Supplementary Information

Greg Morrison and L. Mahadevan

June 5, 2012

1 Closeness Measures and Community Detection

A schematic diagram of a network with easily-detected community structure is shown in Fig. S1(a). In this network, a pair of communities with |c| = N/2 nodes each is connected by exactly one edge (between α and β). For any reasonable measure of closeness, a node will feel closer to other nodes within its community rather than those in a different community, with the Generalized Erdös numbers (GENs), Jacard Coefficients (JCs), and overlap explicitly demonstrated as having this property. Resistance Distance, the mean first passage time between nodes, and the Adar / Adamic coefficient[1] all behave in a similar manner (not shown). There is a clear separation between in-community and outof-community closenesses for the network in Fig. S1(a), which can be used to determine the correct community structure. Each node i is constrained to be in the same community as their closest friend, f(i). This is similar in spirit to the resistance-distance approach of Wu and Huberman^[2], but does not require an arbitrary threshold for defining communities. Each measure of closeness will behave differently when fuzzy communities are detected, with some outperforming others in the ability to detect communities (as discussed in the main text). We note that no nodes in a network can be in a community by themselves using this approach, since all connected nodes necessarily have a closest friend. It may be possible to remove this restriction by introducing self-loops into the network, but we leave this to later work.

In Fig. S1(a), it is important to note that it is not possible to continuously tune an arbitrary parameter to find different partitions. Using modularity maximization with resolution parameter γ as an example, at $\gamma = 1$ we expect to detect the correct partition of two communities. For $\gamma \to 0$, we expect to find only a single community, including all nodes in the network. No reasonable measure of closeness will ever produce this coarsest partition of Fig. S1(a), since it would require a node in c_1 to feel closer to nodes it has *fewer* connections to than those it has many connections to. Regardless of the closeness measure chosen (and even if a tunable free parameter included in our the measure), a single community *can not* be detected using the CF approach so long as nodes feel closer to their neighbors than their

non-neighbors. The coarser partition of a single community is, however, readily detected using the hierarchical approach described in the text.

In Fig. S1(b), we show a pathological network topology for which the CF method will fail: two distinct communities with each node connected to a single, central node (δ). Most measures of closeness will find all nodes feel closest to δ (and all reasonable measures will, so long as the intra-community edges are sufficiently sparse and the network sufficiently large), so the CF approach will assign all nodes to the same community as δ . In such a case, only a single community will be (incorrectly) detected. This can be avoided by searching for the closest unpopular friend: after sorting nodes into ascending order of how close node *i* feels to them, the closest node with degree less than or equal to the next-closest is selected as f(i). Note that for the closest unpopular friend algorithm on a weighted graph, we still search for lower degree k_i rather than strength W_i , which avoids nodes that are connected to many other nodes ($k_i \gg 1$) but not nodes that are strongly connected to a few nodes ($W_i \gg 1$). The node δ is assigned to the community its closest unpopular friend is in, which will depend on the details of the network topology and the choice of closeness measure.

2 Fractured Communities

While the CF and CUF algorithms provides a intuitive method for detecting communities in an arbitrary graph, it is possible for a correct community to be fractured into two or more parts due to the local variability of the density of edges. As pictured in Fig. S2), an intended community A may be split into two groups, A_1 and A_2 due to the asymmetric connections each of these sub-communities has to the communities B and C. As pictured, there are either more edges leading from A_1 to B than there are between A_1 and C or the total weight between A_1 and B is larger than between A_1 and C. While useful information could be found in the structure of the fractured communities, is also desirable to recover the 'correct' community detection, we must supplement both of these approaches with an algorithm to merge fractured communities to better recover the 'correct' partition.

The fracture of communities can be due to two aspects of the detection: first, the decisions are purely local (even if the closeness measure incorporates the global topology). Because the decisions are not made with a global quality function, the splitting of a community into two pieces is not penalized. Second, the random nature of the networks allows for variability in the local density of edges. These fluctuations in density will affect all community detection methods[3], and in some cases may call into question the 'correctness' of the intended partition.

In Fig. S2, the detected groups A_1 and A_2 (which are in the same community in the

'correct' partition) will likely have a large number of edges between them. If we imagine a single community is mistakenly broken into two sub-communities of the same size (nnodes apiece), the number of edges between the sub-communities should scale as n^2 (with a uniform density of edges in the correct community A). This allows us to build a relatively simple greedy search for communities to merge. Once a CF or CUF partition has been determined, we perform a search for the pair of communities g and h with the largest value of $k_{g \to h}/\max(n_g, n_h)^2$, where $k_{g \to h}$ is the number of edges leading from group g to group hand n_g is the number of nodes in group g. Before we merge the communities g and h, we check to ensure that $k_{g \to h} \ge \min(k_{g \to g}, k_{g \to h})$. If the inequality is not satisfied (i.e. there are fewer edges between g and h are in either g or h alone) the greedy search is halted, otherwise g and h are merged and the search repeats.

In Fig. S3, we use the GENs to compare the CF and CUF methods for with or without community merging (averaged over 100 realizations of the network). We see that the CUF approach with merging gives the best overall results, with the largest normalized mutual information [4, 5] (as defined in eq. 2 of the main text) for all values of k^{out} , with only a moderate improvement over the CF approach. However, the CUF approach is more prone to community fracture (where the black circles do not converge to I = 1 as $k^{out} \rightarrow 0$), and greedy merging is therefore essential for reliable reconstruction of the network. We note that the merging of fractured communities as implemented here could also be used with modularity maximizing methods and may improve the spurious splitting of communities in some cases.

As noted in Fig. S2, variability in the local density of edges can lead to fractured partitions. The propensity of modularity maximization for finding spurious sub-communities can perhaps be most clearly seen by considering a random network *without* any community structure. We generate networks with the probability of an edge between any nodes is p_{edge} , with $0.04 \leq p_{edge} \leq 1$. In Fig. S4, we show the number of communities detected in these networks using both greedy modularity maximization (squares) and the CUF approach (circles). The CUF performs far better than the greedy modularity maximization for $p_{edge} \gtrsim 0.1$, while modularity maximization consistently finds more than one community for all $p_{edge} < 1$. For small p_{edge} , we expect fluctuations in the edges will produce a locally higher density of edges randomly, which may be detected using any community detection method[6]. However, as p_{edge} increases, these fluctuations should be less significant, and the CUF that detects only a single community may be preferable.

3 A Common Hierarchical Benchmark

It is natural to define a coarse grained network formed with the communities in the higherresolution partition acting as nodes in the new, lower-resolution network in order to detect a hierarchy of community structure in the network. However, it is not immediately obvious how to choose the new edges in the new network, and rather than attempt to define coarsegrained edges at this resolution, we take the closeness between the coarse-grained nodes to be the average closeness between communities in the high-resolution partition. In the particular case of the GENs, the harmonic mean is the appropriate way to average the closeness, as the closeness between communities should be dominated by the nodes in each that feel close to one another (small E_{ij} , thus more significant in the harmonic mean), rather than the nodes that do not feel close to one another (large E_{ij} , less significant in the harmonic mean). For other closeness measures, it a linear mean may be the more reasonable choice for averaging the closeness between communities.

It is worth re-emphasizing that we do not expect to be able to continuously tune the resolution of the coarse-grained network with a free parameter. Our ability to detect hierarchical structure of course depends on the accuracy of the higher resolution partition (with an inaccurate partition unlikely to accurately detect the correct macrocommunities), and the existence of a 'correct' hierarchical partition. If nodes in communities g and h are very close to one another in the original network, a reasonable method of averaging should ensure they are close in the coarse grained network. While the detected partition will weakly depend on the method of coarse graining, it is not possible to tune the averaging as it is in the case of modularity maximization (or other approaches), where choosing a resolution $\gamma \ll 1$ will assign all coarse-grained nodes to the same community.

We apply our coarse graining approach to detect the community structure of the benchmark presented by Rechardt and Bornholdt [7] depicted in Fig. S5. The network of N = 512nodes is composed of 16 microcommunities with on average $k^{in} = 16$ edges internally per node. Four of these microcommunities form a macrocommunity, with on average k^{out} edges per node within a macrocommunity and k^{mix} edges per node between macrocommunities. Note that this is the benchmark that is modified in order to produce the benchmark of variable robustness as described in the main text. The mutual information between the correct and detected partitions of the micro-communities (using the CUF approach with the GENs as the closeness measure) is shown in Fig. S6(a) for varying k^{out} and k^{mix} . The microcommunities are detected accurately for small k^{out} , with the transition from 'good' to 'bad' detection occurring for $k^{out} + k^{mix} \approx 34$ (the point at which I = 0.5, averaged over the four curves shown), more than twice the value of $k^{in} = 16$. It is worth noting that for the larger values of k^{out} (12 or 14), often the failure to saturate to I = 1 at $k^{mix} = 0$ is due to the fact that the method will fail to detect the microcommunity structure of 16 communities, but rather the macrocommunity structure of 4 macrocommunities. For sufficiently dense connections within the macrocommunities, the CUF method does fail to detect the finest resolution of the network. However, so long as the microcommunities are accurately detected, the macrocommunity structure is also correctly determined (as shown in Fig. S6(b)). For $k^{out} = 16$, we generally fail to find the macrocommunity structure because of the poor detection of the fine-resolution structure, while for $k^{out} = 12$ or 14, the macrocommunity structure is not reliably found as $k^{mix} \to 0$. Modularity-based methods or other approaches may outperform these results[7, 8] if the correct (but a priori unknown) resolution parameter is chosen. However, our approach gives a single partition for each scale (both micro- and macro-), and performs very well so long as the micro-communities are not too fuzzy (k^{out} is sufficiently small), without using an unknown parameter.

4 Common Real-World Community Benchmarks

Modularity maximization performs quite well on the artificial GN benchmark precisely because of the modular structure inherent in the test: the correct solution was also the modularity maximizing one. This may not be the case in real world networks, where the 'correct' partition is determined from external information and is independent of the partition's modularity. To see the utility of the CF or CUF methods, we examine three simple real-world benchmarks with an a priori known partition in the main text. The football network[9] is comprised of nodes representing american football teams, with edges denoting games played between them in 2000. The 'correct' partition groups each team within their externally-defined division. The political blogs network[10] is a set of blogs in the leadup to the 2006 US midterm election, with an edge representing a link from one blog to another (we use an undirected version of this network). The political books network[11] is a set of books purchased on amazon.com around the 2004 US presidential elections, with an edge representing a co-purchase of a pair of books. In the political blogs and books networks, the 'correct' partition is the node's apparent political leaning: liberal vs. conservative in the former and liberal, independent, or conservative in the latter. All of these benchmarks are unweighted networks (with $w_{ij} = 0$ or 1).

One common benchmark with a known community structure not mentioned in the main text is Zachary's Karate club[12]. This is a very small network of 34 nodes representing members of a karate club at an unnamed university, with edges denoting the out-of-club interactions between individuals. The club split into two parts due to a disagreement over the club's leadership, and the 'correct' partition denotes which individuals fell on a particular side of the disagreement. The karate club is partitioned using a number of approaches in Fig. S7, with from left to right modularity maximization, CF/CUF using the GENs, using the JCs, and using overlap. For the Karate club benchmark, we find surprisingly that both overlap and the GENs perform extremely poorly while the Jacard coefficients (JCs) perfectly reconstruct the correct partition. However, if the closest friend (CF) approach is used (rather than the closest unpopular friend approach, which avoids high degree nodes when assigning communities and is implemented throughout the main text), the GENs perfectly reconstruct the network, followed by overlap and then by the JCs. This illustrates that pathological networks do indeed exist that have not been fully accounted for in the CUF methodology, and it is difficult to predict exactly which method will be optimal a priori. We also note that a CF partition can be generated rapidly when generating a CUF partition, and by examining a global quality function (such as modularity), one can easily distinguish which partition better represents the structure of the network. Thus, despite the unexpected behavior of our approach when considering the Karate Club network, we determine that (a) the GENs remain a reasonable choice for the closeness measure and (b) that it may be necessary to compare the results of the CUF approach to a global quality function (such as modularity) to determine if the partition is reasonable.

5 Simulated Annealing of the Benchmark

In order to generate the network used in benchmarking the community detection and robustness measure in the main text, we used simulated annealing to produce a network with the desired properties. The desired in-, out-, and mixing-degree of each node were computed: $k_i^{in,0}$, the desired number of edges from node *i* to nodes in its microcommunity, $k_i^{out,0}$, the desired number of edges leading from *i* to any node in its macrocommunity (but not in the microcommunity) and $k_i^{mix,0}$, the number of edges leading from *i* out of its macrocommunity. From these the total number of edges $M = \frac{1}{2} \sum_i (k_i^{in,0} + k_i^{out,0} + k_i^{mix,0})$ was determined, and a network of N = 512 nodes was generated having precisely M randomly distributed edges. The network was then randomly rewired, with a new trial configuration generated by removing one edge connecting the randomly chosen *i* and *j*, and a new edge being drawn between *i* and *k*. This trial configuration was accepted using a metropolis criterion: $p_{acc} = \min(1, e^{-\beta(E_{old} - E_{trial})})$, with the energy of a configuration

$$E = \frac{1}{2} \sum_{i} \left[(k_i^{in} - k_i^{in,0})^2 + (k_i^{out} - k_i^{out,0})^2 + (k_i^{mix} - k_i^{mix,0})^2 \right]$$
(1)

where the first term of E is minimized if the in-, out-, and mix-degrees of each node satisfy our desired conditions. The temperature parameter β is set to $\beta = 1$ initially, and incrementally increased by 2×10^{-5} at each attempted rewiring. A total of 500,000 rewiring attempts were made, with each edge on average experiencing ≈ 975 attempted rewirings.

6 How Ties are Handled

Unlike many real world networks, the network in Fig. S1(a) is highly symmetric and the closeness between nodes in groups A or B is likewise symmetric so that there is not a unique closest friend. In this case, we must develop a rule for handling ties in the closeness. In the case of a tie, we randomly but consistently select the 'closest' neighbor of i, f(i). This

is accomplished by initially randomizing the node index, and choosing the node with the lowest (random) index as closest. In practice, the importance of ties in the artificial or real world networks networks depends on the choice of closeness measure. The Jacard coefficient $JC_{ij} = |C_i \cap C_j|/|C_i \cup C_j|$ can easily produce ties[13] for complex networks, whereas the GENs require highly symmetric networks to see a tie. The lack of ties is an additional advantage of measures that incorporate the global topology of the network, rather than purely local information.

7 Details of the DASH robustness

The DASH database, downloaded in June 2010 contained $N_0 = 918$ journals and 2404 articles published by 3385 unique author names, not all of which work at Harvard. Because of the interdisciplinary and highly connected nature of the journals *Science*, *Nature*, and *Proc. Natl. Acad. Sci*, these three journals are removed from the network. This alteration does not alter the shape of either the degree or weight distributions (although the removal of edges does affect their particular fitting parameters).

While briefly discussed in the text, it is worthwhile to examine the structure of the DASH network in detail, to determine the power of the degree of robustness in finding complex topologies or incorrectly assigned nodes. When we examine the degrees of robustness observed in the network, nodes with few edges connecting them to their community have a correspondingly low degree of robustness, reflecting the fact that they are only weakly connected to their assigned community. Low values for the degree of robustness to find nodes that are on the boundary between communities (i.e. that are strongly connected both to their assigned community as well as to a different community to which they are not assigned). We find 142 nodes with $D_i^{(1)} \leq 2,53\%$ of which have $k_i^{in} \leq 2$ (indicating that they are simply of low degree, rather than on the boundary of a community). However, there are a few nodes that have $D^{(1)} \leq 2$ but are strongly connected to their respective communities (having high degree and weight directed into c_i). Due to their large values of k_i^{in} , these nodes are most likely on the boundary of their respective communities. The five journals with smallest $D_1^{(i)}/k_i$ with $D_i^{(1)} = 1$ or 2 are shown in Table S1. Some of these journals have a $k_i^{in} \ll k_i$ (so many edges lead from i to different communities), while others have $k_i^{in} \approx k_i$ (so most of the edges from i are within its assigned community).

Examining the topology of the DASH network connected to these nodes that are boundarylike shows two distinct causes of high in-degree and low degree of robustness. *Cognition*, the second journal in Table S1 has more than twice as many out-edges as in-edges, but these out-edges are distributed amongst a wide range of communities. In Table S1, *Cognition* has the most weight $(W_i^{in} = 14)$ directed towards its community (Phys. Sci. 4, primarily focused on Oceanography and Atmospheric Science), but has a large weight of 12 directed towards the Phys. Sci. 3 community (focused primarily on Psychology and Neuroscience, a more natural choice of community assignment for *Cognition*). It is likely that this node was incorrectly assigned, but the fact that the highest weight points towards Phys. Sci. 4 makes the misassignment understandable. The degree of robustness has allowed us to locate this possible error with ease, while the in-degree $(k_i^{in} = 8)$, total degree, the ratio of in- to total degrees $(k_i^{in}/k_i = 0.32, \text{ and is the } 17^{th} \text{ worst of all journals})$, or the ratio of in- to total strengths $(W_i^{in}/W_i = 0.34, \text{ the } 10^{th} \text{ worst of all journals})$ would not highlight *Cognition* as a particularly troublesome node.

The other journals in Table S1 all have a low degree of robustness for a different reason. For these, the largest number of edges point towards their assigned communities, and in all but one case (the *Journal of Economic History*) the largest weights are also pointed towards their respective communities. However, in each case the journal is connected to the 'core' of a different community: nodes in a different community with both high inweights or in-degrees and high robustness. While the assignment of each node in Table S1 to its respective community is often reasonable (since the majority of edges are within its assigned community), each of these nodes is also connected to one or more nodes that effectively define a neighboring community. These journals act as a bridge between the (generally less robust) communities to which they are assigned and the core of a robust, strongly connected community.

It is also of interest to determine the quality of the assignment of each microcommunity to its macrocommunity. The thin black lines in Fig. 2 of the main text denote the macrocommunity robustness $r_c^{(2)} = \langle D_i^{(2)} \rangle_{i \in c}$ of each assignment. We note that a robust microcommunity (with high $r_c = \langle D_i^{(1)} \rangle_{i \in c}$) does not necessarily imply a robust assignment to its macrocommunity, and that many well formed microcommunities have a very low value of $r_c^{(2)}$. Table S2 shows that the lowest values of $r_c^{(2)}$ typically occur for communities that have relatively few out-edges (and thus their assignment to their macrocommunity is expected to be fragile). However, the assignment of the Philosophy and History 1 (PH1) microcommunity to its macrocommunity is surprising, as it has a very low ratio of in- to out-degree and in- to out-strength. While the placement of PH1 to the Philosophy and History macrocommunity may appear to be an error, the surprising assignment is due to the fact that 75% of the out-of-macrocommunity edges and 84% of the out-of-macrocommunity weight are due to only two journals: the strong connections that Social Studies of Science and Annual Review of Sociology have towards Mathematical Sciences 3 (also focused on the Social Sciences). There are three journals in PH1 that are connected to the Philosophy and History macrocommunity. Isis, Persepectives on Science, and Journal of the History of Ideas. Two of these journals are in the 'core' of PH 1 (with $D^{(1)} = 17$), while only one of the journals strongly connected to Math. Sci. is in the core (with $D^{(1)} = 16$). Thus, the assignment of PH1 to the Philosophy and History macrocommunity is due to the fact that, while more weight is directed out of the assigned macrocommunity, the core journals of PH1 are more strongly connected to Philosophy and History journals. PH 1 is clearly boundary-like, and our robustness measure of $r_c^{(2)}$ accurately detects this fragile assignment.

8 Additional details of the Phys. Rev. Network

The Physical Review network included over 462,000 articles published in any Physical Review journal up to July 2010. Due to the size of the network , we consider only the subset of articles that have garnered at least 100 citations, with the largest connected component including 3651 articles and over 16,000 edges. While the network is unweighted (one citation is neither stronger nor weaker than another, thus $w_{ij} = 0$ or 1) and directed (article *i* cites article *j*, but not vice-versa), we consider the non-directed version (with $w_{ij} = w_{ji} = 0$ or 1). The community structure at one resolution of the Phys. Rev. network up to 2007 has previously been determined[14]. The detected communities are similar in many respects to the community structure we have detected, although these other papers did not report an examine of any additional hierarchical structure, as we discuss in the main text.

References

- [1] Adamic L, Adar E (2001) Friends and neighbors on the web. Social Net 25: 211-230.
- [2] Wu F, Huberman B (2004) Finding communities in linear time: a physics approach. The European Physical Journal B-Condensed Matter and Complex Systems 38: 331– 338.
- [3] Sun Y, Danila B, Josic K, Bassler KE (2009) Improved community structure detection using a modified fine-tuning strategy. Europhys Lett 86: 28004.
- [4] Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algorithms. Phys Rev E 78: 46110.
- [5] Guimerà R, Sales-Pardo M, Amaral L (2007) Module identification in bipartite and directed networks. Physical Review E 76: 36102.
- [6] Guimera R, Sales-Pardo M, Amaral LAN (2008) Modularity from fluctuations in random graphs and complex networks. Phys Rev E 70: 025101.
- [7] Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Physical Review E 74: 16110.

- [8] Lancichinetti A, Fortunato S, Kertész J (2009) Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics 11: 033015.
- [9] Girvan M, Newman M (2002) Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America 99: 7821.
- [10] Adamic LA, Glance N (2005) The political blogosphere and the 2004 us election. Proceedings of the WWW-2005 Workshop on the Weblogging Ecosystem.
- [11] Krebs V. http://www-personal.umich.edu/ mejn/netdata/, maintained by M. E. J. Newman.
- [12] Zachary W (1977) An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33: 452–473.
- [13] Ahn YY, Bagrow JP, Lehmann S (2010) Link communities reveal multiscale complexity in networks. Nature 466: 761–764.
- [14] Chen P, Redner S (2010) Community structure of the physical review citation network. J Infometrics 4: 278.

Figure Captions and Tables

Figure S1: Detecting communities with the CF and CUF methods. (a) An example of two clearly defined communities $(c_1 \text{ and } c_2)$, each of size N/2 with exactly one edge connecting them. Any plausible measure of closeness based on the network topology will clearly distinguish between intra- and inter-community connections. The closeness between nodes within the community as measured by the GENs (E^{in}) , JCs (J^{in}) , and overlap (O^{in}) , with |c| the number of nodes in each community. Likewise, the closeness between nodes in different communities is shown with the superscript 'out'. (b) A schematic network of a single highly connected node (δ) to which all nodes in the network will feel closest. Assigning each node to the same community as their closest friend (the CF approach) will assign all nodes to the same community as δ , thus detecting only one community. By avoiding high-degree nodes (the CUF approach), the two communities are correctly detected, with δ assigned to one or the other.

Figure S2: Merging of fractured communities. Community A is fractured into two communities, A_1 and A_2 due to the fact that A_1 is more strongly connected to B (connections labelled 'stronger') than to C (connections labelled 'weak'), while community A_2 is more strongly connected to C than B. In this coarse-grained schematic, 'stronger' may represent either high weight or many edges between them. Because A_1 and A_2 are truly subsets of the same community in the 'correct' partition, we expect a large number of edges between them. Figure S3: Improvements in the methods using fracture merging. A comparison of the approaches for community detection using the GENs, using the Newman-Girvan benchmark. Red squares denote the CUF after community merging, which gives the best overall results. Black circles denotes the result of the CUF without merging, and has a low mutual information to the expected partition due to fracture (even for clear communities, with low k^{mix}). The blue up and purple down triangles are the results for the CF algorithm with and without fracture correction, respectively.

Figure S4: Community detection in unstructured networks. The number of communities n_c detected using greedy modularity maximization (up and down triangles) or the CUF method (squares and circles) for a randomly linked network (with no intended community structure) as a function of the probability of an edge between two nodes, p_{edge} . Greedy modularity maximization is shown in the purple down triangles for N = 100 nodes and black up triangles for N = 200 nodes, while the blue circles shows CUF detection for N = 100 and red squares for CUF with N = 200. When there is no intended structure in the network, modularity maximization tends to find a relatively large number of communities, while the CUF method typically finds only one community (for sufficiently large $p_{edge} \gtrsim 0.1$.

Figure S5: The adjacency matrix of the Reichardt-Bornholdt hierarchical benchmark. Each node is a member of a micro-community of 32 nodes, with $k^{in} = 16$ connections to the other nodes in its micro-community on average. Each micro-community is a member of one of four macro-communities, and each node in a macro-community has k^{out} edges internally on average. Each node has on average k^{mix} edges to nodes outside of their macro-community.

Figure S6: Accuracy of the hierarchical benchmark. The detection of (a) micro- and (b) macro-communities averaged over 100 realizations of the network. For all samples, $k^{in} = 16$ is held fixed. k^{out} is varied as $k^{out} = 8$ (blue circles), 10 (red squares), 12 (black up triangles) and 14 (purple down triangles). The mixing between macrocommunities is varied with $2 \le k^{mix} \le 30$. The CUF approach accurately detects the microcommunities over a wide range of values of k^{out} and k^{mix} , and is clearly able to accurately detect the microcommunity structure for sufficiently clear communities. So long as the microcommunity structure is accurately detected, the macrocommunity structure seems reliably determined as well.

Figure S7: The karate club network. Mutual information (a) and modularity (b) of the partitions of the Karate club[12] detected by a variety of approaches, with the a priori correct partition known. The leftmost results show the results of partitions using the greedy (striped red) and Potts model (striped blue) modularity maximizing partitions. For the remainder, red denotes the closest friend (CF) while blue denotes the closest unpopular friend (CUF) approach, with the GENs, JCs, and overlap shown. Surprisingly, the GENs implemented using the CUF method performs the worst in all respect (in contrast to most other benchmarks where it performs the best). For the Karate club network, the GENs do reconstruct the exact 'correct' partition if the CF method is used.

Name	Community	$D_i^{(1)}$	k_i^{in}	k_i	W_i^{in}	W_i
J. Econ. Hist.	Math. Sci. 3	2	16	24	71	157
Cognition	Phys. Sci. 4	1	8	25	14	41
Ecol. Appl.	Phys. Sci. 5	1	8	10	18	22
Oikos*	Phys. Sci. 5	1	8	10	18	22
Brit. Med. J.	Math. Sci. 6	2	14	15	29	32

*Oikos is an ecology journal published by the Nordic Ecol. Soc., and has exactly the same connections as Ecol. Appl.

Table S1: The five most boundary-like nodes (with the lowest non-zero values of $D_i^{(1)}/k_i^{in}$). The first, *J. Econ. Hist.*, has a high degree and strength and large k^{in} and k^{out} . Similarly, *Cognition* has the smallest ratio of in-edges to total node degree, and is connected to a large number of other communities. The last three elements in the table are surprising in that they have a few connections outside of their communities ($k_i^{out} = 1$ or 2 compared to $k^{in} = 8 \text{ or } 10$) but still have low degrees of robustness. This is because while they have many in-community connections, their few out-of-community connections lead to strong, central nodes in other communities. These boundary-like nodes would not be easily detected by simply looking at the in-degrees or in-out ratio.

Community	Focus	$r_{c}^{(2)}$	k_c^{in}	W_c^{in}	k_c^{out}	W_c^{out}
Phil. & Hist. 1	History	0.12	3	7	28	45
Phys. Sci. 13	Info. Theory	0.2	1	1	0	0
Math. Sci. 10	Drug Addiction	0.25	1	1	0	0
Math. Sci. 11	Crystallography	0.33	1	1	0	0
Phys. Sci. 9	High En. Physics	0.38	3	6	0	0

Table S2: The five least robust macrocommunity assignments. k_c^{in} and W_c^{in} denote the total number of edges and total weight from the microcommunity to other microcommunities in its macrocommunity respectively, while k_c^{out} and W_c^{out} denote the total number and weight of edges into any other macrocommunity. Philosophy and History 1 (PH 1) is the worst, and lies on the boundary of the Philosophy and History macrocommunity and the Mathematical Sciences macrocommunity. The other macrocommunity assignments are very fragile do to the very small number of connections, and are peripheral microcommunities.

	Natural Sciences, Community 1	
Accounts of Chemical Research	ACS Nano	Acta Materialia
Advanced Materials	Animal Behavior	Annals of Applied Statistics
Annals of Statistics	Applied and Environmental Microbiol	Applied Physics A
Applied Physics Letters	Behavioral Ecology and Sociobiology	BMC Genomics
Chemistry and Biology	Defect and Diffusion Forum	Environmental Science and Technolog.
IEEE Journal of Quantum Electronics	IEEE Journal of Selected Topics in	IEEE Photonics Technology Letters
International Journal of Primatolog	Journal of Applied Physics	Journal of Archeological Science
Journal of Bacteriology	Journal of Chemical Physics	Journal of Computer Aided Materials
Journal of Crystal Growth	Journal of Dramatic Theory and Crit	Journal of Materials Science
Journal of Microelectromechanical S	Journal of Physical Chemistry C	Journal of Physics: Condensed Matte
Journal of the American Chemical So	Journal of The Electrochemical Soci	Journal of Vacuum Science and Techn
Journal of Vacuum Science & Techno	Lab on a Chip	Materials Research Society Symposia
Materials Science and Engineering	Materials Science and Engineering A	Materials Science in Semiconductor .
Metallurgical and Materials Transac	Microbiology	Modern Drama
Molecular and Cellular Biology	Molecular Biology and Evolution	MRS Bulletin
Nano Letters	Nanoscale Research Letters	Nanotechnology
Nature Biotechnology	Nature Methods	Nature Physics
New Journal of Physics	Nuclear Instruments and Methods in	Nuclear Instruments and Methods in
Nucleic Acids Research	Optics and Photonics News	Optics Express
Optics Letters	Physica C	Physical Review A
Physical Review B	Physical Review D	Physical Review Letters
Plant Cell and Environment	Proceedings of SPIE	Progress in Biophysics and Molecula.
Social Text	The Open Inorganic Chemistry Journa	Trends in Ecology and Evolution

Community Membership of the DASH Network

	Natural Sciences, Community 2	
ACM SIGCSE Bulletin	American Journal of Botany	American Journal of Science
Annual Review of Earth and Planetar	Annual Review of Ecology, Evolution	Annual Review of Microbiology
Astrobiology	Canadian Journal of Earth Sciences	Canadian Journal of Forest Research
Chemical Geology	Earth and Planetary Science Letters	Elements
Geobiology	Geochemistry Geophysics and Geosyst	Geochimica et Cosmochimica Acta
Geological Magazine	Geological Society of America Bulle	Geology
Harvard Papers in Botany	Icarus	International Journal of Plant Scie
International Workshop on Wearable	Journal of Geophysical Research - P	Journal of Mathematical Biology
Journal of Paleontology	Journal of Petrology	Journal of Plant Growth Regulation
Lethaia	Nature Reviews Neuroscience	New Phytologist
Oceanography	Organic Geochemistry	Origins of Life
Origins of Life and Evolution of th	Palaios	Paleobiology
Philosophical Transactions of the R	Physical Review	Physics Today
Phytochemistry	Plant Physiology	Plos One
Precambrian Research	Proceedings of the American Philoso	Review of Scientific Instruments
Sedimentary Geology	Taxon	The Sciences

Natural Sciences, Community 3

	,	
American Journal of Psychiatry	Archives of Neurology	Biological Psychology
California Law Review	Cognitive Brain Research	Cognitive Neuropsychology
Current Directions in Psychological	Developmental Biology	European Review of Social Psycholog
IEEE Transactions on Information Te	Journal of Adult Development	Journal of Cognitive Neuroscience
Journal of Consulting and Clinical	Journal of Experimental Psychology:	Journal of Experimental Psychology
Journal of General Internal Medicin	Journal of Mathematical Psychology	Journal of Neurophysiology
Journal of Neuroscience	Journal of Personality and Social P	Journal of Physiology - Paris
Journal of the American Academy of	Journals of Gerontology Series B	Language and Cognitive Processes
Memory & Cognition	Mind, Brain, and Education	Molecular Psychiatry
New Ideas in Psychology	Personality and Individual Differen	Personality and Social Psychology B
Perspectives on Psychological Scien	Psychiatry Research	Psychological Science
Psychology and Aging	Psychoneuroendocrinology	Psychonomic Bulletin & Review
Public Opinion Quarterly	Review of General Psychology	Self and Identity
Small Group Research	Social Cognitive and Affective Neur	Trends in Cognitive Sciences
	Visual Cognition	

	Natural Sciences, Community 4	
Aerosol Science and Technology	Agricultural and Forest Meteorology	Atmospheric Chemistry and Physics
Atmospheric Environment	Child Development	Cladistics
Climate of the Past	Cognition	Cognitive Psychology
Computers and Geosciences	Cortex	Current Biology
Deep Sea Research Part A. Oceanogra	Dynamics of Atmospheres and Oceans	Earth Science Reviews
ECS Transactions	Europhysics Letters	General Psychologist
Geophysical Research Letters	Global Biogeochemical Cycles	Global Biogeochemical Sciences
Global Change Biology	Intercultural Pragmatics	Journal de Physique IV
Journal of Climate	Journal of Fluid Mechanics	Journal of Geophysical Research
Journal of Geophysical Research -Al	Journal of Marine Research	Journal of Physical Oceanography
Journal of the Atmospheric Sciences	Molecular Phyogenetics and Evolutio	Monthly Weather Review- Usa
Nature Geoscience	Paleoceanography	Philosophy and Literature
Quarterly Journal of the Royal Mete	Quaternary Science Reviews	Statistics in Medicine
Systematic Biology	The Mental Lexicon	Theoretical and Applied Climatology

1	Natural Sciences, Community	5
Bioinformatics	Biology Letters	BMC Biochemistry
BMC Biology	BMC Ecology	Breviora
Canadian Journal of Zoology	Ecological Applications	Ecology
Ecology Letters	Evolution	Frontiers in Ecology and the Enviro
Global Ecology and Biogeography	Herpetologica	Journal of Evolutionary Biology
Journal of Experimental Botany	Journal of Theoretical Biology	Journal of Vertebrate Paleontology
Malaria Journal	Methods in Ecology and Evolution	Molecular Ecology
Oikos	Physical Review Series e	Plos Computational Biology
Proceedings of the Royal Society B		Theoretical Population Biology

	Natural Sciences, Community 6	
American Journal of Human Biology	American Journal of Physical Anthro	Cancer Causes and Control
Cancer Epidemiology Biomarkers and	Cancer Research	Early Human Development
European Journal of Cancer Preventi	European Journal of Cancer Suppleme	Evolution and Development
Evolutionary Biology	Fertility and Sterility	Hormones and Behavior
Human Reproduction	Integrative and Comparative Biology	International Journal of Andrology
Journal of Anatomy	Journal of Experimental Biology	Journal of Human Evoluion
Journal of Morphology	Medicine and Science in Sports and	PaleoAnthropology
Schizophrenia Research	Sports Medicine	The Anatomical Record

Ν	atural Sciences, Community 7	
Applied and Preventive Psychology	Behaviour Research and Therapy	Biological Psychiatry
Consciousness and Cognition	Emotion	Journal of Anxiety Disorders
Journal of Consumer Research	Journal of Experimental Social Psyc	Journal of Family Psychology
Journal of Personality Disorders	Journal of Psychiatric Research	Memory
Neuroimage	Neuropsychologia	Psychological Medicine
Psychopharmacology	Psychophysiology	Suicide and Life-Threatening Behavi
	The American Journal of Psychiatry	
	Natural Sciences, Community	y 8
American Naturalist	Auk	Bioscience
BMC Evolutionary Biology	Genetical Research	Genetics
Genome Biology	International Journal of Plant Scie	Journal of Experimental Zoology Par
Philosophy of Science -East Lansing	Plant Cell	Plant Methods
Quarterly Review of Biology	Trends in Genetics	Yeast
	Natural Sciences, Commun	ity 9
Advances in Theoretical and Mathema	Annals of Physics	Annual Review of Nuclear and Partic
Classical and Quantum Gravity	Fortschritte der Physik	General Relativity and Gravitation
Journal of High Energy Physics		Nuclear Physics B

N	Vatural Sciences, Community 10	
ACM Transactions on Sensor Networks	Annual Review of Neuroscience	Cerebral Cortex -New York- Oxford U
Experimental Brain Research	Neuron	PLoS Biology
	The Journal of Neuroscience	

	Natural Sciences, Community 11	
ACM SIGPLAN Notices	Annual Symposium on Principles of P	International Conference on Functio
Journal of Functional Programming	Proceedings of the 25th ACM SIGPLAN	Proceedings of the 26th ACM SIGPLAN
	Proceedings of the ACM SIGPLAN 1996	

Natural Sciences, Community 12		
Antiquity	Archaeological Papers of the Americ	Asian Perspectives
Backdirt: Annual Review of the Cots	Current Anthropology	Symbols

Natural Sciences, Community 13

IEEE Signal Processing Magazine

IEEE Journal of Selected Areas in C... IEEE Transactions on Signal Process... IEEE Transactions on Information Th... IEEE Transactions on Wireless Commu...

Natural Sciences, Community 14			
Cell	European Journal of Biochemistry	Molecular Biology of the Cell	
Nature Structural and Molecular Bio		Structure	

Mathematical Sciences, Community 1

4th Multidisciplinary Workshop on A... American Economic Journal: Microeco... American Sociological Review Artificial Intelligence Canadian Journal of Economics Cognitive Systems Research Contributions in Macroeconomics Economia mexicana Economics of Transition Explorations in Economic History Handbook of Macroeconomics IEEE Intelligent Systems Journal of Artificial Intelligence ... Journal of Economic Dynamics and Co... Journal of Economic Theory Journal of Finance Journal of International Economics Journal of Monetary Economics Journal of Political Economy Journal of the European Economic As... National tax journal Nber Working Paper Series Operating Systems Review Proceedings of the 2006 AAAI Spring... Proceedings of the DARPA Workshop o... Proceedings of the First Internatio... Proceedings of the Nineteenth Annua... Public Choice Rationality and Society Review of Economic Studies The B.E. Journal of Macroeconomics Theoretical Economics

AAAI Fall Symposium on Negotiation ... American Economic Review Annual Review of Economics Autonomous Agents and Multi-Agent S... Carnegie-Rochester Conference Serie... Computational Management Science Decision Support Systems Economic Journal European Economic Review Foreign Affairs Health Services Research Information Fusion Journal of Business and Economic St... Journal of Economic Literature Journal of Empirical Finance Journal of Financial Economics Journal of Law and Economics -Chica... Journal of Money, Credit and Bankin... Journal of Public Economics Journal of Urban Economics National Tax Journal NBER Working Paper Series Proceedings 35th International Conf... Proceedings of the 21st Annual Mee... Proceedings of the Eighteenth Inter... Proceedings of the First Joint Conf... Proceedings of the Sixth Internatio... Quarterly Journal of Economics Review of Economic Dynamics Review of Financial Studies The Economic Journal University of Chicago Law Review

AAAI Spring Symposium on Empirical ... American Journal of Computational L... Applied Economics Research Bulletin Brookings Papers on Economic Activi... China Economic Review Computers & Operations Research Econometrica Economic Policy European Finance Review Games and Economic Behavior IEEE Infocom International Journal of Game Theor... Journal of Business -Chicago-Journal of Economic Perspectives Journal of Epidemiology and Communi... Journal of Health Economics Journal of Mathematical Economics Journal of Policy Modeling Journal of Public Policy and Market... Management Science NBER Macroeconomics Annual New York Review of Books Proceedings of Autonomous Agents an... Proceedings of the Conference on Ap... Proceedings of the Eighth National ... Proceedings of the Multi-Agent Sequ... Proceedings of the Workshop on Theo... Rand Journal of Economics Review of Economics and Statistics Tax Policy and the Economy The Lancet WIDER Research Paper

Mathematical Sciences, Community 2					
ACM Transactions on Graphics	s Cartographica Communications of the Association f				
Computational Intelligence	Computational Linguistics	Computing Surveys			
Electronic Commerce Research and Ap	Formal Grammar Conferences	Future Generation Computer Systems			
IEEE Computer Graphics and Applicat	IEEE Transactions on Visualization	Information Technology			
Journal of Biomedical Informatics	Journal of Heuristics	Journal of Linguistics			
Journal of Logic Programming	Journal of Optimization Theory and	Journal of Psycholinguistic Researc			
Library Quarterly	Linguistics and Philosophy	Natural Language Engineering			
Nos	Proceedings of ACL-08: HLT	Proceedings of Algorithms and Exper			
Proceedings of Graph Drawing	Proceedings of SIGGRAPH	Proceedings of the 10th Annual Symp			
Proceedings of the 10th Internation	Proceedings of the 11th Conference	Proceedings of the 19th Internation			
Proceedings of the 2003 Internation	Proceedings of the 2005 ACL Worksho	Proceedings of the 7th Conference o			
Proceedings of the Eighteenth Inter	Proceedings of the Eighth Internati	Proceedings of the Eighth Internati			
Proceedings of the Fifth SIGdial Wo	Proceedings of the First Workshop o	Proceedings of the Human Language T			
Proceedings of the ICAPS-05 Worksho	Proceedings of the Intelligent User	Proceedings of the Ninth Internatio			
Proceedings of the Second TAG Works	Proceedings of the Seventh Internat	Proceedings of the Seventh Internat			
Proceedings of the Sixth Internatio	Proceedings of the Thirteenth Annua	Proceedings of the Twenty-First Nat			
Proceedings of the Workshop on Synt	Proceedings of UIST	Transactions on Graphics			
Transactions on Systems, Man and Cy					

Mathematical Sciences, Community 3			
Agricultural History American Journal of Political Scien American Political S			
Annals of the American Academy of P	Annual Review of Psychology	BioSocieties	
British Journal of Political Scienc	Dissent	D-Lib Magazine	
Economic Development and Cultural C	Economics & Politics (Oxford, Engl	Educational Policy	
Genewatch	IMF Staff Papers	Indiana Journal of Global Legal Stu	
International Organization	International Studies Perspectives	Journal of Conflict Resolution	
Journal of Economic History	Journal of Labor Economics	Journal of Legal Studies	
Journal of Policy History	Journal of Politics	Journal of Social Issues	
Journal of Statistical Software	Medical Anthropology	Negotiation Journal	
Perspectives on Politics	PLoS Medicine	Political Analysis	
Population Health Metrics	PS: Political Science and Politics	Research in Higher Education	
Social Justice Research	Social Research	Social Science and Medicine	
Social Science History	Social Science Research	Sociological Methods and Research	
Statistical Science	Studies in American Political Devel	The American Sociologist	
The Annals of the American Academy	The Good Society	The Political Quarterly	
World Politics		Yale Journal of International Law	

Mathematical Sciences, Community 4

Acta Mathematica -Stockholm-Annales Academiae Scientiarum Fenni... Applied and Computational Harmonic ... Commentarii Mathematici Helvetici Documenta Mathematica Experimental mathematics Harvard College Mathematics Review International Journal of Computer V... Journal fur die Reine und Angewandt... Journal fur die Reine und Angewandt... Journal of the European Mathematica... Manuscripta Mathematica Nagoya Mathematical Journal Periodica Mathematica Hungarica Publications Mathematiques de l'Ins... Advances in Mathematics Annales Scientifiques- Ecole Normal... Biological Cybernetics Communications on Pure and Applied ... Duke Mathematical Journal Foundations and Trends in Computer ... IEEE Transactions on Biomedical Eng... Inventiones mathematicae Journal of Algebra Journal of Algebra Journal of the Optical Society of A... Mathematical Research Letters New York Journal of Mathematics Proceedings- American Mathematical ...

American Journal of Mathematics Annals of Mathematics Bulletin- American Mathematical Soc... Discrete and Computational Geometry Electronic Journal of Combinatorics Geometric and Functional Analysis IEEE Transactions on Pattern Analys... Journal- American Mathematical Soci... Journal of Number Theory Journal of Topology Mathematische Annalen Pacific Journal of Mathematics Proceedings of the Thirty-Fifth Ann... Topology Vision Research -Oxford-

Mathematical Sciences, Community 5

ACM International Conference Procee... Computer Aided Geometric Design Computers and Graphics International Journal of Image and ... Lecture Notes in Computer Science Proceedings of the Annual ACM Sympo... Annual Symposium on Foundations of ... Computer Graphics and Applications Eurographics/SIGGRAPH symposium on ... International Mathematics Research ... MM: Proceedings of the seventh ACM ... Proceedings of the Canadian Confere... The Visual Computer: International ... Computational Complexity Computer Graphics Forum Information and Computation Journal of Computer & System Scien... Proceedings of the 15th Internation... SIAM Journal on Computing

Mathematical Sciences, Community 6				
Argumentation ARL: A Bimonthly Report BMJ: British Medical Jour				
College & Research Libraries News Earlhamite		Infection Control and Hospital Epid		
Journal of Biology Journal of Law and Education		Journal of Speculative Philosophy		
Legal Writing: The Journal of the L	New England Journal of Medicine	Newsletter on Teaching Philosophy		
Philosophy and Rhetoric	SPARC Open Access Newsletter	St. John's Review		

Mathematical Sciences, Community 7				
Administrative Science Quarterly American Journal of Sociology American Psychologist				
Crime and Justice Du Bois Review		Journal of Organizational Behavior		
Research Evaluation	Science, Technology and Human Value	Social Service Review		
Mathematical Sciences, Community 8				
American Statistician	Biometrika	Journal – American Statistical Ass		

American Statistician	Biometrika	Journal – American Statistical Ass
Journal of Econometrics	Journal of Educational Psychology	NBER Technical Working Paper
Psychological Methods		Working paper series (National Bure

Mathematical Sciences, Community 9			
Computer Architecture News	Proceedings of the 2005 INFOCOM 24t	Systems Administration Conference	
	www.eecs.harvard.edu/ margo/papers/		

Mathematical Sciences, Community 10

Addictive Behaviors

American Journal of Drug and Alcoho...

Learning and Motivation

Behavior Research Methods

Mathematical	Sciences,	Community	11

Acta Crystallographica Section C: C...

Chemistry & Biology

Tetrahedron Letters

History / Philosophy, Community 1				
American Historical Review American Scientist Annals of Science				
Annual Review of Sociology	Architectural History British Journal for the History			
Bulletin of the History of Medicine	Bulletin of the History of Medicine Central European History Common Know			
Configurations Contemporary European History Historical Journal				
History of Science	International Migration Review	Isis		
Journal of British Studies	Journal of the History of Biology	Journal of the History of Ideas		
Journal of Visual Culture	Modern Language Notes	anguage Notes Oxford Review of Education		
Past and Present	Present Perspectives on Science Public Understanding of Scien			
Science in Context	Science in Context Science Studies Shak			
Social Forces	Social Studies of Science	The British Journal for the History		
The British Medical Journal	The International Migration Review	Transactions of the Institute of Br		
Transactions of the Royal Historica				

History / Philosophy, Community 2

Australasian Journal of Philosophy
European Journal of Philosophy
Nous
Philosophical Review
Philosophy and Phenomenological Res

The Cambridge Companion to the Phil...

Biological Theory Journal of Aesthetics and Art Criti... Philosophers' Imprint Philosophical Studies Proceedings of the Aristotelian Soc... Bulletin of Symbolic Logic Journal of Symbolic Logic Philosophical Quarterly Philosophical Topics Southern Journal of Philosophy Theoria : Revista de Teoria, Histor...

History / Philosophy, Community 3

Contemporary Readings in Law and So	Economics and Philosophy	Ethics	
Harvard Divinity Bulletin	Journal of Philosophy	Pacific Philosophical Quarterly	
Philosophical Perspectives	Philosophy and Public Affairs	Proceedings and Addresses of the Am	
Ratio	Social Philosophy and Policy	The Constitution of Agency	
The Monist	The Quality of Life	The Tanner Lectures on Human Values	
	Women, Culture, and Development: A		

Н	istory / Philosophy, Con	nmunity 4		
American Literary History	American Literary Scholar	ship Ar	nerican literature	
Critical Inquiry			Prospects	
	Linguistics, Cor	nmunity 1		
riu	Acta Poeti	ca A	msterdam Studies in t	he Theory and
Annual of Armenian Linguis	tics Baltistics	ı	Brain Rese	arch
Die Sprache	Euskaling	1a	Harvard Ukraini	an Studies
Harvard Working Papers in Ling	uisti Heritage Languag	e Journal	Historische Sprac	hforschung
Indo-European Studies	Innsbrucker Beitrge	zur Spr	Journal of Cuneife	orm Studies
Journal of Indo-European Stu	idies Journal of the American	Oriental So	Journal of the Cork H	istorical and
Language	Language and Linguis	tics Compass	Language Re	search
Lingua	Linguistic Variation	n Yearbook	Mnchener Studien z	ur Sprach
MIT Working Papers in Lingu	istics Natural Language and L	inguistic The	Oceanic Linguistics	
Proceedings of the North East L	ingu Syntax	Syntax The Crane Bag		Bag
Tocharian and Indo-European Studies Transactions of the Philological So			nilological So	
Lingu	istics Community 2			
Linguistics, Community 2				
Brain and Language Journal of East Asian Linguistics Journal of Memory and Language				
Linguistic Inquiry		Synthese		
Mi	scellaneous, Community	· 1]
Book History C	ontributions to the History of Con	. Euroj	pean Review	
French Historical Studies	Journal of Modern History	Modern In	tellectual History	
Pmla Pr	inceton University Library Chroni	. Proceedings of	the British Academy	
	Representations			
Miscellaneous, Community 2				
American Journal of Public I	,	v	Daeo	lalus
International Anesthesiology C			Journal of the Amer	
Journal of the American Medical Wom Milbank Quarterly The Hastings Center Report				
section of the fillerical Medica	initiality of		The machings	controport

		•	
Miscellaneous, Community 3			
American Music	Black Music Research Journal	Early Music History	
Journal of Musicology	Journal of the Society for American	Musical Quarterly	
	Tempo		

	Law, Community 1	
Emory Law Journal	Georgetown Law Journal	Harvard Civil Rights-Civil Libertie
Journal of Legal Analysis	Loyola of Los Angeles Law Review	Maryland Law Review
Michigan Law Review	New York University Law Review	Roger Williams University Law Revie
	Southern California Law Review	

	Law, Community 2	
Arizona Law Review	Global Policy	Harvard BlackLetter Journal
Harvard International Law Journal	Harvard Journal on Legislation	Harvard Law Review
Harvard Women's Law Journal	Lewis and Clark Law Review	Minnesota Law Review