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Table S1 Summary of the site(s) of glucuronidation for the phenolic compounds with 
multiple hydroxyl groups in this paper determined based on the literature.  
 
No. Name Sites of Glucuronidation References 
1 EGCG 3’-OH and 4’’-OH Lu et al., 2003 
2 EGC 3’-OH Lu et al., 2003 
18 Emodin 3-OH Liu et al., 2010 
20 Enterolactone 3-OH Dean et al., 2004 
22 Raloxifene 6-OH Change et al., 2009 
26 Hesperetin 3’-OH and 7-OH Brand et al., 2010 
27 Narigenin 7-OH Xu et al., 2009 
55 Flavopiridol 7-OH Ramírez et al., 2002 
97 Caffeic acid 3-OH and 4-OH Wong et al., 2010 
100 Biochanin A 7-OH Chen et al., 2005 
101 Daidzein 7-OH Zhang et al., 1999 
102 Dihydrodaidzein 7-OH* Wu et al., 2011 
103 Equol 7-OH* Wu et al., 2011 
104 Formononetin 7-OH Chen et al., 2005 
105 Genistein 7-OH Zhang et al., 1999 
106 Glycitein 7-OH Chen et al., 2005 
108 Prunetin 5-OH Joseph et al., 2007 
138 Resveratrol 3-OH Brill et al., 2006 
140 Entacapone 3-OH Lautala et al., 2000 
142 Mycophenolic acid 4-OH Change et al., 2009 
145 Tolcapone 3-OH Lautala et al., 2000 

* Based on the fact that 7-OH group in the isoflavone backbone is the most favorable position 
for glucuronidation. 
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Figure S1 Chemical structures of 145 UGT1A9 substrates in this study. 
Numbering of the structures is consistent with that in Table 1. 
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Figure S2 Protein sequence alignment of human UGT1A9 with the plant VvGT1 
(pdb code: 2C1Z). The aligned sequence identity between UGT1A9 and VvGT1 is 14.9%. 
Secondary structures (α-helix in cyan, β-strands in magenta) are color shaded. The secondary 
structures of the human UGTs were determined by PSIPRED (McGuffin et al., 2000). The 
44-aa signature motif of UGTs is enclosed by a red box. Residues predicted to be in contact 
with aglycone substrate are highlighted in red, whereas the catalytic dyad residues 
(His37-Asp148) are highlighted in grey. 

 
 
McGuffin LJ, Bryson K and Jones DT (2000) The PSIPRED protein structure prediction server. 

Bioinformatics. 16:404-405. 
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Figure S3 A homology model of UGT1A9 constructed in the paper and the 
description of the binding pocket. The modeled structures are composed of two N- (in 
gray) and C-terminal (in light green) domains. The N- and C-terminal domains contain central 
stranded parallel sheets flanked by α-helices on both sides. The two domains pack very tightly 
and form a deep cleft where the aglycone substrate and the cofactor are bound for reaction. 
Nα5-2 packs to Nα3-2, facilitating specific interactions (e.g. salt bridge) between the two 
regions. These interactions might play a role in the entry of the aglycone and in the departure 
of the product (Modolo et al., 2009; Laakkonen and Finel, 2010). It was also proposed that 
residues in Nα3-2 area might go through some local conformational changes during substrate 
binding and subsequent product leaving (Modolo et al., 2009). The substrate binding pocket is 
almost entirely formed by the N-terminal residues, although some C-terminal residues also 
contributed to the formation of the pocket. The pocket is primarily formed by LoopN1, Nα1, 
Nα3-2, LoopN4, Nα5-1, Nα5-2, Loop C1 and Loop C5. This is consistent with the topological 
arrangement of β-strands (3-2-1-4-5-6-7) of the UGT enzyme. Nβ2, Nβ3, Nβ6 and Nβ7 twisted 
far away from the core Nβ1 where the catalytic histidine situated. Loop N4 was located at the 
bottom of the pocket (far from the cofactor); Nα5-1 residues formed the wall in the end of the 
pocket; Loop N1 and Nα3-2 line the entrance of the pocket; Loop C1 and C5 cover the top of 
the pocket; the right side of the pocket is occupied by the residues in the N-terminus of Nα5-2. 
The cofactor is present at the left side of pocket. The catalytic residue histidine (in green stick 
mode) was located at the start of helix Nα1. The substrate kaempferol (in a 3-OH catalysis 
mode) is shown in stick-and-ball model. 
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