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1 Supplemental Material

1.1 IP3R Obeys Detailed Balance

To show that the ligand binding kinetics of IP3Rs are consistent with the thermodynam-

ics principle of detailed balance, we follow the procedure in (Song and Magleby, 1994).

We obtain two-dimensional dwell time distributions of adjacent open and closed times

in the forward direction from the time-series data from IP3R under three different Ca
2+

(100 nM, 1 µM, and 89 µM) and fixed IP3 (10 µM) concentrations. We use the logs of the

open duration and the following closed duration to locate a bin on the x-y plane. We use 5

bins per log unit. We repeat the same procedure by logarithmically binning the pairs of ad-

jacent open and closed intervals in the backward (reverse) direction on the time-series data.

A reversible gating mechanism gives similar results for forward and backward analysis of

the data. Forward and backward two-dimensional distributions based on over 280000 events

(where an event is an open-closed pair) are shown in Fig. S1. As in (Song and Magleby,

1994), we use the χ2 test for the significant differences between the two distributions. A χ2

value is calculated from

χ2 =
∑
i,j

[F (i, j)− E(i, j)]2

E(i, j)
+

[B(i, j)− E(i, j)]2

E(i, j)
. (1)

Where F (i, j) and B(i, j) refer to the number of events in bin (i, j) for the forward and

backward distributions, respectively, and E(i, j) = [F (i, j)+B(i, j)]/2 is the average number

of events in bin (i, j) for both the forward and backward distributions. The summation in

eq. 1 is restricted to those bins with five or more events in both the forward and backward

distributions, and the degrees of freedom, D, is given by the total number of such pairs

(Song and Magleby, 1994). Finally, we calculate the approximate normal deviate Z =√
(2χ2) −

√
(2D − 1) to estimate significance. Observed differences are significant at the

5% level if Z > 1.96 (Snedecor and Cochran, 1989). We get Z = −1.82 from our analysis.

Thus, our data are consistent with the microscopic reversibility hypothesis.

1.2 The Equilibrium Occupancies Contain No Information Re-

garding Network Connectivity

In general a finite state Markov chain obeys an evolution equation dp/dt = pQ where p is a

vector with p`(t) being the probability that the `th state is occupied at time t given an initial
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probability vector at t = 0. Q is the “generator matrix”: Qij, i 6= j is the transition rate from

state i to state j. The diagonal entries are given by Qii = −
∑

j6=i Qij which is an expression

of conservation of probability (Bruno et al., 2005). The last equality has an immediate

consequence: if u is the vector containing all ones, Qu = 0. We assume, given Q, that there

is a unique stationary solution, w, such that wQ = 0 with normalization w · u = 1. The

uniqueness assumption implies that there is a finite time path between every pair of states.

If the static solution is a state of thermodynamic equilibrium then every reaction must be

in detailed balance: wiQij = wjQji. As shown above, the IP3R gating kinetics obey detailed

balance. We define a diagonal matrix W with Wii = wi. The detailed balance condition

is: WQ = (WQ)T where T indicates the matrix transpose. We define the flux matrix

Qflux = WQ. Qflux is a symmetric generator matrix. Its off-diagonal entries, Qflux
ij , i 6= j

give the flux from state i to state j at equilibrium. Since Qflux is a generator, Qfluxu = 0.

Since Qflux is symmetric, it follows that uTQflux = 0 as well. Note that the equilibrium

occupancies are encoded within W while the network connectivity is encoded within Qflux. It

follows that equilibrium occupancy data such as Po contain no information about the network

connectivity. This is because the equilibrium occupancy vector w contains no information

about network connectivity. To see this, note that wQ = wW−1Qflux = uTQflux = 0 so that

given a Qflux, any conformant w is a stationary vector of Q. Note that Q is similar to a

symmetric matrix Q̂ = W 1/2QW−1/2 = W−1/2QfluxW−1/2.

1.3 Do missed events cause more error in Po or in τo or τc?

We claim that error in τo and τc due to missed events is greater than the error in Po. We have

not found a rigorous proof for this statement but we expect it because although error in τo

and τc result in error in Po some of the error cancels. Indeed, if τo and τc have the same error

which might be very large, there is no resulting error in the Po. We provide some analysis

in support of our claim. Initially we assume that the time series is meaningfully described

as binary but make no assumptions with regard to the gating. That is, the channel can be

declared as either “open” or “closed” at every point in time; there are no sub-conductance

levels etc.

We introduce the following quantities: T , the length of time the experiment ran, N , the

true number of open events (which is equal to the number of closed events) that occurred,

F , the fraction of events that were observed (0 ≤ F ≤ 1), the “true” mean open and closed

times: τo, τc, and the true equilibrium open probability: Po, along with the observed open and

closed time, and open probability: τ obso , τ obsc , P obs
o . (By ”true” mean open and closed times
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we mean the true sample average which we assume is representative of the actual average.)

Note that since these errors are from missed events we necessarily have that τ obso > τo and

τ obsc > τc. If the true number of openings and closings is N then the true mean open and

closed times obey:

N(τo + τc) = T . (2)

If only FN , of events are observed then observed mean open and closed times, τ obso and τ obsc ,

obey:

FN(τ obso + τ obsc ) = T (3)

from which it follows that

(τ obso + τ obsc ) =
1

F
(τo + τc) . (4)

The observed and actual open probabilities obey:

Po =
τo

τo + τc

(5)

P obs
o =

τ obso

τ obso + τ obsc

. (6)

We define the fractional error in τo, τc, Po, as ∆o, ∆c, and ∆P respectively.

∆o ≡ 1− τo

τ obso

≥ 0 (7)

∆c ≡ 1− τc

τ obsc

≥ 0 (8)

∆P ≡ 1−min

(
Po

P obs
o

,
P obs

o

Po

)
≥ 0 (9)

These definitions place all fractional errors in the unit interval. Combining Eqs(4-8) we have

F =
τo + τc

τ obso + τ obsc

=
(1−∆o)(1−∆c)

Pc(1−∆o) + Po(1−∆c)
(10)

where Pc = 1− Po and

P obs
o =

τ obso

τ obso + τ obsc

=
τo

1−∆o

τo
1−∆o

+ τc
1−∆c

=
F

1−∆o

Po . (11)

Note that if ∆o > ∆c then P obs
o > Po. If ∆c > ∆o then Po > P obs

o . Along the line

∆o = ∆c we have Po = P obs
o so that ∆P = 0 (the red dotted line in Fig. S2). In the figure
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we have plotted the curves ∆P = ∆o (solid lines, black: Po = 0.9, blue: Po = 0.01) which is

given by

∆c =
∆o (Pc + 1−∆o + ∆oPo)

Pc + ∆oPo

(12)

and ∆P = ∆c (dashed lines, black: Po = 0.9, blue: Po = 0.01) which is given by:

∆c = 1− 1

2
Po −

√
Pc −∆o + ∆oPo + Po

2 . (13)

Note that it is always the case that ∆P ≤ max(∆o,∆c) . Between the dashed and solid blue

lines it is also true that ∆P ≤ min(∆c,∆o) for Po = 0.01. Similarly, between the dashed and

solid black lines it is also true that ∆P ≤ min(∆c,∆o) for Po = 0.9. We have treated ∆o

and ∆c as independent and thus our results hold for any (∆o,∆c) pair. In general though,

∆o and ∆c are not independent; missed openings result in longer closed times and missed

closings result in longer open times. This fact tends to push the system closer to the line

∆o = ∆c where ∆P = 0.

1.4 Occupancy and Flux

To illustrate the concept of occupancy and flux parameters and their relation with reac-

tion rates, we consider the following sequence involving three states in which the channel

sequentially binds two molecules of ligand L:

A + L
kAT



kTA

T (14)

T + L
kTB



kBT

B (15)

where kAT, kTA, kTB, and kBT denote the reaction rate constants. We pick the unliganded

state (or complex) A as the reference state and give it unit unnormalized occupancy, ZA

= 1. Unnormalized occupancies of other states in this reaction sequence, T and B, are

the equilibrium probabilities of the channel being in these states relative to the probability

of it being in state A. This relation carries over into the more complex Markov chain we

must deal with in modeling the IP3R channel. The combined laws of mass action and

detailed balance imply that the unnormalized occupancy of every state is proportional to

Ln, where L = [L], and n is the number of ligand molecules bound to that state. We

call the proportionality constant the occupancy parameter of that state. For the reaction

sequence in (14) and (15), the unnormalized equilibrium occupancy for T is ZT = KTL,
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where KT ≡ kAT/kTA is the occupancy parameter of state T; the unnormalized occupancy

of B is ZB = KBL
2 and KB ≡ KT(kTB/kBT) is the occupancy parameter of state B. Thus,

the occupancy parameter of a state is the product of all forward equilibrium constants for

the reactions connecting the reference state to that state through an arbitrary path. The

normalized occupancies of A, T, and B is then πA = 1/Z, πT = ZT/Z, and πB = ZB/Z,

respectively, with Z = 1+KTL+KBL
2. Throughout the main text and SI text, Z represents

the total unnormalized occupancy of all states involved in a reaction sequence, ZM that of all

states in a gating mode M, Zo that of the “open aggregate” consisting of all open complexes,

Zc that of the “closed” aggregate consisting of all closed complexes, and ZM
o that of all open

complexes in mode M.

The unnormalized flux between states T and B, JTB, is the product of ZT and the reaction

rate from T to B, rTB. So rTB = JTB/ZT. Since T and B are in equilibrium, JTB = JBT

and rBT = JTB/ZB. The flux parameter jAT for the A + L 
 T reaction is defined as the

proportionality constant for the flux from A to T in terms of L. The flux from A to T:

JAT = rATZA = kATL = jATL. Similarly, JTB = kTBLZT = kTBKTL
2 = jTBL

2, where jTB is

the flux parameter for the T + L 
 B reaction. Since the flux from A to T must balance

that from T to A: kTAZT = kTAKTL = jATL; and flux from T to B balances that from

B to T: kBTZB = kBTKBL
2 = jTBL

2. Thus, the four rate constants can be expressed in

terms of flux parameters jAT and jTB, and occupancy parameters KT and KB: kAT = jAT,

kTB = jTB/KT, kTA = jAT/KT, and kBT = jTB/KB.

1.5 Low-occupancy States

We consider the reaction sequence in Eqs(14–15) to explain the concept of low-occupancy

states and model simplification procedure. If KT = 0.1 µM−1 and (kTB/kBT) = 100 µM−1,

KB = KT(kTB/kBT) = 10 µM−2. Then ZT is maximum when L = K
−1/2
B , at which point ZA

and ZB = 1 and ZT ≈ 0.03 only. The relative high rates from T to A and B results in such

low occupancy for T that it is not detectable in Po data. State T is therefore a transition

state and the reaction chain can be simplified to an effective chain A 
 B with renormalized

rates. Since each forward reaction in the full chain involves ligand binding, the backward

reaction in the effective chain is ligand dependent. The effective flux between A and B, Jeff
AB

is given by (see also SI section 1.6):

1

Jeff
AB

=

(
1

JAT

+
1

JTB

)
=

(
1

jATL
+

1

jTBL2

)
. (16)
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The effective rate from A to B = Jeff
AB/ZA = Jeff

AB = jAT jTBL
2/(jAT + jTBL) and the effective

rate from B to A = Jeff
AB/ZB = Jeff

AB/KBL
2 = jAT jTB/(jAT + jTBL)KB, where KB is the

occupancy parameter for B. The simplified approximating reaction sequence can thus be

characterized by two flux parameters (jAT and jTB) and one occupancy parameter (KB)

instead of four parameters. Note that both effective rates from A to B and from B to A are

L dependent.

Proper treatment of low-occupancy states is crucial, both for getting the rates right in the

simplified model and for obtaining a model structure with learnable parameters. Without

the simplification, the search to optimize the fit to data with the reaction chain will be

conducted in a 4-dimensional parameter space when there are effectively only 3 parameters.

Keeping the transition state T will result in a neutral direction (a direction in which all fits

are equally good) in the space of parameters.

Although the transition state T has very low occupancy, it nevertheless plays a key role

serving as a “speed bump” to reduce the effective flux between A and B as L increases. For

small L, Jeff
AB ≈ jTBL

2 while for large L, Jeff
AB ≈ jATL.

The effective chain A 
 B will yield more rapid transitions than the true chain. In the

full chain, there are two reactions going from state A to state B so there cannot be any

instantaneous transition from A to B when L is abruptly changed from 0 to some finite

level. So the distribution of latencies (i.e. first passage times) from A to B is zero at t = 0.

The distribution of latencies for the approximating chain is a single decaying exponential:

Jeff
AB exp(−Jeff

ABt), and therefore nonzero at t = 0. However, the probability of making the

transition from A to B by time t for the exact and approximating chains converges even for

small (non-zero) t.

Applying such simplifications by excluding transition states can result in substantial

reduction in the number of parameters required to specify more complex systems.

1.6 Model Simplification

We simplify various branches in the model that have low-occupancy transition states as

described in the previous section. For example, in the chain CI
04 
 T14 
 CH

24, T14 is a

transition state with 1 Ca
2+

and 4 IP3 bound. The only states that we are including in the

model have 0 and 4 Ca
2+

bound. Clearly there is a “missing state” (T14 in this example)

which mediates the transition between state CI
04, which has no Ca

2+

bound, and state CH
24,

which has two Ca
2+

bound. The Po data are not adequate to provide accurate estimates of

the occupancy of the transition states save that their occupancy is always low relative to
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that of the primary states in the model. Note that this does not imply that the occupancy of

T14 is less than the occupancy of C00 for all Ca
2+

concentration. Rather, it means that the

occupancy of T14 is negligible compared to at least one of the main states in any conditions.

Applying Occam’s razor, we set the occupancy of all the required low-occupancy transition

states to zero. As we pointed out above, these states don’t disappear entirely, they serve as

“speed bumps” for the probability flux between high occupancy states.

Using the analogy between flux and conductance in an electrical circuit, the transition

rates between various states can be derived as follows. The effective conductance of a linear

chain of resistors is the reciprocal of the sum of the reciprocal conductances of the individ-

ual resistors. Thus it will prove useful to define a function for the reciprocal of a sum of

reciprocals, rsr:

rsr(x1, x2, · · · xn) ≡ 1∑n
i=1

1
xi

. (17)

Note that rsr(αx1, αx2, · · · αxn) = α rsr(x1, x2, · · · xn), a property that we will make

frequent use of. The effective flux for the transition CI
04 
 CH

24 is given by

Jeff
CI

04CH
24

= rsr(JCI
04T14

, JT14CH
24

) (18)

where JXλµYνρ represents the flux from state Xλµ (with λ Ca
2+

and µ IP3 bound) to state Yνρ

(with ν Ca
2+

and ρ IP3 bound). This is analogous to replacing a circuit with two resistors

connected in series with the equivalent single-resistor circuit. The flux between Xλµ and Yνρ

is proportional to CζIη where ζ is the maximum of λ and ν, and η is the maximum of µ

and ρ (Yang et al., 2006). The proportionality constant is the flux parameter: jλµνρ. Thus

JCI
04T14

= j0414CI4 and JT14CH
24

= j1424C2I4. We can rewrite Eq. 18 as

Jeff
CI

04CH
24

= CI4 rsr(j0414, j1424C) (19)

The flux from one state to another is simply the product of the occupancy of the initial state

and the rate from initial to final state, i.e.

Jeff
CI

04CH
24

= Occupancy of CI
04 × Rate from CI

04 to CH
24 . (20)

The occupancy of CI
04 is KCI

04
I4, therefore

Rate from CI
04 to CH

24 =
C

KCI
04

rsr (j0414, j1424C) . (21)
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Since the fluxes we are parameterizing are equilibrium fluxes, Jeff
CH

24CI
04

= Jeff
CI

04CH
24

. With

the occupancy of state CH
24 = KCH

24
C2I4, we have

Rate from CH
24 to CI

04 =
1

KCH
24
C
rsr (j0414, j1424C) . (22)

Note that for small C, the rate from CI
04 to CH

24 ≈ j 1424C2/KCI
04

. For large C, rate from

CI
04 to CH

24 ≈ j0414C/KCI
04

. The rest of the rates between various states are derived using the

above analogy and are tabulated in Table S2.

Although 4 transitions are required to go from CL
00 to CI

04, we parameterized the effective

flux, Jeff
CL

00CI
04

, with only two parameters:

Jeff
CL

00CI
04

= rsr(j0001I, j0102I2, j0203I3, j0304I4) = rsr(j0001I, j0304I4) (23)

by assuming that the fluxes between the 01 and 02 and between the 02 and 03 transition

states to be infinite so that they are not rate limiting. This is done because we only have

sufficient data to define two flux parameters. Similarly, only one flux parameter each can be

defined from the data for the CL
30 
 CL

32 and CL
32 
 CL

34 transitions.

To minimize the number of parameters, we assume that the effective rates for the reactions

CI
04 → CI

24, CL
00 → CL

20 and CI
04 → CH

24 are the same. Similarly, the effective rates for the

reactions CI
04 ← CI

24, CL
00 ← CL

20 and CI
04 ← CH

24 are the same (see Table S2).

Flux parameters used to calculate the transition rates are given in Table S3 and are

estimated as follows. Ligand dependencies of some of the transition rates are shown in Fig.

S3.

1.7 Estimation of Flux Parameters

For the initial guess, we constrain the flux parameters according to the mean latencies,

modal mean open times, and modal lifetimes (Mak et al., 2007; Ionescu et al., 2007). For

example, to calculate the flux parameter for CH
24 
 OH

24 reaction, we use the mean open time,

τH
o = 30 ms, of the channel in the H mode in optimal conditions (C = 1 µM, I = 10 µM). The

mean time to transition from OH
24 to CH

24 is equal to KOH24
C2I4/(jHH2424C2I2). Knowing KOH24

,

we can calculate jHH2424. Similarly, to estimate the flux parameter j2424 for OH
24 
 OI

24 reaction,

we write the mean transition time from OH
24 to OI

24 as KOH24
C2I4/(j2424C2I2). Knowing the

H mode life-time, τH = 2.7 sec, in optimal conditions and KOH24
, we can estimate j2424.

The flux parameters required for the transition from states with 0 IP3 bound to states

8



with 4 IP3 bound: j0001, j0304, j2030, j3132 and j3334, are obtained by fitting the experimental

latency distributions for IP3 and Ca
2+

/ IP3 activation. The H mode lifetime at 100 nM and

1 µM Ca
2+

give us j0414 and j1424. jHH
2424 and jII

2424 are fixed according to the mean H and I

mode open times at optimal ligand concentrations: C = 1 µM and I = 10 µM. We slightly

adjust these two parameters so that the model can also give the correct mean open and

closed times of the channel. (Superscripts are used on the flux parameters as needed when

there were more than one transition between complexes with the same numbers of ligands

bound.) We fix j0404 according to the L mode lifetime at C = 100 nM and I = 10 µM; and

jII
0414 according to the mean Ca

2+

activation latency. The mean Ca
2+

inhibition latency is

used to estimate j2434. Finally, the three flux parameters used for the CI
04 
 CL

34 reaction

are fixed so that the following two observations at I = 10 µM were satisfied: (1) 9 out

of 103 experiments failed to cause channel bursting when Ca
2+

was jumped from < 10 nM

to 300 µM and (2) 6 out of 94 times the channel has a burst of activity before getting

deactivated when Ca
2+

was dropped from 300 µM to < 10 nM. Although we estimate the

initial values of flux parameters from observations, the initial guess proved unnecessary for

the fit. The fit converged to the same final parameter values for random initial conditions.

Once we have the initial guess for all the flux parameters in the model, we perform

automated fit on the model using all data from ligand jump experiments and time series

data at three Ca
2+

concentrations (C = 100 nM, 1 µM, and 89 µM and fixed I = 10 µM).

We choose the best fit according to the AIC and Log-Likelihood scores as described in the

main text. The final flux parameters for the model obtained from the fit are given in Table

S3.

1.8 Mean Open and Closed Times

In the following, we derive expressions for mean open and closed times. The equilibrium flux

from an open state to the closed state is the product of the occupancy of the open state and

the sum of transition rates out of the open state. Thus the total equilibrium flux from the

3 open states to the closed states, J , is given as:

J = KOH
24
C2I4 × (Rate from OH

24 to CH
24 + Rate from OH

24 to CL
34)

+KOI
24
C2I4 × Rate from OI

24 to CI
24

+KOI
14
CI4 × Rate from OI

14 to CI
04 (24)

9



The mean open and closed times are given as

τo =
Po(C, I)

J
(25)

τc =
1− Po(C, I)

J
(26)

1.9 Dwell-Time Distributions

In the following, we derive the expressions for the open and closed dwell time distributions.

We partition the W matrix into WC and WO, where WC is a diagonal matrix of the equi-

librium occupancies of the 9 closed states and WO is a diagonal matrix of the equilibrium

occupancies of the 3 open states in the model. For the modal dwell time distributions, WC

is a diagonal matrix of the equilibrium occupancies of all closed states in a given mode (CI
04,

CI
24 for I mode and CH

24 for H mode) and WO is a diagonal matrix of the equilibrium occu-

pancies of all open states in the mode (OI
14, OI

24 for I mode and OH
24 for H mode). Similarly,

we can write Q as

Q =

(
QOO QOC

QCO QCC

)
(27)

Where QOC is a matrix of the transition rates from all open to all closed states in the model

etc. In case of the modal distributions, QOC is a matrix of the transition rates from all open

to all closed states in the I mode or H mode depending on the mode the channel is gating in

etc. The open time distribution is the probability density for a channel that opened at time

0 to close for the first time at tO. The probability that the channel first closed at time tO is

given by

dpO
dt

= pOQOO (28)

which has solution po(to) = πOexp(QOOtO). The probability, FO, that the channel remains

open at time tO is the sum of the probability over all the open states:

FO(tO) = πOexp(QOOtO)uO (29)
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Where uO and uC are column vectors of all ones having dimensions equal to the number of

open and close states respectively. The probability, GC , that the channel closes for the first

time at time tO is GC(tO) = 1− FO(tO). The open-time distribution, fO(tO) is defined by:∫ tO

0

fO(t)dt = GC(tO) (30)

or fO(tO) = dGC(tO)/dtO so that

fO(tO) = −πOexp(QOOtO)QOOuO (31)

which can be written as

fO(tO) = πOexp(QOOtO)QOCuC (32)

Similarly, the closed time distribution is given as

fC(tC) = πCexp(QCCtC)QCOuO (33)

The initial probabilities of open and closed states being occupied at equilibrium are given as

πO =
WCQCO

J
(34)

πC =
WOQOC

J
(35)

where J = WCQCOuO = WOQOCuC is the total flux from all open states to all closed states

and vice versa. For the modal dwell distributions, J is the total flux from all open states to

all closed states in the mode and vice versa.

1.10 Experimental Methods

The experimental data presented is this paper is reproduced from (Ionescu et al., 2006, 2007;

Mak et al., 2007). The Po τo and τc data is taken from (Ionescu et al., 2006), the modal

data is from (Ionescu et al., 2007), and the rapid-perfusion data is adopted from (Mak et al.,

2007). Here we present the experimental methods briefly and refer the reader for detailed

description to (Ionescu et al., 2006, 2007; Mak et al., 2007).
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1.10.1 Measuring Po, τo, and τc (Ionescu et al., 2006)

Spodoptera frugiperda (Sf9) cells (Invitrogen) were grown and maintained in SF-900II serum-

free media (Gibco) in suspension culture according to the manufacturers protocols. For

maximum detection of functional IP3R channels in patch-clamp experiments, each freshly

thawed batch of cells was passaged 3-4 times before being used for electrophysiology. Cells

were propagated for up to 7-8 weeks in culture before a new batch was thawed and expanded.

Cells were moved from suspension culture to a T-25 flask, allowed to attach to the bottom

of the flask for 1 h, and then washed twice with Ca
2+

- and Mg2+ - free PBS. An ice-cold

nuclear isolation solution, containing (mM): 140 KCl, 250 sucrose, 1.5 β-mercaptoethanol, 10

Tris-HCl (pH adjusted to 7.4), with complete protease inhibitor cocktail (Roche Molecular

Biochemicals, Indianapolis, IN, USA) and 0.05 mM phenylmethylsulphonylfluoride (PMSF),

was added to the flask and the cells were detached by gentle scraping. Homogenization of

1-2 ml of the mixture was performed using 2-4 strokes of the pestle in an ice-cold Dounce

homogenizer. A 20-30 µl volume of the homogenized mixture was added to 1 ml standard

bath solution (mM: 140KCl, 10 Hepes, 0.5 BAPTA, pH 7.3, and free Ca
2+

adjusted to

∼300 nM) in an experimental chamber on the stage of an inverted microscope. Isolated

nuclei are ∼10 µm in diameter, and were distinguished from intact cells based on their

unique morphology. Fresh homogenizations were performed every 2 h. The standard pipette

solution contained (mM): 140 KCl, 0.5 Na2ATP, 10 Hepes, pH 7.3, and various Ca
2+

and

IP3 concentrations, as indicated. All solutions were carefully buffered to desired free Ca
2+

(Mak et al., 1998), confirmed by fluorometry.

All experiments were performed at room temperature with the pipette electrode at +20

mV relative to the reference-bath electrode. Each data point shown in Po, τo, and τc plots

(Fig. 2, Fig. 6A, Fig. 6B, main text) is the mean of results from at least four separate patch-

clamp experiments performed under the same conditions. Error bars indicate the SEM.

Single channel currents were amplified by an Axopatch-1D amplifier (Axon Instruments,

Foster City, CA), filtered at 1 kHz, digitized at 5 kHz (Mak et al., 1998). Segments of current

traces exhibiting one or two IP3R channels were used for open probability Po determinations

(Mak and Foskett, 1997), and single-channel traces were used for dwell-time analyses by

QuB software (Qin et al., 2000).

1.10.2 Modal Gating Data (Ionescu et al., 2007)

Nuclear patch clamping was performed as described above (Mak et al., 1998; Ionescu et al.,

2006). To maximize the duration of the observed channel activity, current recording was
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started as soon as seal resistance exceeded 150MΩ. The standard pipette solution contained

(in mM) 140 KCl, 10 HEPES (pH 7.3 by KOH), 0.5 Na2ATP, 0.5 Ca
2+

chelator, and var-

ious Ca
2+

and 10µM IP3 concentrations as indicated in Fig. 4A-C, main text. The bath

solution contained (in mM) 140 KCl, 10 HEPES (pH 7.3 by KOH), 0.5 BAPTA (1,2-bis(O-

aminophenoxy) ethane-N,N,N,N-tetraacetic acid; Molecular Probes), and 0.225 CaCl2 (free

Ca
2+

concentration = 300 nM). All solutions were carefully buffered to desired free Ca
2+

concentration using Ca
2+

chelators with appropriate affinities (Mak et al., 1998), confirmed

by fluorometry. All current traces used for analysis were recorded under +20 mV in room

temperature. Data were acquired using an Axopatch 200B amplifier (Axon Instruments),

filtered at 1 kHz, and digitized at 5 kHz with an ITC-16 interface (Instrutech) and Pulse

software (HEKA Electronik).

Segments of current records exhibiting current levels for a single IP3R channel were

idealized using QuB software with SKM (Qin et al., 2000). Channel gating kinetics and modal

gating behaviors were characterized using the algorithm in the Appendix of (Ionescu et al.,

2007) written using Igor Pro software (WaveMetrics). Statistical analyses were performed

on thousands of seconds of single channel current records in Igor Pro software.

1.10.3 Rapid-Perfusion Experiments (Mak et al., 2007)

Single-channel patch-clamp studies of IP3R channels in a native membrane environment

using isolated nuclei from cultured insect Sf9 cells were performed as described above in cyto-

out excised patch configuration. The cytoplasmic side of the nuclear membrane patch and

of any IP3R channels therein was exposed to different perfusing solutions containing various

ligand concentrations during a continuous patch-clamp recording using a rapid perfusion

set-up. Activation latency is the duration between the solution switch time and the first

observed channel opening event in response to the solution switch. Similarly, deactivation

latency is the duration between solution switch time and the last observed channel closing.

The times when the solution was changed at the excised membrane containing the IP3R

channel were clearly marked by an abrupt, discernible change in the baseline current because

the alternating solutions containing different I or C also contained different concentrations

of KCl. The analysis allows latencies >5ms to be clearly and consistently resolved. Current

traces from cyto-out membrane patches containing one to several (≤ 10) active IP3R channels

were selected for latency analysis. All current records were acquired with + 20 mV applied

potential at room temperature.

The latency distributions shown in Fig. 5 (and Fig. 8) of the main text are based on

13



the n number of solution switches and N number of cyto-out patches, where (n, N) for

Fig. 5A-H (and Fig. 8A-H) respectively are: (458,14), (260,14), (532,11), (376,11), (638,7),

(458,7), (186,7), and (197,7). The (n,N) values for the experiments involving (C, I) changes

from (0µM, 10µM) to (300µM, 10µM) and from (300µM, 10µM) to (0µM, 10µM) were (94,3)

and (70,3) respectively.
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Fig. S1: Two-dimensional dwell-time distributions for open-closed intervals of IP3R. (A)
Two-dimensional distribution obtained from forward and (B) backward analysis of the time-
series data. The z-axis is the square-root of the number of events in a given bin. (C)
Difference between forward and backward distributions.

16



Fig. S2: Error in Po verses error in τoand τc. Various lines and regions shown here are
described in the text.
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Table S1: Parameters for occupancies of all states in the CM model.

Parameters Values
KCL

00
1

KCL
32

1.479× 107 µM−5

KCL
34

7.762× 107 µM−7

KOI
14

1.202× 108 µM−5

KC04 = KCL
04

+KCI
04

2.183× 108 µM−4

KC24 = KCH
24

+KCI
24

6.165× 108 µM−6

KO24 = KOH
24

+KOI
24

2.042× 109 µM−6

p 0.8

r 0.95

KCL
04

pKC04

KCI
04

(1− p)KC04

KOH
24

rKO24

KOI
24

(1− r)KO24

KCH
24

0.5KC24

KCI
24

(1− 0.5)KC24

KCL
20

2.5 µM−2

KCL
30

0.15 µM−3
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Table S2: Transition rates between various states in the CM model.

Transition Rates
CI

04 → CH
24 rsr(j0414C, j1424C2)/KCI

04

CI
04 ← CH

24 rsr(j0414C, j1424C2)/KCH
24
C2

CH
24 → OH

24 jHH
2424/KCH

24

CH
24 ← OH

24 jHH
2424/KOH

24

OH
24 → CL

34 j2434C/KOH
24

OH
24 ← CL

34 j2434/KCL
34

CI
04 → CL

34 rsr(jIL
0414C, jIL

1424C2, jIL
2434C3)/KCI

04

CI
04 ← CL

34 rsr(jIL
0414C, jIL

1424C2, jIL
2434C3)/KCL

34
C3

CI
04 → OI

14 jII
0414C/KCI

04

CI
04 ← OI

14 jII
0414/KOI

14

CI
24 → OI

24 jII
2424/KCI

24

CI
24 ← OI

24 jII
2424/KOI

24

OI
24 → OH

24 j2424/KOI
24

OI
24 ← OH

24 j2424/KOH
24

CI
04 → CL

04 j0404/KCI
04

CI
04 ← CL

04 j0404/KCL
04

CL
32 → CL

34 j3334I2/KCL
32

CL
32 ← CL

34 j3334/KCL
34

CL
30 → CL

32 j3132I2/KCL
30

CL
30 ← CL

32 j3132/KCL
32

CL
20 → CL

30 j2030C/KCL
20

CL
20 ← CL

30 j2030/KCL
30

CL
00 → CI

04 rsr(j0001I, j0304I4)

CL
00 ← CI

04 rsr(j0001, j0304I3)/KCI
04
I3

CL
20 → CH

24 rsr(j2021I, j2324I4)

CL
20 ← CH

24 rsr(j2021, j2324I3)/KCI
04
I3
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Table S3: Flux parameters used in the CM model. Superscripts are used to dis-
tinguish between different flux parameters that connect different pairs of states that have
the same numbers of ligands bound. For example, in both transitions CI

24 
 OI
24 and

CH
24 
 OH

24, CI
24 and CH

24 are bound to the same number of Ca
2+

and IP3, and so are OI
24 and

OH
24. However, the two transitions have different flux parameters. TS stands for time-series

data.

Parameters Pathway Values from Values from Units
Latency+TS fit Latency fit

j0414 CI
04 
 CH

24 1.017× 106 4.213× 10−3 µM−5ms−1

j1424 CI
04 
 CH

24 2.840× 107 8.882× 105 µM−6ms−1

j2434 OH
24 
 CL

34 4.663× 104 2.733× 107 µM−7ms−1

jIL
0414 CI

04 
 CL
34 9.502× 108 4.981× 104 µM−5ms−1

jIL
1424 CI

04 
 CL
34 6.4× 105 4.730× 103 µM−6ms−1

jIL
2434 CI

04 
 CL
34 2.431× 103 9.438× 103 µM−7ms−1

j2030 CL
20 
 CL

30 2.449× 10−3 3.1732× 107 µM−3ms−1

jII
0414 CI

04 
 OI
14 4.966× 104 1.573× 10−2 µM−5ms−1

jII
2424 CI

24 
 OI
24 1.467× 107 4.214× 108 µM−7ms−1

j2424 OI
24 
 OH

24 3.301× 105 1.050× 10−3 µM−6ms−1

j0404 CI
04 
 CL

04 5.459× 104 1.288× 107 µM−4ms−1

jHH
2424 CH

24 
 OH
24 7.723× 107 1.417× 105 µM−6ms−1

j3132 CL
30 
 CL

34 2.891× 10−2 6.648× 106 µM−5ms−1

j3334 CL
32 
 CL

34 2.120× 103 3.425× 105 µM−7ms−1

j0001 CL
00 
 CI

04 1.138× 10−2 7.003× 103 µM−1ms−1

j0304 CL
00 
 CI

04 4.756× 1010 5.305× 107 µM−4ms−1

j2021 CL
20 
 CH

24 8.904× 10−4 8.843× 10−2 µM−3ms−1

j2324 CL
20 
 CH

24 8.523× 106 3.003× 103 µM−6ms−1
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Table S4: Occupancy parameters for De Young-Keizer model

Parameters Values
K000 1

K001 3.724× 102 µM−1

K010 1.208× 104 µM−1

K011 4.077× 103 µM−2

K100 3.786× 104 µM−1

K101 1.242× 104 µM−2

K110 4.525× 105 µM−2

K111 5.621× 103 µM−3
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Table S5: Rate constants for De Young-Keizer model. TS stands for time-series
data.

Parameters Values from Values from Units
Latency+TS fit Latency fit

k000→100 6.011× 10−4 7.716× 10−3 ms−1µM−1

k000←100 1.588× 10−8 2.038× 10−7 ms−1

k010→110 5.213× 10−1 8.408× 10−3 ms−1µM−1

k010←110 1.388× 10−2 2.238× 10−4 ms−1

k100→101 9.873× 10−5 1.518× 10−3 ms−1µM−1

k100←101 3.010× 10−4 4.628× 10−2 ms−1

k110→111 3.134× 10−7 2.599× 10−19 ms−1µM−1

k110←111 2.523× 10−5 2.092× 10−17 ms−1

k001→101 1.677× 10−3 1.709× 10−11 ms−1µM−1

k001←101 5.031× 10−5 5.127× 10−13 ms−1

k011→111 2.854× 10−3 2.019× 10−4 ms−1µM−1

k011←111 2.070× 10−3 1.464× 10−4 ms−1

k000→001 1.023× 104 1.525× 10−9 ms−1µM−1

k000←001 27.446 4.094× 10−12 ms−1

k010→011 3.05× 10−3 3.628× 10−3 ms−1µM−1

k010←011 9.013× 10−3 1.072× 10−2 ms−1

k000→010 5.190× 102 1.044× 10−7 ms−1µM−1

k000←010 4.308× 10−2 8.666× 10−12 ms−1

k101→111 4.475× 10−7 2.380× 10−4 ms−1µM−1

k101←111 9.887× 10−7 5.257× 10−4 ms−1

k100→110 3.708× 10−2 4.342× 10−2 ms−1µM−1

k100←110 3.102× 10−3 3.632× 10−4 ms−1

k001→011 2.429× 1010 5.083× 10−3 ms−1µM−1

k001←011 2.220× 109 4.646× 10−4 ms−1
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