Supplemental Information

Memory CD4+T-cells protect against influenza through multiple synergizing mechanisms

K. Kai McKinstry, Tara M. Strutt, Yi Kuang, Deborah M. Brown, Stewert Sell, Richard W. Dutton, and Susan L. Swain **Supplemental Table I**: Viral escape mutants emerge in the absence of host CD8⁺ T cell and B cells

Viral Isolate	Peptide Sequence ^a
Native PR8 HA ₁₂₆₋₁₃₈	HNTNGVTAACSHE
Control PR8	HNTNGVTAACSHE
3.1	HNINGVIAAC <u>x</u> HE
4.1	H N T N G V T A A C <u>T</u> H E
8.1	H N T N G V T A A C <u>P</u> H E
9.2	H N T N G V T A <mark>T</mark> C S H E
3.2	H N T
9.2	H N T N G V T A <mark>S</mark> C S H E
11.2	H N T <mark>K</mark> G V T A A C S H E
12.2	H
13.2	H
15.2	H N T N G V T <mark>C</mark> A C S H E
4.3 ^b	H N T N G V T A A C <u>P</u> H E
Native OVA ₃₂₃₋₃₃₉	ISQAVHAAHAEINEAGR
Control PR8-OVA _{II}	ISQAVHAAHAEINEAGR
1.1	I S Q A V H A <mark>T</mark> H A E I N E A G R
2.1	I S Q <u></u> G R
3.1	I S Q A V H A <mark>T</mark> H A E I N E A G R
4.1	ISQAVHAAHAEINE T GR

^a Nucleotide mutations and their corresponding translated aa location are underlined. Aa mutations are in bold blue text, a deletion is demarked as a dash (-), one silent mutation is simply underlined, and one unresolved aa is demarked as x.
^b Mutant viral isolate obtained from recipient of *Prf1*-/- HNT CD4 T cells.

Supplemental Table II: Viral escape mutants emerge in *Rag*-/- recipients of T_H1- polarized memory OT-II CD4+ TCR Tg cells challenged with PR8-OVA_{II} virus

Viral Isolate	Peptide Sequence a
Native OVA ₃₂₃₋₃₃₉	ISQAVHAAHAEINEAGR
Control PR8-OVA _{II} 1.1 2.1 3.1 4.1 5.1 6.1 7.1 8.1	ISQAVHAAHAEINEAGR ISQAVHAA <mark>HE</mark> EINEAGR ISQAVHAATTEINEAGR ISQAVHAAHAEINETGR ISQAVHAAHAEINETGR ISQAVHAAHAEINETGR I <u>Y</u> QAVHATH <u>-</u> EINEAGR ISQAVHAAHAETNEAGR
9.1 10.1	I S Q A V H A A H A E <mark>F</mark> N E A G R I <u>-</u> Q <u>-</u> V H A A H A E <u>-</u> N E A G R

^a Nucleotide mutations and their corresponding translated as location are underlined. As mutations are in bold blue text, a deletion is demarked as a dash (-). No mutations were detection in the HNT peptide as sequence $(HA_{126-139})$ in any isolates.

Supplemental Figure 1: Number of HNT cells present post PR8 priming. 1x10⁶ naive HNT cells were transferred to Thy-disparate WT hosts. Mice were either left uninfected (left panel) or challenged with 1,000 EID₅₀ PR8 (right panel). On stated days post-infection, the absolute number of donor cells present in the spleen, draining mediastinal lymph nodes (dLN), and lung were determined from groups of 3 mice/day.

Supplemental Figure 2: Protective impact of memory CD4⁺ T cells against lethal viral doses is dependent on cell number and is antigen-specific. **(A)** Stated numbers of T_H1 -polarized *in vitro*-generated memory HNT cells were transferred to WT hosts then infected with 10,000 EID₅₀ PR8. Survival from groups of at least 5 mice is shown. **(B)** WT mice received 5x10⁶ memory HNT cells and were challenged with stated doses of PR8 or **(C)** infected with a lethal dose of either PR8 (H1N1) or A/Philippines/2/82/x-79 (H3N2). Survival compared to mice not receiving memory HNT cells is shown (n=5/group). These results are representative of 3 separate independent experiments.

Supplemental Figure 3: Memory CD4⁺ T cell synergy with B cells is independent of SAP-dependent helper functions. C57BL/6 nude mice received 5x10⁶ WT or SAP-deficient OT-II memory cells and were challenged with a lethal dose of either PR8-OVA_{II}. (a) Weight loss, n=5/group and (b) mean PR8-OVA_{II}-specific total IgG endpoint titers (horizontal bars) are shown (n=4/group (dots)). These results are representative of 2 separate independent experiments.

Supplemental Figure 4: Viral titers in different host mice receiving memory CD4⁺ T cells. $5x10^{6}$ WT HNT memory cells were transferred to J_HD mice, J_HD mice depleted of CD8 T cells by Ab treatment as in Figure 5A and B (J_HD host + CD8 specific Ab) or SCID mice. All mice were challenged with 2,500 EID₅₀ PR8 and viral titers determined on indicated days as described in Methods (n=3/group/day).

Supplemental Figure 5: T_H17-polarized and IAV-primed memory CD4⁺ T cells do not protect SCID mice in the absence of IFN-γ. $5x10^{6}$ T_H17-polarized memory HNT cells generated from *Ifng-/-* precursors or $5x10^{6}$ IAV-primed WT memory HNT cells were transferred to **(A)** WT or **(B)** SCID hosts (4 mice/group). Control mice (No transfer) received no cells. Recipients of IAV primed memory cells also received anti-IFN-γ Ab throughout infection. WT hosts challenged with 10,000 EID₅₀ PR8 were fully protected by both memory populations until the experiment was terminated while both populations failed to protect SCID hosts challenged with 2,500 EID₅₀ PR8 (all mice succumbed by 15 dpi).