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S1 Model of Hill functions

In this section we identify the Hill function approximations for the expression of proteins controlled by (i)

an activator protein and (ii) a repressor and an activator protein. Consider first the expression of protein

X whose expression rate is regulated by an activator protein A via the promoter pR. These processes

can be modeled by the following chemical reactions

pR +mA
ka1−−⇀↽−−
kb1

C1

C1
κ2−→ C1 +X

pR
κ4−→ pR +X,

(S1)

in which κ2 is the expression level of the promoter bound to A, κ4 is the basal expression level of the

promoter, ka1 and kb1 are the association and dissociation rates of the promoter to A respectively and

m models the cooperative binding of the activator protein. Assuming that there is a conservation of the

total amount of promoter sites, modeled by the expression pR+C1 = pR,T , the expression level from this

promoter can be modeled by g2(A) = κ2C1(A) + κ4(pR,T − C1(A)). The quasi-steady state value of C1

can be obtained by identifying the equilibrium of the following ODE

Ċ1 = ka1(pR,T − C1)A
m − kb1C1. (S2)
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Defining Km1 = m

√

kb1/ka1, we obtain

g2(A) = κ2pR,T
Am

Am +Km
m1

+ κ4pR,T
Km
m1

Am +Km
m1

=
K2A

m +K4K
m
m1

Am +Km
m1

, (S3)

in which K2 := κ2pR,T and K4 := κ4pR,T .

Consider now the expression of a protein X whose expression rate is regulated by an activator protein

A as well as by repressor protein R via the promoter pA. We will assume that the binding is competitive.

Expression can be modeled by the following chemical reactions

pA +mA
ka1−−⇀↽−−
kb1

C1

pA + nR
ka2−−⇀↽−−
kb2

C2

C1
κ1−→ C1 +X

pA
κ3−→ pA +X,

(S4)

in which κ1 is the expression level of the promoter bound to A, κ3 is the basal expression level of the

promoter, ka1 and kb1 are the association and dissociation rates of the promoter to A, respectively, ka2 and

kb2 are the association and dissociation rates of the promoter to R, respectively, and m and n model the

cooperative binding of the activator and repressor proteins, respectively. We assume that the repressor

activity is perfect and therefore no expression can occur from the repressed promoter. Assuming that there

is a conservation of the total amount of promoter sites, modeled by the expression pA+C1+C2 = pA,T , the

expression level from this promoter can be modeled by g1(A,R) = κ1C1(A)+ κ3(pA,T −C1(A)−C2(R)).

The quasi-steady state value of C1 and C2 can be obtained by identifying the equilibrium of the following

ODE

Ċ1 = ka1(pA,T − C1 − C2)A
m − kb1C1

Ċ2 = ka2(pA,T − C1 − C2)R
n − kb2C2

(S5)

Defining Km1 = (kb1/ka1)
1/m and Km2 = (kb2/ka2)

1/n, we obtain the expression

g1(A,R) = pA,T
κ1K

n
m2A

m + κ3K
m
m1K

n
m2

Km
m1K

n
m2 +Kn

m2A
m +Km

m1R
n
=

K1K
n
m2A

m +K3K
m
m1K

n
m2

Km
m1K

n
m2 +Kn

m2A
m +Km

m1R
n
, (S6)
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in which K1 := κ1pA,T and K3 := κ3pA,T .

S2 Nondimensionalization of the activator repressor clock

In this section, we identify a nondimensional model of the activator repressor clock having loads to

activator and repressor, given in Figure 1d. The association and dissociation between transcription factor

A and R and their respective additional binding sites qA and qR are model by the following dynamics

qA +mA
k′
a1−−⇀↽−−
k′
b1

D1 (S7)

qR + nR
k′
a2−−⇀↽−−
k′
b2

D2. (S8)

The model for this system can be obtained by adding the binding dynamics to the model given in [14]

for the activator-repressor clock as

Ȧ = −δAA+ g1(A,R) +mk′b1D1 −mk′a1A
m(qA,T −D1)

Ṙ = −δRR+ g2(A) + nk′b2D2 − nk′a2R
n(qR −D2)

Ḋ1 = −k′b1D1 + k′a1A
m(qA,T −D1)

Ḋ2 = −k′b2D2 + k′a2R
n(qR,T −D2),

(S9)

in which qA,T := qA + D1 and qR,T := qR + D2 model the total amount of DNA bindings sites in the

system, δA and δR model protein decay (due to either dilution or degradation) and functions f1 and f2

model expression rates and take the form of the standard Hill functions derived on Section S1.

g1(A,R) =
K1(A/Km1)

m +K3

1 + (A/Km1)m + (R/Km2)n
and g2(A) =

K2(A/Km1)
m +K4

1 + (A/Km1)m
, (S10)

in which K1 and K2 are the maximal expression rates, K3 and K4 represent the basal expression,

Km1 and Km2 is related to the affinity between the proteins and their respective binding sites and

m and n are the Hill coefficients related to the multimerization of activator and repressor proteins,

respectively. Define G1 := k′b1/δA and G2 := k′b2/δR to be non-dimensional constants modeling the

timescale difference between complex dissociation and transcription factor degradations rates. Define

additionally K ′

m1 := m

√

k′b1/k
′

a1 and K ′

m2 = n

√

k′b2/k
′

a2 as the apparent dissociation constant as defined
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in [21].

From this system, define the nondimensional variables a := A/Km1, r := R/Km2, d = D1/K
′

m1 and

d2 = D2/K
′

m2. Let σ1 = K ′

m1/Km1 and let σ2 = K ′

m2/Km2 describe the difference in affinity of the

transcription factor to the promoter in the circuit or the additional DNA load. The differential equation

is then reduced to

ȧ = −δAa+
β1a

m + β2
1 + am + rn

+mG1δAσ1d1 −mG1δAσ
(1−m)
1 am(q̄A − d1)

ṙ = −δRr +
β3a

m + β4
1 + am

+ nG2δRσ2d2 − nG2δRσ
(1−n)
2 rn(q̄R − d2)

ḋ1 = −G1δAd1 +G1δAσ
−m
1 am(q̄A − d1)

ḋ2 = −G2δRd2 +G2δRσ
−n
2 rn(q̄R − d2),

(S11)

in which β1 := K1/Km1, β2 := KA/Km1, β3 := K2/Km2, β4 := KR/Km2, q̄A = qA,T /K
′

m1 and

q̄R = qR,T /K
′

m2.

From system (S11), one can obtain non-dimensional models for the various systems described in this

paper. In particular, to obtain (1), q̄R = q̄A = 0; in (5) q̄R = 0 and σ1 = 1; in (14) q̄A = 0 and σ2 = 1

and finally in (20) σ1 = σ2 = 1.

S3 Conditions for a unique and unstable equilibrium

We next establish parameter conditions for which we can guarantee that there is a unique equilibrium of

system (1).

Let β̄1 = β1/δA, β̄2 = β2/δA, β̄3 = β3/δR, β̄4 = β4/δR and let

f(a, r) := −δAa+ f1(a, r) and g(a, r) := −δRr + f2(a). (S12)

Then, the nullclines are given by f(a, r) = 0 and g(a, r) = 0, which define r as a function of a in the

following way:

f(a, r) = 0 =⇒ r =

(

β̄1a
m + β̄2 − a(1 + am)

a

)1/n

(S13)

g(a, r) = 0 =⇒ r =
β̄3a

m + β̄4
1 + am

. (S14)
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Proposition 2. If m = 1, system (1) admits a unique stable equilibrium point. If m = 2, system (1)

admits a unique unstable (not locally a saddle) equilibrium point if the following parameter relations are

verified

0 < β̄2 ≤ β̄3
1

27
, L ≤ β̄3A

2
L + β̄4

1 +A2
L

, l ≥ β̄3A
2
l + β̄4

1 +A2
l

, (S15)

and

δR
∂f1/∂a

∣

∣

∣

∣

(a∗,r∗)

− δA < 1, (S16)

in which

Al =
β̄1
6

(

1− (cos(φ/3)−
√
3sin(φ/3))

)

AL =
β̄1
6

+
β̄1
3
cos(φ/3)

φ = atan

(

√

27β̄2(β̄3
1 − 27β̄2)

β̄3

1

2 − 27β̄2

)

, (S17)

l =
n

√

β̄1A2
l + β̄2 −Al(1 +A2

l )

Al
,

L =
n

√

β̄1A2
L + β̄2 −AL(1 +A2

L)

AL
.

Proof. The Jacobian at S∗ := (a∗, r∗) is given by the matrix

J(S∗) =







∂f
∂a

∂f
∂r

∂g
∂a

∂g
∂r ,






,

in which the partial derivatives are computed at the equilibrium point S∗. For an unstable node or spiral

to occur, it is sufficient that

(i) tr(J(S∗)) > 0 and (ii) det(J(S∗)) > 0.

Case 1: m = 1. The nullcline f(a, r) = 0 has always negative slope, and therefore we always have only
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one equilibrium point. Furthermore, expression (S13) with m = 1 leads to

dr

da

∣

∣

∣

∣

f(a,r)=0

= −r
−1+1/n

n

a2 + β̄2
a2

< 0.

Since dr/da|f(a,r)=0 = −(∂f/∂a)/(∂f/∂r) by the implicit function theorem and since ∂f/∂r < 0, it

must be that ∂f/∂r < 0. As a consequence, tr(J(S∗)) < 0 because ∂g
∂r = −δR < 0. To show that both

eigenvalues of J(S∗) are negative, we are left to show that det(J(S∗)) > 0. This is readily seen to be

true as we have that

dr

da

∣

∣

∣

∣

g(a,r)=0

= −∂g/∂a
∂g/∂r

>
dr

da

∣

∣

∣

∣

f(a,r)=0

= −∂f/∂a
∂f/∂r

< 0,

thus implying that ∂f
∂a

∂g
∂r −

∂f
∂r

∂g
∂a = det(J(S∗)) > 0.

Case 2: m = 2. Figure S1 shows the only possible configuration of the nullclines in which (a) we have

a unique equilibrium and (b) the nullclines are intersecting with the same positive slope. The plots imply

that

dr

da

∣

∣

g(a,r)=0 = −∂g/∂a
∂g/∂r

>
dr

da

∣

∣

f(a,r)=0 = −∂f/∂a
∂f/∂r

> 0,

and thus that ∂f
∂a

∂g
∂r − ∂f

∂r
∂g
∂a = det(J(S∗)) > 0. By relations (S12), we have that ∂g/∂a = ∂f2/∂a,

∂g/∂r = −δR, ∂f/∂a = (−δA + ∂f1/∂a), and ∂f/∂r = −|∂f1/∂r|. If at the equilibrium point S∗ the

nullcline f(a, r) = 0 has negative slope, S∗ is stable, as we have shown for the case m = 1. Therefore,

we examine what additional conditions should be enforced to guarantee that the equilibrium point is

unstable when the nullclines intersect both with positive slopes. Since condition (ii) is verified by the

condition that the nullclines cross with positive slopes, we are left to provide conditions for which (i) is

also true. To have that tr(J(S∗)) > 0, we require that (∂f1∂a − δA)− δR > 0, which is verified if condition

(S16) holds.

We finally determine sufficient conditions on the parameters for having one crossing and such that the

slopes of the two nullclines at the crossing are both positive (and thus (ii) is verified). This is performed

by simple geometric considerations. For this purpose, consider Figure S1.

The values Al and AL of the location of the minimum and maximum of f(a, r) = 0 can be computed

by computing the derivative with respect to A of expression

rn =
β̄1a

2 + β̄2 − a(1 + a2)

a
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obtained by (S13) and equating it to zero, as the square root function is monotone. This way, we find

a third order polynomial that has two positive roots if 0 < β̄2 ≤ β̄3

1

27 , otherwise it has one positive and

two complex roots. These roots are given by relations (S17) and they are shown in Figure S1. Thus,

by looking at the same figure, one deduces that if conditions (S15) are satisfied, we have on equilibrium

point only, and (ii) is verified.

For having one equilibrium point only, we require the activator basal transcription rate, proportional

to β̄2, to be sufficiently smaller then the maximal expression rate of the activator, which is proportional

to β̄1. Also, β̄2 must be non-zero. Also, in case β̄1 >> β̄2, one can verify that AL ≈ β̄1/2 and thus

L ≈ n

√

β̄2
1/4. As a consequence, conditions (S15) require also that if β̄1 increases then so must do β̄3.

This qualitatively implies that the maximal expression rate of the repressor must be larger than the

maximal expression rate of the activator, when expressed in units of the affinity constant. Finally, Al ≈ 0

and l ≈ n

√

β̄2/Al. As a consequence, conditions (S15) also imply that the smaller β̄2 becomes, the smaller

β̄3 must be.

S4 Proofs on the effect of load

Proposition 3. Consider system (10) satisfying conditions (i) and (ii). There exists q∗ > 0 such that

the equilibrium (a∗, r∗) is asymptotically stable if and only if q̄A > q∗.

Proof. We first show that det(JA(q̄A)) > 0 for all q̄A. This follows from the fact that det(JA(q̄A)) =

S∗

A(q̄A) det(J0) > 0, from condition (i). We now focus on

tr(JA(q̄A)) = S∗

A(q̄A)

[

−δa +
∂f1(a

∗, r∗)

∂a

]

− δR.

From (11) and condition (ii), when q̄A = 0 tr(JA(0)) > 0. Additionally, as q̄A → ∞, tr(JA(q̄A)) →

−δR < 0. Since the trace is a monotonic smooth function of q̄A, one can apply the intermediate value

theorem to show that there is an unique 0 < q∗ < ∞ such that tr(JA(q
∗)) = 0. Since det(JA(q

∗)) > 0,

the eigenvalues of JA(q
∗) are imaginary. From the monotonicity of the trace with respect to q̄A, it follows

that the real parts of the eigenvalues of JA(q̄A) are positive for all 0 ≤ q̄A < q∗ and negative for all

q̄A > q∗. It follows that the system goes through a Hopf bifurcation at q̄A = q∗, and thus presents a

periodic solution for 0 ≤ qA < q∗ while it converges to the equilibrium for q̄A > q∗.
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Proposition 4. Consider system (16) satisfying conditions (i) and (ii)’. There exists a q∗ > 0 such that

the equilibrium (a∗, r∗) is asymptotically stable if and only if q̄R < q∗.

Proof. We first show that the det(JR(q̄R)) > 0 for all qR. This follows from the fact that det(JR(q̄R)) =

S∗

R(q̄R) det(J0) > 0 from condition (i). We now proceed to show that the trace can change its sign. Note

that

tr(JR(q̄R)) = −δA +
∂f1(a

∗, r∗)

∂a
− S∗

R(q̄R)δR.

From (17) and condition (ii)’, when q̄R = 0, tr(JR(q̄R)) < 0. Additionally, as limq̄R→∞ tr(JR(q̄R)) =

−δA+
∂f1(a

∗, r∗)

∂a
< 0 from condition (ii)’. Since the trace is a monotonic smooth function of q̄R, one can

apply the intermediate value theorem to show that there is an unique 0 < q∗ <∞ such that tr JR(q
∗) = 0.

Since det(JR(q
∗)) > 0, the eigenvalues of JR(q

∗) are imaginary. From the monotonicity of the trace with

respect to q̄R, it follows that the real parts of the eigenvalues of JR(q̄R) are negative for all 0 ≤ q̄R < q∗

and positive for all qR > q∗. It follows thus that the system goes through a Hopf bifurcation at q̄R = q∗

and thus presents a periodic solution for q̄R > q∗ while it converges to the equilibrium for q̄R < q∗.

S5 Proofs on stability of the slow manifolds

Proposition 5. The stability of the slow manifold d1 = ψ1(y) defined by setting ε = 0 in system (7-9) is

locally exponentially stable.

Proof. The manifold d1 = ψ1(y) is the unique solution of the algebraic equation

g(y, d1) := −δAd1 + δA(y −md1)
m(qT − d1) = 0.

Note that, since 0 ≤ d1 ≤ qT , 0 ≤ ψ1(y) ≤ qT .

To prove this proposition, we need to show that
∂g(y, d1)

∂d1

∣

∣

∣

∣

d1=ψ1(y)

< 0 [23].

∂g(y, d1)

∂d1
= −δA −mδA(y −md1)

m−1(q̄A − d1)− δA(y −md1)
m.
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Since g(y, ψ1(y)) = 0, y −mψ1(y) =
m

√

ψ1(y)

q̄A − ψ1(y)
and therefore

∂g(y, d1)

∂d1

∣

∣

∣

∣

d1=ψ1(y)

= −δA −mδA

(

ψ1(y)

q̄A − ψ1(y)

)
m−1

m

(q̄A − ψ1(y))− δA
ψ1(y)

q̄A − ψ1(y)
< 0,

since 0 ≤ ψ1(y) ≤ q̄A for all values of y as shown above.

Proposition 6. The stability of the manifold d2 = ψ2(y) defined by setting ε = 0 in system (15) is locally

exponentially stable.

Proof. The proof of this result is similar to the proof of the previous proposition. Here we must show

that
∂h(y, d2)

∂d2

∣

∣

∣

∣

d2=ψ2(y)

< 0 where the manifold d2 = ψ2(y) is the unique solution of equation

h(y, d2) := −δRd2 + δR(y − nd2)
n(q̄R − d2) = 0.

Since 0 ≤ d2 ≤ q̄R, 0 ≤ ψ2(y) ≤ q̄R. Additionally, from the definition of the manifold, y − nψ2(y) =

n

√

ψ2(y)

q +R− ψ2(y)
. Therefore

∂h(y, d2)

∂d2

∣

∣

∣

∣

d2=ψ2(y)

= −δR − nδR(y − nψ2(y))
n−1(q̄R − ψ2(y))− δR(y − nψ2(y))

n

= −δR − nδR

(

ψ2(y)

q̄R − ψ2(y)

)
n−1

n

(q̄R − ψ2(y))− δR
ψ2(y)

q̄R − ψ2(y)
< 0.

Proposition 7. The stability of the manifold (d1, d2) = (ψ1(y1), ψ2(y2)) defined by setting ε = 0 in

system (21) is locally exponentially stable.

Proof. Define g(y1, d1) := −δAd1 + δA(y1 − md1)
m(q̄A − d1) = 0 and h(y2, d2) := −δRd2 + δR(y2 −

nd2)
n(q̄R − d2) = 0. The manifold (d1, d2) = (ψ1(y1), ψ2(y2)) is defined such that g(y1, ψ1(y1)) = 0 and

h(y2, ψ2(y2)) = 0. To prove the local exponential stability of the manifold, we need to show that the
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Jacobian

J =







∂g(y1, d1)

∂d1

∂g(y1, d1)

∂d2
∂h(y2, d2)

∂d1

∂h(y2, d2)

∂d2






=







∂g(y1, d1)

∂d1
0

0
∂h(y2, d2)

∂d2






.

calculated at the manifold (d1, d2) = (ψ1(y1), ψ2(y2)) has negative eigenvalues. Since this is a diagonal

matrix, the problem is reduced to proving that the two following inequalities hold:

∂g(y1, d1)

∂d1

∣

∣

∣

∣

d1=ψ1(y1)

< 0

∂h(y2, d2)

∂d2

∣

∣

∣

∣

d2=ψ2(y2)

< 0.

(S18)

From the definition of the manifold,

0 ≤ ψ1(y1) ≤ q̄A and 0 ≤ ψ2(y2) ≤ q̄R.

Additionally,

y1 − ψ1(y1) =
m

√

ψ1(y1)

q̄A − ψ1(y1)
and y2 − ψ2(y2) =

n

√

ψ2(y2)

q̄R − ψ2(y2)
.

Therefore

∂g(y1, d1)

∂d1

∣

∣

∣

∣

d1=ψ1(y1)

= −δA − δA

(

ψ1(y1)

q̄A − ψ1(y1)

)
m−1

m

(q̄A − ψ1(y1))− δA
ψ1(y1)

q̄A − ψ1(y1)
< 0

∂h(y2, d2)

∂d2

∣

∣

∣

∣

d2=ψ2(y2)

= −δR − δR

(

ψ2(y2)

q̄R − ψ2(y2)

)
n−1

n

(q̄R − ψ2(y2))− δR
ψ2(y2)

q̄R − ψ2(y2)
< 0.

(S19)
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S6 Proofs on orbital equivalence

Proposition 8. Consider the following ordinary differential equations

ẋ = f(x) (S20)

ẋ = g(x) = µ(x)f(x), (S21)

in which x ∈ R
n, f : Rn → R

n is Lipschitz continuous and 0 < a ≤ µ(x) ≤ b < ∞ is a Lipschitz

continuous scalar function. Then, there exists a function α : R → R, monotonically increasing and

bounded such that if φ(t), t ∈ R
n is a solution of (S20) with initial condition x = x0, then ψ(t) := φ(α(t)),

is a solution of (S21) with the same initial conditions. Furthermore,
dα(t)

dt
= µ(φ(α(t))).

Proof. Since φ(t) is a solution of (S20), for all t > 0, we have that
dφ(t)

dt
= f(φ(t)). Let α(t) be the

solution of the ordinary differential equation

dα

dt
= µ(φ(α)) (S22)

with initial condition α(0) = 0. Let also ψ(t) be defined as above. Since g(x) is Lipschitz continuous,

system (S21) has an unique local solution at the point ψ(t) whose tangent is given by g(ψ(t)). The vector

tangent to ψ(t) is given by

dψ(t)

dt
=
dφ(α(t))

dt
=
dφ(α)

dα

dα(t)

dt
= f(ψ(t))µ(ψ(t)) = g(ψ(t)) (S23)

for all t. Additionally, note that α(0) = 0 and therefore ψ(0) = φ(0) = x0. It follows that ψ(t) is the

solution for (S21) with initial condition x = x0.

The following proposition is used to show that the addition of load will increase the period.

Proposition 9. Consider the ordinary differential equations (S20-S21) under the same conditions as

in Proposition 8. Assume that (S20) has a periodic solution φ(t) with period T . If µ(x) < 1, then the

solution of (S21) is a periodic solution with period T ′ > T .

Proof. From Proposition 8, we have that ψ(t) := φ(α(t)) is a solution for (S21), in which α(t) satisfies
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the differential equation

dα(t)

dt
= µ(φ(α(t))). (S24)

Since the solution α(t) is monotonic and unbounded and since α(0) = 0, for all T > 0, there is T ′ > 0

such that α(T ) = T ′. Since φ(T ) = φ(0), ψ(T ′) = ψ(0), and hence ψ is periodic with period T ′. From

(S24) and the fact that µ(x) < 1,

T ′ = α(T ) =

∫ T

0

µ(φ(α(t)))dt <

∫ T

0

1dt = T. (S25)

S7 Mechanistic Model for Stochastic Simulation

For the analysis employing the stochastic simulation algorithm [27], we considered a mechanistic model

that includes all the reactions in Table S1. Table S2 gives the description the states.

This system is equivalent to the system 20 with m = n = 2. We consider a one-step model for protein

expression and assume the rate of expression is a function of whether the promoter pA and pR are free,

bound to an activator dimer and bound to a repressor dimer in the case of pA. Additionally, we consider

the dynamics of the dimerization of both transcription factors.

The degradation rate δR was the parameter chosen to generate a model for a functioning and a non-

functioning clock. The total number of promoters in both simulations was pA,T = pR,T = 5. Changes in

the number of binding sites qA and qR were used to generate retroactivity to the activator and repressor

respectively.
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Figure S1. Nullclines and the values AL, Al, L, and l.
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Table S1. Reactions considered in the mechanistic model

Reaction Description Rate Value
2R→ R2 Repressor Dimerization kra 200
R2 → 2R Repressor Monomerization krb 200
2A→ A2 Activator Dimerization kaa 200
A2 → 2A Activator Monomerization kab 200

pR +A2 → C3 Activator Binding ka1 2000
C3 → pR +A2 Activator Dissociation kb1 2000
C3 → C3 +R Repressor Maximal Expression κ3 100
pR → pR +R Repressor Basal Expression κ4 .004
pA +A2 → C1 Activator Binding ka1 2000
C1 → pA +A2 Activator Dissociation kb1 2000
pA +R2 → C2 Repressor Binding ka2 2000
C2 → pA +R2 Repressor Dissociation kb2 2000
C1 → C1 +A Activator Maximal Expression κ1 100
pA → pA +A2 Activator Basal Expression κ2 .04

A→ ∅ Activator Monomer Degradation δA 1
R → ∅ Repressor Monomer Degradation δR .2 / .4
A2 → ∅ Activator Dimer Degradation δA 1
R2 → ∅ Repressor Dimer Degradation δR .2 /.4

qA +A2 → D1 Activator-Load Binding ka1 2000
D1 → qA +A2 Activator-Load Dissociation kb1 2000
qR +R2 → D2 Repressor-Load Binding ka1 2000
D2 → qR +R2 Repressor-Load Dissociation kb1 2000

Table S2. Species in mechanistic model

State Species
R Repressor Monomer
R2 Repressor Dimer
A Activator Monomer
A2 Activator Dimer
pR Promoter Regulating Repressor Expression
pA Promoter Regulating Activator Expression
C1 Promoter-Activator Complex, Activator Expression
C2 Promoter-Repressor Complex, Activator Expression
C3 Promoter-Activator Complex, Repressor Expression
qA Load with affinity to the activator
qR Load with affinity to the repressor
D1 Activator-Load Complex
D2 Repressor-Load Complex


