collected organic layer was further washed with sat. aq. NaHCO₃ and brine (20 mL each), dried over Na_2SO_4 and solvent removed *in vacuo*. The resulting crude solids were purified by chromatography on silica gel (10% EtOAc:DCM) to yield the title compound as a white solid (211 mg, 88%). IR (Film): 3403, 3287, 2930, 2868, 1732, 1655, 1609, 1514, 1494, 1463, 1409, 1292, 1200, 1182, 1158, 1101, 1059, 995, 929, 880, 814, 740, 716, 684 cm⁻¹; ¹H NMR: (400 MHz, CD_3CN) δ 10.12 (br s, 1H, N-H), 8.10 (d, 1H, J = 3.2 Hz, Ar-H), 7.73 (app t, 1H, J = 5.2 Hz, Ar-H), 7.55-7.43 (m, 5H, Ar-H), 7.40-7.30 (m, 3H, Ar-H), 7.24 (app t, 1H, J = 8.0 Hz, Ar-H), 7.18-7.12 (m, 6H, Ar-H), 7.07 (app t, 2H, J = 8.0 Hz, Ar-H), 6.82 (d, 1H, J = 8.4 Hz, Ar-H), 5.20 (s, 2H, OCH₂Ph), 5.11 (dd, 1H, J = 12.0, 5.2, C(O)NHCHCH), 4.53 (dq, 2H, J = 13.2, 5.6 Hz, CH₂CO), 4.38 (dt, 1H, J = 8.4, 3.6 Hz, CONHCHCH₂), 4.10 (d, 1H, J = 3.6 Hz, CHOTIPS), 3.21 (t, 1H, J = 12.0 Hz, CH₂Ar), 2.79 (dd, 1H, J = 12.0, 3.2 Hz, CH₂Ar), 2.35 (m, 1H, NHCHCH(CH₃)₂), 1.97 (m, 1H, OCHCH(CH₃)₂), 1.09 (m, 24H, TIPS and NHCHCH(CH₃)₂), 0.98–0.87 (m, 9H, NHCHCH(CH₃)₂, OCHCH(Me)₂); ¹³C NMR: (125 MHz, CD₃CN) δ 188.0, 172.0, 170.8, 160.4, 160.0, 156.05, 150.1, 149.0, 136.7, 135.2, 133.7, 132.0, 130.0, 129.7, 128.2, 127.5, 127.1, 124.2, 114.8, 113.8, 111.5, 109.7, 100.8, 77.8, 70.2, 55.6, 53.1, 46.5, 38.3, 33.6, 28.7, 18.6, 17.2, 16.7, 12.0. HRMS (ESI+) exact mass calc. for

 $[M+H]^+$ (C₅₈H₆₅BrF₃N₆O₉Si) requires *m/z* 1153.3712, found *m/z* 1153.3705; $[\alpha]_D^{25} = -$ 74.4 (c = 1.0, EtOAc).

2-(2-(4-bromo-1*H*-indol-3-yl)-2-oxoethyl)isoindoline-1,3-dione 12b: To an oven-dried 100 mL flask equipped with a stirbar was added 4.20 g (18.10 mmol) of 12a. After being capped with a rubber septa, the flask was charged with 45 mL of dioxane introduced via syringe under argon. Next, 1.687 mL (18.10 mmol) of POCl₃ was added via syringe under argon. The flask was then fitted with a condenser, and heated to 95 °C under argon for one hour. The reaction mixture was then allowed to cool to room temperature. Next, 1.135 mL (9.05 mmol) of 4-bromoindole was added via syringe through the septa on the condenser, and the resulting mixture was heated to reflux at 105 °C for 24 hours. After cooling to room temperature, 45 mL of water was added to the reaction mixture, followed by the dropwise addition of 1.0 M NaOH solution until the solution was pH 8. The resulting solution was heated to 100 °C for 20 minutes, then cooled in an ice bath. The product precipitated as a light brown powder, which was then washed 3 × 100 mL with Et₂O and dried under vacuum for 24 hours to

give 76% (2.65 g) of the title compound as a free-flowing tan powder. IR (Solid): 3312, 1769, 1704, 1673, 1657, 1513, 1426, 1396, 1317, 1314, 1200, 1143, 1100, 1087, 953, 777, 739 cm⁻¹; ¹H NMR: (500 MHz, d₆-DMSO) δ 12.49 (br s, 1H, N-H), 8.75 (s,

1H, C-2 Ar-H), 7.85–7.98 (m, 4H, phthalimide Ar-H), 7.54 (d, 1H, J = 8.1 Hz, C7 Ar-H), 7.40 (d, 1H, J = 8.1 Hz, J = 7.5 Hz, C-5 Ar-H), 7.15 (app t, 1H, J = 7.9 Hz, C-6 Ar-H) 5.08 (s, 1H, CH₂N); ¹³C NMR: (125 MHz, CDCl₃) δ 184.6, 167.7, 138.7, 136.1, 134.7, 131.7, 127.1, 124.3, 124.2, 123.3, 113.7, 111.9, 45.3; HRMS (FAB+) exact mass calc. for [M+•] (C₁₈H₁₂N₂O₃Br) requires *m/z* 383.0031, found *m/z* 383.0048.

tert-butyl 2-(4-bromo-1*H*-indol-3-yl)-2-oxoethylcarbamate 12c: To a solution of bromide 12b (4.0 g, 10.5 mmol) in 200 mL of 4:1 a mixture of water and isopropanol was added 650 mg (11.6 mmol) of KOH pellets. The reaction was heated to 100 °C for three hours, then cooled to room temperature. The resulting solution was acidified to pH 4 with 1.0 M HCl and concentrated in vacuo. The resulting solids were then dissolved in 42 mL of water and 42 mL of 33% HBr in AcOH and the solution was heated to 75 °C for two hours. After cooling to room temperature the crude reaction mixture was concentrated and suspended in 250 mL of a 5:1 mixture of CH₂Cl₂ and hexanes. The suspension was filtered through a sintered glass frit, and the resulting solids were washed with 4×100 mL of a 5:1 mixture of CH₂Cl₂ and hexanes.

The resulting solid was then dissolved in 30 mL of dioxane and 15 mL of saturated aqueous NaHCO₃. Solid Boc₂O (2.8 g 12.8 mmol) was then added in a single portion and the resulting solution was stirred at room temperature for 3.5 hours. The reaction

The organics were dried over Na₂SO₄ and solvent removed *in vacuo*. The resulting solid was purified by flash chromatography (15% EtOAc in CH₂Cl₂) to yield 1.7 g of the title compound as an off-white solid, a total of 60% yield over the three-step sequence. IR (Film): 3257, 2978, 2931, 1667, 1613, 1564, 1516, 1444, 1411, 1393, 1367, 1331, 1309, 1288, 1250, 1199, 1163, 1108, 1048, 1027, 908, 863, 778, 736 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) δ 9.47 (s, 1H, C=CNH), 7.83 (d, 1H, J = 4.0 Hz, Ar-H), 7.48 (d, 1H, J = 8.0 Hz, Ar-H), 7.38 (d, 1H, J = 8.0 Hz, Ar-H), 7.38 (d, 1H, J = 8.0 Hz, Ar-H), 5.68 (br s, 1H, CH₂NH), 4.49 (d, 2H, J = 4.0 Hz, COCH₂), 1.49 (s, 9H, C(CH₃)₃); ¹³C NMR: (125 MHz, CDCl₃) δ 189.0, 156.3, 138.2, 134.2, 131.7 128.1, 125.0, 124.9, 123.6, 116.2, 114.6, 111.1, 49.1, 28.4; HRMS (ESI+) exact mass calc. for [M+H]⁺ (C₁₅H₁₈BrN₂O₃) requires *m/z* 353.0495, found *m/z* 353.0498.

2-amino-1-(4-bromo-1*H***-indol-3-yl)ethanone•TFA 12**: Trifluoroacetic acid (14 mL) was added to a flask containing **12c** (495 mg, 1.40 mmol). After stirring for 20 minutes, the reaction was diluted with toluene (20 mL) and volatiles removed *in vacuo*. The solids were further azeotroped with toluene (3×10 mL) and then triturated with Et₂O to give the title compound as a light pink solid (510 mg, 99%). IR (Film): 3112, 2420, 1667, 1560, 151, 420, 1368, 1330, 1304, 1199, 1137, 903, 839, 800, 780,

739, 723 cm⁻¹; ¹H NMR: (400 MHz, CD₃OD) δ 8.32 (s, 1H, C=CHNH), 7.50 (d, 1H, J = 8.0 Hz, Ar-H), 7.46 (d, 1H, J = 8.0 Hz, Ar-H), 7.16 (app t, 1H, J = 8.0 Hz, Ar-H), 4.45 (s, 2H, COCH₂); ¹³C NMR: (125 MHz, CD₃OD) δ 186.1, 140.5, 136.3, 128.9, 125.9, 115.4, 115.1, 112.6, 46.7; ¹⁹F NMR: (75 MHz, CD₃OD) –77.39 (s, 3F, CF₃); HRMS (ESI+) exact mass calc. for [M+H]⁺ (C₁₀H₁₀BrN₂O) requires *m/z* 252.9971, found *m/z* 252.9977.

Bisoxazole 14: To a solution of PPh₃ (795 mg, 3.03 mmol) in CH₂Cl₂ (30.3 mL) was added C₂Cl₆ (708 mg, 3.03 mmol). The solution was stirred at room temperature for 10 minutes at which time Et₃N (0.842 mL, 6.06 mmol) was added dropwise. The resultant solution was stirred for 10 minutes and then added dropwise via cannula to a stirred CH₂Cl₂ (12.1 mL) solution of **13** (699 mg, 0.606 mmol) at 0 °C and held at this temperature for 1.5 hours. The solution was then diluted with 100 mL EtOAc, washed with 50 mL saturated aqueous NaHCO₃, and brine (2 × 20 mL), dried

over Na₂SO₄ and concentrated. The resulting yellow solid was purified on silica gel (30–45% EtOAc in hexanes) to yield the title compound (604 mg, 88%) as a white solid. IR (Film): 3399, 3290, 2962, 2869, 1736, 1686, 1654, 1608, 1519, 1494, 1464, 1390, 1292, 1250, 1202, 1180, 1159, 1124, 1061, 1012, 983, 953, 918, 882, 842, 759, 739, 717, 684 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) δ 8.33 (d, 1H, *J* = 4.0 Hz, Ar-**H**),

7.45 (m, 2H, Ar-H), 7.39 (app t, 1H, J = 4.0 Hz, Ar-H), 7.34 (d, 1H, J = 8.0 Hz, Ar-H), 7.31 (d, 1H, J = 4.0 Hz, Ar-H) 7.24 (app t, 1H, J = 8.0 Hz, Ar-H), 7.15-7.13 (m, 1H, Ar-H), 7.11 (s, 1H, Ar-H), 7.06 (dt, 2H, J = 12.0, 8.0 Hz, Ar-H), 6.93 (d, 1H, J = 4.0 Hz, Ar-H), 6.84 (d, 1H, J = 8.0 Hz, Ar-H), 6.77 (d, 1H, J = 8.0 Hz, Ar-H), 5.97 (d, 1H, J = 8.0 Hz, CONHCHCH), 5.07 (dd, 1H, J = 12.0, 8.0 Hz, CONHCHCH), 4.98 (dd, 2H, 16.0, 8.0 Hz, OCH₂Ph), 4.37 (dt, 1H, J = 12.0, 4.0 Hz, CONHCHCH₂), 4.18 (d, 1H, J = 4.0 Hz, CHOTIPS), 3.39 (t, 1H, J = 12.0 Hz, CH₂Ar), 2.74 (dd, 1H, J = 12.0, 4.0 Hz, CH₂Ar), 2.49 (m, 1H, NHCHCH(CH₃)₂), 2.06 (m, 1H, OCHCH(CH₃)₂), 1.09 (m, 24H, TIPS and NHCHCH(CH₃)₂), 1.04–0.94 (m, 9H, NHCHCH(CH₃)₂, OCHCH(Me)₂);¹³C NMR: (125 MHz, CDCl₃) δ 172.3, 171.7, 161.5, 156.8, 153.1, 149.1. 147.5. 145.6. 136.7. 134.4. 130.4. 130.0. 129.1. 128.6. 128.3. 128.0. 127.9. 127.2, 125.3, 125.0, 123.6, 115.1, 114.1, 114.0, 110.7, 104.3, 100.4, 78.1, 70.5, 61.1, 56.1, 54.3, 38.1, 33.8, 29.2, 19.5, 12.4; ¹⁹F NMR: (75 MHz, CDCl₃) -70.42 (s, 3F, CF₃); HRMS (ESI+) exact mass calc. for $[M+H]^+$ (C₅₈H₆₃BrF₃N₆O₈Si) requires m/z1135.3607, found m/z 1135.3578; $[\alpha]_D^{25} = -81.5$ (c = 1.4, CHCl₃).

Bromo-bistriflate 15: To a -78 °C solution of **14** (141.0 mg, 0.124 mmol) in CH₂Cl₂ (12.4 mL), was added BBr₃ solution (1.0 M in CH₂Cl₂, 0.497 mL, 0.497 mmol). The reaction was stirred at -78 °C for 1.5 hours at which point 5.0 mL pH 7 phosphate buffer and 5.0 mL EtOAc were added and the reaction allowed to achieve

room temperature. The reaction mixture was diluted with EtOAc, washed with saturated aqueous NaHCO₃, brine, dried over Na_2SO_4 and concentrated. The resultant solid was taken up in 6.2 mL of CH₂Cl₂ and Et₃N (172.0 µL, 1.240 mmol) then PhNTf₂ (221.0 mg, 0.620 mmol) were added sequentially. After 24 hours at room temperature the reaction was diluted with EtOAc, washed with saturated aqueous NaHCO₃, brine, dried over Na₂SO₄ and concentrated *in vacuo*. The crude reaction mixture was purified on silica gel (25% EtOAc in hexanes) to yield 120.0 mg of the title compound as a white solid (80% yield over the two-step process). IR (Film): 3406, 3292, 2962, 2963, 2869, 1658, 1516, 1496, 1471, 1428, 1412, 1300, 1253, 1213, 1141, 1114, 1063, 1048, 987, 905, 881, 811, 676, 608 cm⁻¹; ¹H NMR: (500 MHz, CDCl₃) δ 7.94 (d, 1H, J = 8.5 Hz, Ar-H), 7.59 (d, 1H, J = 8.0 Hz, Ar-H), 7.51 (s, 1H, Ar-H), 7.36-7.34 (m, 2H, Ar-**H**), 7.20 (app t, 1H, J = 8.5 Hz, Ar-**H**), 7.16 (s, 1H, Ar-**H**), 7.12 (d, 1H, J = 7.0 Hz, Ar-**H**), 6.94 (d, 1H, J = 4.0 Hz, OCHNH), 6.88 (app t, 1H, J = 8.0 Hz, Ar-H), 6.67 (d, 1H, J = 7.5 Hz, Ar-H), 5.81 (d, 1H, J = 8.5 Hz, CONHCHCH), 5.50 (d, 1H, J = 4.0 Hz, OCHNH) 5.00 (dd, 1H, J = 8.0, 5.0 Hz CONHCHCH), 4.37 (m, 1H, CONHCHCH₂), 4.19 (d, 1H, J = 4.0 Hz, CHOTIPS), 3.34 (t, 1H, J = 12.5 Hz, CH₂Ar), 2.80 (dd, 1H, J = 12.5, 3.5 Hz, CH₂Ar), 2.45 (m, 1H, NHCHCH(CH₃)₂), 2.08 (m, 1H, OCHCH(CH₃)₂), 1.09 (m, 24H, TIPS and NHCHCH(CH₃)₂), 1.04-0.89 (m, 9H, NHCHCH(CH₃)₂, OCHCH(Me)₂); ¹³C NMR: (125 MHz, CDCl₃) δ 171.9, 171.8, 161.6, 157.4, 155.0, 150.0, 141.4, 141.3, 136.2, 132.9, 132.6, 130.5, 130.4, 130.0, 129.5, 128.8, 128.1, 128.0, 127.8, 127.7, 127.6, 122.8, 121.7, 120.8, 120.7, 119.8, 118.1, 117.2, 114.7, 113.2, 112.6, 111.0, 103.2, 77.8, 61.2, 55.5, 54.2, 38.6, 33.9, 29.3, 19.5, 18.0, 18.0, 17.9, 17.3, 17.2, 12.3; ¹⁹F NMR: (75 MHz, CDCl₃) -74.77 (s, 3F,

CF₃), -76.54 (s, 3F, CF₃); HRMS (ESI+) exact mass calc. for $[M+H]^+$ (C₅₁H₅₆BrF₆N₆O₁₁S₂Si) requires *m/z* 1213.2300, found *m/z* 1213.2296; $[\alpha]_D^{25} = -97.6$ (c = 0.5, CHCl₃).

Macrocycle 16: A microwave reactor vessel was charged with 20.0 mg of bromo-bistriflate **15** (16.47 μ mol), 12.4 mg of Pd(PPh₃)₄ (10.70 μ mol), 3.8 mg of bis(pinacolato)diboron (14.82 μ mol) and 2.4 mg of LiCl (41.18 μ mol) inside a glove box. The flask was sealed and charged with 3.6 mL of freshly distilled/degassed dioxane and 0.18 mL degassed H₂O via syringe. The reaction was then heated to 120 °C in a CEM Discover microwave (200W) in 20 minute intervals while monitering the reaction progress by LCMS. The reaction was complete after three 20 minute heating cycles. The crude solution was cooled to room temperature and diluted with 25 mL of EtOAc and 15 mL of saturated NH₄Cl solution. The layers were separated and the organic was washed 2 × 10 mL with brine and dried over sodium sulfate. Following concentration, the resulting residue was purified by flash chromatography on silica gel (25% EtOAc in hexanes) to yield the title compound as an amorphous solid (8.1 mg, 50%). IR (Film): 3405, 3296, 2962, 2925, 2869, 1655, 1519, 1491, 1462, 1426, 1410,

1260, 1234, 1209, 1095, 1066, 1022, 881, 801, 755, 666, 612 cm⁻¹; ¹H NMR: (500 MHz, CDCl₃) δ 7.97 (d, 1H, J = 8.5 Hz, Ar-H), 7.60 (d, 1H, J = 8.0 Hz, Ar-H), 7.59 (d, 1H, J = 8.0 Hz, Ar-H) 7.54 (app t, 1H, J = 8.0 Hz, Ar-H), 7.48-7.40 (m, 2H, Ar-H), 7.15 (d, 1H, J = 4.0 Hz Ar-H), 7.10 (dd, 1H, J = 8.0, 4.0 Hz, Ar-H), 7.00 (s, 1H, Ar-H), 6.98 (s, 1H, Ar-H), 6.77 (app t, 1H, J = 8.0 Hz, Ar-H), 6.60 (app t, 1H, J = 8.0 Hz, Ar-**H**), 6.35 (d, 1H, J = 4.0 Hz, OCHNH), 5.86 (d, 1H, J = 8.5 Hz, CONHCHCH), 5.11 (d, 1H, J = 4.0 Hz, OCHNH) 4.95 (dd, 1H, J = 8.0, 4.0 Hz CONHCHCH), 4.33 (m, 1H, CONHCHCH₂), 4.14 (d, 1H, J = 4.0 Hz, CHOTIPS), 3.46 (t, 1H, J = 12.0 Hz, CH₂Ar), 2.67 (dd, 1H, J = 12.0, 4.0 Hz, CH₂Ar), 2.36 (m, 1H, NHCHCH(CH₃)₂), 2.08 (m, 1H, OCHCH(CH₃)₂), 1.03 (m, 24H, TIPS and NHCHCH(CH₃)₂), 0.98–0.95 (m, 6H, NHCHCH(CH₃)₂), 0.82 (d, 3H, J = 8.0 Hz, OCHCH(Me)₂); ¹³C NMR: (125 MHz. CDCl₃) § 172.4, 171.9, 161.0, 158.2, 155.6, 152.3, 149.2, 143.5, 136.1, 132.8, 130.3, 130.2, 130.0, 128.4, 127.4, 127.2, 126.9, 126.1, 123.8, 120.8, 120.1, 113.8, 112.6, 110.6, 104.1, 78.1, 75.1, 61.3, 60.5, 56.2, 54.8, 37.8, 33.8, 30.2, 29.8, 24.9, 19.2, 18.1, 17.8, 17.4, 12.4; HRMS (ESI+) exact mass calc. for $[M+H]^+$ (C₅₀H₅₆F₃N₆O₈Si) requires m/z 985.3596, found m/z 985.3607; $[\alpha]_D^{25} = -80.0$ (c = 0.40, CHCl₃).

Bromoindoline 17: 157 μ L of a freshly prepared (5.3 mg/mL) *N*bromosuccinimide stock solution (0.84 mg, 4.72 μ mol) was added to a 0 °C solution of macrocycle **16** (4.6 mg, 4.67 μ mol) in 3.9 mL of 1:1 THF/CCl₄. After 1 hour at 0 °C,

CH₃OH (0.78 mL), H₂O (0.39 mL), and LiOH•H₂O (2.0 mg, 46.73 μ mol) were added sequentially and the reaction was allowed to achieve room temperature. The reaction was determined to be complete by TLC analysis (1:1 EtOAc:hexanes) after four hours at room temperature. The reaction mixture was diluted with 25 mL of EtOAc and 15 mL of saturated NaHCO₃ solution. The layers were separated and the organic was washed 2 × 10 mL with brine and dried over sodium sulfate. Following concentration,

the resulting residue was purified by flash chromatography on silica gel (50-60%) EtOAc in hexanes) to yield the title compound as an amorphous solid (3.6 mg, 83%). IR (Film): 3401, 3294, 2926, 2867, 1712, 1655, 1516, 1492, 1464, 1344, 1297, 1260, 1206, 1182, 1115, 1096, 1072, 1014, 917, 882, 852, 805, 751, 685 cm⁻¹; ¹H NMR: (500 MHz, CDCl₃) δ 8.58 (s, 1H, Ar-H), 7.46 (m, 3H, Ar-H), 7.30 (m, 3H, Ar-H) 7.17 (s, 1H, Ar-H), 7.10 (m, 3H, Ar-H), 6.99 (d, 2H, J = 4.0 Hz, Ar-H), 6.92 (s, 1H, Ar-H), 6.75 (d, 1H, J = 8.0 Hz, Ar-H), 6.34 (d, 1H, J = 4.0 Hz, OCHNH), 5.91 (d, 1H, J = 8.5 Hz, CONHCHCH), 5.19 (d, 1H, J = 4.0 Hz, OCHNH) 5.00 (dd, 1H, J = 8.0, 4.0 Hz CONHCHCH), 4.35 (m, 1H, CONHCHCH₂), 4.14 (d, 1H, J = 4.0 Hz, CHOTIPS), 3.49 (t, 1H, J = 12.0 Hz, CH₂Ar), 2.68 (dd, 1H, J = 12.0, 4.0 Hz, CH₂Ar), 2.44 (m, 1H, NHCHC**H**(CH₃)₂), 2.03 (m, 1H, OCHC**H**(CH₃)₂), 1.03 (m, 24H, TIPS and NHCHCH(CH₃)₂), 0.98–0.95 (m, 6H, NHCHCH(CH₃)₂), 0.81 (d, 3H, J = 8.0 Hz, OCHCH(Me)₂); ¹³C NMR: (125 MHz, CDCl₃) δ 172.4, 171.9, 160.6, 158.2, 154.1, 151.0, 148.5, 147.0, 136.9, 132.5, 130.6, 130.1, 129.9, 128.7, 128.5, 128.3, 126.9, 126.5, 125.6, 125.1, 124.3, 124.0, 123.7, 122.2, 112.0, 111.7, 110.6, 104.6, 103.8, 78.1, 61.1, 60.5, 56.2, 54.7, 37.9, 33.8, 29.8, 19.3, 18.1, 18.0, 17.8, 17.6, 17.4, 12.4; HRMS

(ESI+) exact mass calc. for $[M+H]^+$ (C₄₉H₅₆BrN₆O₆Si) requires *m/z* 931.3208, found *m/z* 91.3214; $[\alpha]_D^{25} = -65.8$ (c = 0.30, CHCl₃).

Diazonamide A 1: 137.6 μ L of a freshly prepared (6.25 mg/mL) *N*-chlorosuccinimide stock solution (0.86 mg, 6.45 μ mol) was added to a solution of macrocycle **17** (2.4 mg, 2.58 μ mol) in 1.3 mL of 1:1 THF/CCl₄ and the reaction was heated to 40 °C for 12 hours until complete by LCMS analysis. To this reaction was added 30 mg Pd(OH)₂, 0.5 mL EtOAc and fitted with a balloon of H₂. After an additional 20 hours at 40 °C the reaction was filtered through celite (flushed with EtOAc 4 × 2 mL) and solvent removed *in vacuo*. The residue was dissolved in 1.3 mL

DMF and a freshly prepared solution of TASF was added via syringe (70 μ L of 20 mg/mL stock solution; 1.4 mg, 5.16 μ mol). After 20 minutes the reaction was diluted with 5 mL of EtOAc and 2.5 mL of saturated NaHCO₃ solution. The organic layer was further washed with H2O and brine, dried over Na₂SO₄. Following concentration, the resulting residue was purified by preparative TLC (60% EtOAc in hexanes) to yield

diazonamide A (1) as an amorphous solid (1.2 mg, 60% over 2 steps). All spectral data

were found to be in accord with those of the natural isolate.⁴

Diazonamide A ¹³ C NMR signals in CDCl ₃ (125 MHz)			
	Natural diazonamide A	Synthetic diazonamide A	
Position	∂ in ppm	∂ in ppm	
1	174.8	174.8	
2	57.2	57.1	
3	38.9	38.9	
4	129.9	129.9	
5	131.1	131.1	
6	111.3	111.3	
7	159.7	159.7	
8	129.6	129.7	
9	131.1	131.0	
10	62.3	62.3	
11	106.1	106.1	
12	127.8	127.8	
13	123.9	123.9	
14	120.9	120.9	
15	131.2	131.2	
16	123.2	123.2	
17	151.0	151.1	
18	131.6	131.7	
19	122.7	122.7	
20	124.3	124.3	
21	112.2	112.2	
22	136.9	136.9	
23	127.6	127.5	
24	98.2	98.2	
25	141.7	141.8	
26	130.1	130.0	
27	129.2	129.1	
28	155.1	155.1	
29	128.4	128.3	
30	155.4	155.4	

⁴ Lindquist, N.; Fenical, W.; Van Duyne, G. D.; Clardy, J. J. Am. Chem. Soc. **1991**, *113*, 2303.

Supplementary Material (ESI) for Chemical Science This journal is (c) The Royal Society of Chemistry 2011

Chem. Sci. Supporting Information

31	163.1	163.1
32	56.6	56.6
33	33.2	33.2
34	19.4	19.4
35	16.4	16.4
36	175.5	175.7
37	76.9	76.9
38	31.7	31.7
39	19.6	19.6
40	18.9	18.9

Crystal Structure Analysis for Intermediate 11a

Contents

- Table 1. Crystal data and structure refinement
- Table 2. Atomic coordinates
- Table 3. Bond lengths and angles
- Table 4. Anisotropic displacement parameters
- Table 5. Hydrogen coordinates
- Table 6. Hydrogen bonds

Table 1. Crystal data and structure refinement for k08308.

Identification code	k08308	
Empirical formula	C47 H59 Cl3 N4 O8 Si	
Formula weight	942.42	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C 2	
Unit cell dimensions	a = 19.546(4) Å	a= 90°.
	b = 17.360(4) Å	b= 105.63(3)°.
	c = 19.889(4) Å	g = 90°.
Volume	6499(2) Å ³	
Z	4	

Density (calculated)	0.963 Mg/m ³
Absorption coefficient	0.201 mm ⁻¹
F(000)	1992
Crystal size	0.40 x 0.30 x 0.20 mm ³
Theta range for data collection	2.58 to 24.38°.
Index ranges	-22<=h<=21, -19<=k<=20, 0<=l<=22
Reflections collected	8612
Independent reflections	5228 [R(int) = 0.0623]
Completeness to theta = 24.38°	94.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.958 and 0.516
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5228 / 22 / 568
Goodness-of-fit on F ²	1.111
Final R indices [I>2sigma(I)]	R1 = 0.1136, wR2 = 0.2908
R indices (all data)	R1 = 0.1515, wR2 = 0.3174
Largest diff. peak and hole	0.532 and -0.316 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($A^2x \ 10^3$) for k08308. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
	1845(2)	3815(2)	3117(2)	86(1)
O(1)	5341(4)	6479(4)	8038(3)	84(2)
O(2)	4264(3)	4519(4)	7182(3)	74(2)
O(3)	4873(4)	3366(4)	9303(4)	95(2)

O(4)	4828(4)	4640(4)	9345(3)	90(2)
O(5)	3925(4)	6989(4)	9838(3)	84(2)
O(6)	3075(4)	4378(4)	5698(3)	89(2)
O(7)	4400(4)	4544(5)	4089(3)	96(2)
O(8)	2523(4)	4450(4)	3373(3)	84(2)
N(1)	4737(4)	6468(5)	8959(4)	77(2)
N(2)	4535(4)	3426(5)	7809(4)	72(2)
N(3)	4217(4)	3991(5)	5953(4)	78(2)
N(4)	3459(4)	4850(6)	4450(4)	82(2)
C(1)	4347(5)	5596(6)	7972(5)	68(2)
C(2)	3777(3)	5765(4)	8318(3)	82(3)
C(3)	3073(4)	5524(4)	8153(3)	84(3)
C(4)	2631(3)	5770(5)	8553(4)	115(4)
C(5)	2893(3)	6257(5)	9119(4)	103(4)
C(6)	3597(3)	6498(4)	9284(3)	83(3)
C(7)	4039(3)	6252(4)	8883(3)	74(3)
C(8)	5021(5)	6000(6)	8474(5)	75(3)
C(9)	4915(3)	6467(4)	7393(3)	80(3)
C(10)	5075(3)	6780(4)	6811(4)	87(3)
C(11)	4634(4)	6639(4)	6147(3)	88(3)
C(12)	4031(3)	6185(4)	6066(2)	86(3)
C(13)	3871(3)	5872(4)	6649(3)	69(2)
C(14)	4312(3)	6013(4)	7312(3)	82(3)
C(15)	4431(5)	4739(5)	7877(4)	68(2)
C(16)	4599(5)	4081(6)	8251(5)	80(3)
C(17)	4785(6)	4019(7)	9008(6)	87(3)
C(18)	4330(5)	3747(6)	7175(6)	81(3)
C(19)	4144(6)	3381(6)	6452(5)	78(3)
C(20)	4505(6)	2632(6)	6395(6)	85(3)
C(21)	4205(10)	2282(10)	5696(8)	142(6)
C(22)	5294(7)	2748(7)	6515(6)	100(4)
C(23)	3676(5)	4452(6)	5644(5)	69(2)
C(24)	3845(6)	5069(6)	5170(5)	79(3)
C(25)	3649(7)	5894(7)	5352(5)	91(3)
C(26)	3766(5)	4603(5)	3983(4)	63(2)

C(27)	3207(5)	4388(5)	3273(5)	77(3)
C(28)	3303(6)	4908(7)	2691(5)	79(3)
C(29)	3230(8)	5764(9)	2859(8)	120(4)
C(30)	3945(8)	4778(9)	2474(8)	123(4)
C(31)	1501(6)	3781(5)	2157(5)	100(4)
C(32)	1296(6)	4541(6)	1791(7)	104(4)
C(33)	918(8)	3193(10)	1901(8)	145(6)
C(34)	2145(8)	2839(9)	3485(7)	141(7)
C(35)	2535(15)	2780(13)	4250(9)	219(13)
C(36)	2648(15)	2402(11)	3171(17)	227(14)
C(37)	1160(8)	4262(11)	3478(11)	164(8)
C(38)	476(10)	3899(14)	3531(14)	208(11)
C(39)	1327(16)	5070(12)	3745(14)	212(12)
C(40)	3560(7)	7265(10)	10317(8)	126(5)
C(41)	3812(5)	7972(4)	10655(4)	95(3)
C(42)	4089(5)	8546(6)	10317(4)	118(4)
C(43)	4276(5)	9254(5)	10640(7)	138(6)
C(44)	4187(5)	9389(5)	11300(7)	142(6)
C(45)	3910(6)	8815(7)	11638(4)	134(5)
C(46)	3723(5)	8106(6)	11315(4)	110(4)
Cl(1)	2755(5)	3628(4)	878(3)	133(3)
Cl(2)	2424(5)	5208(5)	639(4)	141(3)
Cl(3)	3492(4)	4592(6)	157(7)	172(4)
C(1S)	2698(7)	4385(6)	316(8)	125(11)
Cl(4)	1845(5)	5304(7)	5786(6)	164(4)
Cl(5)	1064(6)	5554(7)	6790(5)	165(3)
Cl(6)	346(4)	5406(7)	5310(5)	152(3)
C(2S)	1091(6)	5649(15)	5944(6)	174(17)

Table 3. Bond lengths [Å] and angles [°] for k08308.

Si(1)-O(8)	1.694(8)
Si(1)-C(31)	1.847(10)
Si(1)-C(37)	1.852(18)

Si(1)-C(34)	1.875(16)
O(1)-C(9)	1.328(8)
O(1)-C(8)	1.458(12)
O(2)-C(18)	1.347(13)
O(2)-C(15)	1.387(11)
O(3)-C(17)	1.266(13)
O(4)-C(17)	1.260(13)
O(5)-C(6)	1.404(8)
O(5)-C(40)	1.419(15)
O(6)-C(23)	1.215(10)
O(7)-C(26)	1.205(11)
O(8)-C(27)	1.407(12)
N(1)-C(7)	1.383(9)
N(1)-C(8)	1.479(12)
N(2)-C(18)	1.336(13)
N(2)-C(16)	1.423(13)
N(3)-C(23)	1.337(13)
N(3)-C(19)	1.485(13)
N(4)-C(26)	1.306(12)
N(4)-C(24)	1.477(13)
C(1)-C(14)	1.485(10)
C(1)-C(2)	1.488(10)
C(1)-C(15)	1.515(14)
C(1)-C(8)	1.585(14)
C(2)-C(3)	1.3900
C(2)-C(7)	1.3900
C(3)-C(4)	1.3900
C(4)-C(5)	1.3900
C(5)-C(6)	1.3900
C(6)-C(7)	1.3900
C(9)-C(10)	1.3900
C(9)-C(14)	1.3900
C(10)-C(11)	1.3900
C(11)-C(12)	1.3900
C(12)-C(13)	1.3900

C(12)-C(25)	1.503(11)
C(13)-C(14)	1.3900
C(15)-C(16)	1.354(14)
C(16)-C(17)	1.454(14)
C(18)-C(19)	1.523(15)
C(19)-C(20)	1.499(15)
C(20)-C(21)	1.485(17)
C(20)-C(22)	1.509(17)
C(23)-C(24)	1.521(14)
C(24)-C(25)	1.551(16)
C(26)-C(27)	1.580(13)
C(27)-C(28)	1.520(13)
C(28)-C(30)	1.451(17)
C(28)-C(29)	1.54(2)
C(31)-C(32)	1.508(10)
C(31)-C(33)	1.512(10)
C(34)-C(36)	1.506(11)
C(34)-C(35)	1.511(11)
C(37)-C(38)	1.505(11)
C(37)-C(39)	1.505(11)
C(40)-C(41)	1.422(17)
C(41)-C(42)	1.3900
C(41)-C(46)	1.3900
C(42)-C(43)	1.3900
C(43)-C(44)	1.3900
C(44)-C(45)	1.3900
C(45)-C(46)	1.3900
Cl(1)-C(1S)	1.711(9)
Cl(2)-C(1S)	1.711(10)
Cl(3)-C(1S)	1.704(10)
Cl(4)-C(2S)	1.696(10)
Cl(5)-C(2S)	1.706(10)
Cl(6)-Cl(6)#1	1.564(18)
Cl(6)-C(2S)	1.704(10)

111.6(4)
101.5(5)
108.3(7)
109.5(5)
111.3(6)
114.2(8)
108.0(7)
106.6(7)
121.7(8)
127.1(6)
108.2(7)
101.8(8)
121.8(8)
124.2(9)
116.8(7)
110.4(7)
111.7(8)
100.0(7)
102.8(7)
114.4(8)
120.0
130.4(6)
109.5(6)
120.0
120.0
120.0
120.0
114.4(5)
125.6(5)
127.0(5)
113.0(5)
120.0
111.8(8)
107.1(7)
105.0(7)

O(1)-C(9)-C(10)	125.1(5)
O(1)-C(9)-C(14)	114.3(5)
C(10)-C(9)-C(14)	120.0
C(9)-C(10)-C(11)	120.0
C(10)-C(11)-C(12)	120.0
C(11)-C(12)-C(13)	120.0
C(11)-C(12)-C(25)	119.3(6)
C(13)-C(12)-C(25)	119.3(6)
C(14)-C(13)-C(12)	120.0
C(13)-C(14)-C(9)	120.0
C(13)-C(14)-C(1)	128.5(6)
C(9)-C(14)-C(1)	109.8(5)
C(16)-C(15)-O(2)	105.8(8)
C(16)-C(15)-C(1)	141.1(8)
O(2)-C(15)-C(1)	113.0(8)
C(15)-C(16)-N(2)	111.5(7)
C(15)-C(16)-C(17)	126.0(10)
N(2)-C(16)-C(17)	122.5(9)
O(4)-C(17)-O(3)	122.5(9)
O(4)-C(17)-C(16)	116.7(10)
O(3)-C(17)-C(16)	120.7(10)
N(2)-C(18)-O(2)	114.2(9)
N(2)-C(18)-C(19)	130.6(10)
O(2)-C(18)-C(19)	115.1(9)
N(3)-C(19)-C(20)	115.8(9)
N(3)-C(19)-C(18)	107.0(8)
C(20)-C(19)-C(18)	115.8(9)
C(21)-C(20)-C(19)	110.5(10)
C(21)-C(20)-C(22)	109.3(11)
C(19)-C(20)-C(22)	110.8(10)
O(6)-C(23)-N(3)	124.1(10)
O(6)-C(23)-C(24)	120.4(9)
N(3)-C(23)-C(24)	115.4(8)
N(4)-C(24)-C(23)	106.3(8)
N(4)-C(24)-C(25)	111.7(8)

C(23)-C(24)-C(25)	113.4(8)
C(12)-C(25)-C(24)	116.1(9)
O(7)-C(26)-N(4)	123.5(9)
O(7)-C(26)-C(27)	124.5(8)
N(4)-C(26)-C(27)	112.0(9)
O(8)-C(27)-C(28)	112.3(8)
O(8)-C(27)-C(26)	108.0(8)
C(28)-C(27)-C(26)	110.0(7)
C(30)-C(28)-C(27)	115.4(10)
C(30)-C(28)-C(29)	110.7(11)
C(27)-C(28)-C(29)	111.7(9)
C(32)-C(31)-C(33)	110.4(10)
C(32)-C(31)-Si(1)	116.5(7)
C(33)-C(31)-Si(1)	113.6(9)
C(36)-C(34)-C(35)	100(2)
C(36)-C(34)-Si(1)	117.7(11)
C(35)-C(34)-Si(1)	118.3(13)
C(38)-C(37)-C(39)	118.5(19)
C(38)-C(37)-Si(1)	126.9(16)
C(39)-C(37)-Si(1)	114.6(11)
O(5)-C(40)-C(41)	115.8(13)
C(42)-C(41)-C(46)	120.0
C(42)-C(41)-C(40)	121.4(10)
C(46)-C(41)-C(40)	118.4(10)
C(43)-C(42)-C(41)	120.0
C(42)-C(43)-C(44)	120.0
C(45)-C(44)-C(43)	120.0
C(44)-C(45)-C(46)	120.0
C(45)-C(46)-C(41)	120.0
Cl(3)-C(1S)-Cl(2)	106.7(8)
Cl(3)-C(1S)-Cl(1)	112.4(9)
Cl(2)-C(1S)-Cl(1)	111.6(8)
Cl(6)#1-Cl(6)-C(2S)	165.6(9)
Cl(4)-C(2S)-Cl(6)	112.8(9)
Cl(4)-C(2S)-Cl(5)	114.1(11)

Cl(6)-C(2S)-Cl(5) 117.3(10)

Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z+1

	U11	U22	U33	U ²³	U13	U12	
$S_1(1)$	81(2)	86(2)	92(2)	-4(2)	24(1)	-9(2)	
O(1)	90(4)	82(4)	81(4)	-8(4)	22(4)	-6(4)	
O(2)	91(4)	55(4)	74(4)	2(3)	19(3)	6(3)	
O(3)	134(6)	58(4)	94(5)	9(4)	31(4)	4(4)	
O(4)	134(6)	61(4)	70(4)	1(3)	19(4)	9(4)	
O(5)	90(4)	90(5)	80(4)	-22(4)	38(4)	2(4)	
O(6)	101(5)	78(4)	87(4)	0(4)	22(4)	1(4)	
O(7)	81(5)	126(6)	86(4)	-7(4)	31(3)	-2(4)	
O(8)	77(4)	79(4)	96(4)	-18(4)	21(3)	-8(3)	
N(1)	71(5)	80(5)	77(5)	-12(4)	17(4)	-6(4)	
N(2)	78(5)	65(5)	80(5)	-4(4)	32(4)	-6(4)	
N(3)	77(5)	76(5)	84(5)	-2(4)	24(4)	3(4)	
N(4)	79(5)	98(6)	71(5)	8(4)	21(4)	-7(5)	
C(1)	73(5)	70(6)	63(5)	4(4)	21(4)	14(5)	
C(2)	86(7)	77(7)	77(6)	2(5)	11(5)	-4(6)	
C(3)	85(7)	85(7)	87(6)	-3(6)	30(6)	7(6)	
C(4)	73(7)	123(11)	143(10)	-49(9)	16(7)	-28(7)	
C(5)	81(7)	128(10)	96(7)	0(8)	18(6)	-4(7)	
C(6)	69(6)	96(8)	78(6)	-7(6)	10(5)	14(6)	
C(7)	74(6)	70(6)	75(6)	19(5)	16(5)	16(5)	
C(8)	86(6)	76(6)	66(5)	-1(5)	23(5)	-4(5)	
C(9)	99(7)	74(6)	74(6)	-5(5)	32(6)	9(6)	
C(10)	96(7)	53(6)	118(8)	1(5)	40(7)	-15(5)	
C(11)	96(8)	74(7)	96(8)	9(6)	28(6)	11(6)	

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for k08308.

C(12)	83(7)	74(6)	96(7)	-4(6)	18(6)	6(6)
C(13)	76(6)	68(6)	63(5)	4(4)	21(5)	5(5)
C(14)	83(7)	87(7)	76(7)	-7(5)	22(5)	9(6)
C(15)	83(6)	62(6)	63(5)	-13(4)	27(4)	-4(5)
C(16)	89(7)	78(7)	71(6)	14(6)	18(5)	5(5)
C(17)	106(8)	73(8)	86(7)	0(6)	33(6)	7(6)
C(18)	90(7)	62(6)	88(7)	-5(5)	17(5)	3(5)
C(19)	98(7)	68(6)	63(5)	8(5)	15(5)	0(5)
C(20)	103(8)	67(6)	87(7)	3(5)	30(6)	15(6)
C(21)	170(14)	127(12)	109(9)	-48(9)	5(9)	33(10)
C(22)	117(10)	84(8)	107(8)	4(6)	44(7)	22(7)
C(23)	42(5)	71(6)	97(6)	-23(5)	24(4)	-11(5)
C(24)	93(7)	76(7)	66(6)	3(5)	21(5)	-5(5)
C(25)	117(8)	93(8)	57(5)	5(5)	14(5)	-6(7)
C(26)	72(6)	61(5)	65(5)	5(4)	34(4)	8(5)
C(27)	88(7)	47(5)	97(7)	-7(5)	25(5)	-28(5)
C(28)	90(7)	91(7)	61(5)	17(5)	27(5)	7(5)
C(29)	132(11)	101(10)	138(11)	38(8)	54(9)	10(8)
C(30)	142(11)	103(9)	141(11)	8(8)	68(9)	-16(9)
C(31)	119(9)	84(7)	83(6)	-30(6)	3(6)	16(7)
C(32)	81(7)	92(8)	127(9)	19(7)	9(6)	2(6)
C(33)	124(11)	159(15)	128(11)	12(11)	-9(9)	-51(11)
C(34)	115(10)	129(13)	151(13)	47(11)	-13(10)	-38(10)
C(35)	280(30)	132(17)	189(19)	-1(15)	-39(19)	-86(18)
C(36)	230(20)	91(12)	410(40)	46(18)	170(30)	64(14)
C(37)	93(9)	220(20)	178(14)	-7(15)	40(9)	-56(12)
C(38)	180(20)	129(15)	280(30)	9(18)	8(18)	-58(15)
C(39)	290(30)	153(18)	260(20)	-100(18)	190(20)	-51(19)
C(40)	92(8)	146(13)	128(10)	-45(10)	8(7)	37(8)
C(41)	96(8)	75(7)	115(9)	-6(7)	32(7)	17(6)
C(42)	114(9)	131(13)	102(8)	5(9)	16(7)	-24(9)
C(43)	102(10)	77(10)	226(19)	1(11)	29(11)	-12(7)
C(44)	126(12)	92(11)	191(17)	-65(12)	13(11)	13(9)
C(45)	117(10)	158(16)	118(10)	-24(12)	15(8)	23(11)
C(46)	116(9)	107(10)	105(9)	-14(8)	25(7)	2(8)

Cl(1)	193(7)	94(5)	96(4)	2(3)	9(4)	-40(5)	
Cl(2)	173(7)	119(6)	134(5)	1(5)	49(5)	5(5)	
Cl(3)	110(5)	146(8)	286(12)	46(8)	99(7)	26(5)	
C(1S)	101(16)	200(30)	67(11)	-22(16)	14(11)	-80(20)	
Cl(4)	132(6)	144(7)	220(9)	-50(7)	54(6)	-5(6)	
Cl(5)	180(8)	179(9)	137(6)	-20(6)	41(6)	-18(7)	
Cl(6)	107(5)	177(8)	171(7)	11(7)	36(4)	3(5)	
C(2S)	180(30)	130(30)	260(40)	-90(30)	140(30)	-40(20)	

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters ($A^2x \ 10^3$) for k08308.

	Х	У	Z	U(eq)
H(3)	4976	3425	9738	143
H(4)	4938	4543	9775	135
H(1A)	4971	6823	9246	92
H(3B)	4628	4051	5858	94
H(4B)	2993	4888	4328	99
H(3A)	2894	5191	7766	101
H(4A)	2150	5605	8440	139
H(5A)	2592	6425	9392	123
H(8A)	5367	5608	8735	91
H(10A)	5487	7091	6866	105
H(11A)	4744	6853	5749	106
H(13A)	3459	5562	6593	82
H(19A)	3625	3261	6338	93
H(20A)	4426	2270	6758	102
H(21A)	4455	1800	5663	213
H(21B)	4265	2640	5334	213
H(21C)	3699	2177	5629	213

H(22A)	5521	2251	6482	150
H(22B)	5495	2969	6979	150
H(22C)	5379	3100	6160	150
H(24A)	4366	5053	5212	94
H(25A)	3745	6254	5002	109
H(25B)	3132	5910	5306	109
H(27A)	3287	3842	3153	93
H(28A)	2898	4791	2275	95
H(29A)	2791	5841	3000	180
H(29B)	3214	6075	2444	180
H(29C)	3638	5921	3241	180
H(30A)	4014	4223	2427	184
H(30B)	4354	4992	2823	184
H(30C)	3902	5030	2023	184
H(31A)	1908	3591	1987	120
H(32A)	1133	4456	1286	156
H(32B)	1708	4885	1897	156
H(32C)	912	4775	1952	156
H(33A)	775	3189	1389	218
H(33B)	509	3328	2073	218
H(33C)	1093	2682	2074	218
H(34A)	1708	2516	3413	169
H(35A)	2650	2239	4371	329
H(35B)	2233	2980	4531	329
H(35C)	2974	3081	4344	329
H(36A)	2753	1899	3401	340
H(36B)	3090	2695	3237	340
H(36C)	2429	2326	2671	340
H(37A)	913	4468	3006	197
H(38A)	194	4282	3701	312
H(38B)	583	3465	3857	312
H(38C)	207	3716	3069	312
H(39A)	922	5280	3888	318
H(39B)	1420	5392	3375	318
H(39C)	1748	5065	4147	318

Supplementary Material (ESI) for Chemical Science This journal is (c) The Royal Society of Chemistry 2011

H(40A)	3589	6866	10680	152	
H(40B)	3053	7329	10065	152	
H(42A)	4150	8454	9866	142	
H(43A)	4465	9647	10409	165	
H(44A)	4315	9873	11521	171	
H(45A)	3849	8906	12089	161	
H(46A)	3534	7714	11546	133	
H(1S)	2346	4254	-136	150	
H(2S)	1129	6218	5886	209	

Chem. Sci. Supporting Information

Table 6. Hydrogen bonds for k08308 [Å and °].

 D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(3)-H(3)O(3)#2	0.84	1.85	2.681(15)	168.8	
O(4)-H(4)O(4)#2	0.84	1.69	2.507(13)	162.8	
N(1)-H(1A)O(5)#2	0.88	2.44	3.164(10)	140.3	
N(3)-H(3B)O(7)#3	0.88	2.06	2.891(12)	157.1	
N(4)-H(4B)O(8)	0.88	2.02	2.511(10)	113.9	

Symmetry transformations used to generate equivalent atoms:

#1 -x,y,-z+1 #2 -x+1,y,-z+2 #3 -x+1,y,-z+1

Expanded Views of ¹H Spectrum of **1** (CD₃OD, 500 MHz)

