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Magnetic Field Settings. A magnetic cell in a suspension of cells
has magnetorotational mobility, α ¼ μ∕ð2πηCÞ where μ is the
permanent magnetic dipole moment of the cell, C is its hydro-
dynamic friction coefficient, and η is the viscosity of the liquid
in which the cell is immersed. The population of magnetic cells
in a dissociated tissue preparation is characterized by a distribu-
tion nðαÞ of magnetorotational mobility and we ask which frac-
tion of the population can be set in rotational motion by an
external magnetic field of intensity B and rotational frequency
f B. Because the critical frequency for rotation in synchrony
with an external magnetic field is given by f max

B ¼ αB, the field
(B, f B) setting selects those cells in the population that meet
the criterion:

α ≥
f B
B

: [S1]

In other words, cells satisfying [S1] can be easily recognized
by their rotational motion when scanning the preparation for
rotating cells. These cells are termed “experimentally well acces-
sible” and their key parameters (μ, a) plot on the upper left in the
rotational actuation nomogram (Fig. S1). If the frequency f B is
slightly increased beyond the critical frequency f max

B of a given
cell, then that cell stops rotating in synchrony with the field and
starts to make clockwise and anticlockwise quarter-turns in
rapidly alternating sequence. This phenomenon is equivalent
to apparently chaotic swimming trajectories displayed in mag-
netic bacteria when the driving frequency exceeds the critical
frequency (1). With yet larger excess frequency, the amplitude
of the oscillatory motion decreases fast and eventually (say at
f B∕f max

B > 2) is hardly recognizable, that is, the cell appears to
shiver slightly, which makes it difficult to discriminate magnetic
actuation against Brownian motion. Therefore, although poten-
tially still accessible with the rotating field method, cells with
f max
B < f B can in general not be considered experimentally well
accessible, hence our cut-off criterion [S1]. It is obvious from [S1]
that a slowly rotating but strong magnetic field increases the
chances of identifying magnetic cells by their rotational motion
when visually screening a dissociated tissue preparation. We
found f B ¼ 0.33 Hz to be an experimentally convenient rotation
frequency, which is a good compromise between search speed
and probability of finding a spinning cell. By limiting the magnetic
field intensity to values well below 5 mT (e.g., 2.1 mT, as in
Fig. S1), one can avoid remagnetization of biogenic single-do-
main magnetite, in which case their original magnetic state would
be irreversibly lost. This restriction is of course relevant only if the
aim is to measure the natural remanent magnetic dipole moment
of identified cells. If harvesting of magnetic cells is the key task
instead, then the magnetic field intensity should be set to larger
values. When going from 2.1 to 8.4 mT, cells with four times smal-
ler magnetic dipole moment become theoretically accessible (for
a given cell size), or for a given magnetic moment, cells with
41∕3 ≈ 1.6 times larger diameter. However, upon further increas-
ing the field strength, one runs the risk of magnetizing cells con-
taining higher amounts of biologically bound iron or waste, which
need to be sorted out in a second stage process.

Ellipsoidal Cells. Elongated cells spinning about figure axis i are
modeled using the frictional resistance coefficientsCi for the gen-
eral ellipsoid, given by Jeffery (2),

Ci ¼
16π
3

a2
j þ a2

k

a2
j Pj þ a2

kPk
; [S2]

which depend on the geometry of the cell (semiaxes a1, a2, a3),
and the volume of the fluid in which the cell is immersed, through
the upper limit smax of the elliptic integrals

Pλ ¼
Z

smax

0

ds

ða2
λ þ sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ
3
v¼1ða2

v þ sÞ
q ; [S3]

where s is the algebraically largest root of the equation for an
ellipsoidal surface in the liquid that is confocal with the immersed
ellipsoidal cell,

x21
a2
1 þ s

þ x22
a2
2 þ s

þ x23
a2
3 þ s

¼ 1; [S4]

where the surface of the cell is given by s ¼ 0. The rotation of an
ellipsoidal cell produces a flow field of ellipsoidal symmetry with
radially outward decreasing angular velocity, that is, adjacent
fluid layers (ellipsoidal shells) are rotated differentially. For a
fluid boundary located at smax, the no-flow boundary condition
implies enhanced shear stress (friction) so that the proximity of
a fluid boundary to a rotating cell always increases Ci. This is
mathematically obvious from Eq. S3, which has a monotonously
decreasing, but always positive, finite kernel, so that increasing
smax always increases the integral; because Ci has Pi in the de-
nominator, Ci is minimum for smax → ∞. In the limit smax → ∞,
Pi can be evaluated in terms of elliptic integrals of the first and
second kind (3) and it is worth mentioning that Pi is mathema-
tically equivalent to the demagnetization tensor of a homoge-
neously magnetized general ellipsoid (4, 5).

Estimation of Errors. Because the magnetic cells may be floating
only tens of microns above the microscope slide, the assumption
of a distant fluid boundary is almost certainly violated and we
have to ask by how much we underestimate the trueC when using
the limit case expression for smax → ∞. To begin with, we consider
a cell of spherical geometry as this case can be treated algebrai-
cally. For a sphere with radius a ≡ a1 ¼ a2 ¼ a3, expression S3
evaluates to

PðσmaxÞ ¼
1

a3

Z
σmax

0

dσ
ð1þ σÞ5∕2 ¼

2

3a3

�
1 −

1

ð1þ σmaxÞ3∕2
�
;

[S5]

where σmax ¼ smax∕a2. From Eq. S4 we can express b, the radius
of the boundary shell related to the integration limit Smax, in
terms of σmax, i.e., b2 ¼ a2ð1þ σmaxÞ, and recast Eq. S5 into

Pða; bÞ ¼ 2

3

�
1

a3
−

1

b3

�
: [S6]

Putting [S6] into [S2], we finally have

Cðb∕aÞ ¼ 8π
a3

1 − ða∕bÞ3 : [S7]
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For b → ∞, expression S7 converges to C∞ ¼ 8πa3, which is
the rotational friction coefficient of an unbounded sphere. As can
be seen in Fig. S2, Cðb∕aÞ deviates from C∞, by less than 10%
when the clear distance d between cell surface and fluid boundary
exceeds 0.6 times the cell diameter. The deviation drops below
the 1% level for d∕2a ≥ 1.8. The fast convergence of Cðb∕aÞ
towards C∞ is mathematically intuitive from the ð1 − ða∕bÞ3Þ−1
dependency (see Eq. S7). Fig. S3 shows the proximity effect of a
boundary layer on the rotational friction coefficient for a general
ellipsoid with semiaxes a1 ¼ 1.8, a2 ¼ 0.9, a3 ¼ 0.6. For rotation
about the long axis (i ¼ 1), the coefficient C1ðb∕a1Þ deviates by
less than 10% from its limit value C1;∞ once the long axis of the
fluid boundary is at b > 1.42a1. For rotation about the short axis
(i ¼ 3), the relative deviation of C3ðb∕a1Þ from C3;∞ is about
twice as large at a given b∕a1 ratio compared to rotation about
the short axis. This is due to the fact that rotation about a short
axis means that the long axis is in the equatorial (rotation) plane
and therefore is closer to the fluid boundary than the intermedi-
ate axis is during rotation about the long axis.

Because the estimated magnetic moment μ is proportional to
Ci, a possible underestimation of the distance of the fluid bound-
ary from the cell implies an underestimation of μ. Likewise, the
viscosity measurement was done on the pure buffer solution be-
fore it was added to the suspension of cells, whereas debris from
the dissociation procedure is likely to slightly enhance the actual
viscosity of the fluid in which the isolated cells are immersed.
Hence, both effects have the same tendency. Therefore, our es-
timates of μ are rather on the conservative side. The remaining
source of error is the determination of the cell dimensions under
the light microscope, which is diffraction limited. The optically
determined uncertainty in the cell axis is estimated to be 0.5 μm
in the focal plane and 1 μm in the focal depth, both of which are
small compared to the typical cell dimensions of 10 μm.

Differential Rotation. This scenario applies to the case of a mag-
netic inclusion that is not mechanically coupled to the cell mem-
brane but viscously suspended in the cytoplasm.When spinning at
angular frequency ωa due to a rotating external magnetic field,
the magnetic inclusion transmits shear stress to the cell mem-
brane through the viscosity of the cytoplasm. The shear stress
in turn sets the cell membrane in rotation, albeit at a rate
ωb < ωa. The differential rotation ωa − ωb can be calculated al-
gebraically for the geometrically simple case of a spherical inclu-
sion of radius a, located in the center of a spherical cell
membrane of radius b. The cell membrane now defines the fluid
boundary for the inclusion so that the viscous resistance coeffi-
cient of the inclusion is given by Eq. S7. Since the fluid boundary
rotates at rate ωb, the couple acting on the inclusion by the fluid
volume within a < r < b is given by

Na ¼ −8πηcp
a3b3

b3 − a3
ðωa − ωbÞ; [S8]

where ηcp is the viscosity of the cytoplasm. The couple acting on
the rotating cell membrane by the external fluid of viscosity η is

Nb ¼ −8πηb3ωb; [S9]

and conversely, the couple needed to produce rotational motion
of the cell membrane is −Nb, which is provided by the rotational
motion of the inner fluid. By balancing the couples, we obtain the
rotation rate of the cell relative to that of the inclusion as

ωb

ωa
¼ ηcp∕η

ηcp∕ηþ ðb∕aÞ3 − 1
: [S10]

The viscosity contrast ηcp∕η can be regarded as coupling
strength. As seen in Fig. S4, a cell membrane of diameter
10 μm enclosing a 1 μm sized magnetic inclusion (b∕a ¼ 10) ro-
tates at a distinctly lower rate than the inclusion does, even for a
viscosity contrast as high as 100.

Induced Magnetization. A cell may have also induced magnetiza-
tion in addition to remanent magnetization, in which case its mag-
netic susceptibility must be anisotropic in order for the external
magnetic field to produce a torque on the induced magnetization.
The torque due to anisotropic magnetic susceptibility is given by

N ind ¼ 1

2
ΔχB2V sin 2ψ [S11]

(in c.g.s, e.g., 6), where V is the volume containing the
anisotropic induced magnetization and Δχ is the difference in
magnetic susceptibility between maximum and minimum axis
of the susceptibility tensor. Incorporation of expression S11 into
the torque balance (c.f. Eq. 2 in main text), yields the following
expression

μB
2πηC

sinψþ 1

2

ΔχB2V
2πηC

sin 2ðψ − δÞ ¼ f B; [S12]

where δ is the orientation of the axis of maximum susceptibility
relative to the remanent magnetization axis, with δ reckoned
positive from the remanent magnetic vector toward the (counter-
clockwise rotating) magnetic field vector. Introducing f max

rem and
f max
ind as the critical frequency for the case of remanent-only or
induced-only magnetization, respectively, Eq. S12 can be rewrit-
ten as

f max
rem sinψþ f max

ind sin 2ðψ − δÞ ¼ f B: [S13]

Maximization of Eq. S13 yields f max
B ðρ; δÞ, the maximum

frequency of the external field up to which the cell can rotate syn-
chronously with the field, where ρ ¼ f max

ind ∕f max
rem . Mathematically

speaking, the two most important solutions to Eq. S13 occur
for δ ¼ �π∕4:

i. δ ¼ þπ∕4, i.e., induced and remanent torque add up coher-
ently at any field strength:

f max
B ¼ f max

rem þ f max
ind : [S14]

ii. δ ¼ −π∕4, i.e., the remanent torque opposes the induced tor-
que:

f max
B

f max
rem

¼
� 1 − ρ for ρ ≤ 1

4

1
4ρ þ ρ sin

�
2

�
π
4
þ arcsin 1

4ρ

��
for ρ > 1

4

; [S15]

and the solution has the asymptote f max
B ¼ f max

ind (see
also Fig. S5).

All other solutions fall between these two boundary lines (see
Figs. S5 and S6).

Specifically for δ ¼ �π∕2 and δ ¼ 0, the solution is:

f max
B

f max
rem

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
ð1þ 2αρÞ with α ¼ −1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32ρ2

p
8ρ

:

Importantly, all solutions have unit slope for large values of ρ,
so that f max

B ðρ ≫ 1Þ ∝ B2, that is, the maximum frequency in-
creases quadratically with applied field intensity B.

Finally, the case δ ¼ π∕2 deserves closer examination. Consid-
er a magnetic inclusion whose dipole is dominated by magnetic
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remanence. On approaching the critical frequency f max
rem , the lag

angle ψ ¼ ðφ − ϑÞ of the remanence vector with respect to the
external magnetic field vector (see Eq. 1) approaches π∕2. A
Stoner–Wohlfarth particle (7) has the maximum susceptibility
axis perpendicular to the easy axis (easy axis is coaxial with
the remanence vector), and therefore at lag angle π∕2, the axis
of maximum susceptibility is parallel to the applied field. The sus-
ceptibility χ⊥ of a Stoner–Wohlfarth particle perpendicular to its
remanence is given by 1∕ðNa −NbÞ, where Na and Nb are the
demagnetizing factors along the hard and easy direction, respec-
tively (7). From the Stoner–Wohlfarth expression for the switch-
ing field,

Hc ¼ ðNa −NbÞMs ∼Ms∕χ⊥; [S16]

we can estimate χ⊥ when the switching field is known. Assuming a
typical switching field ofHc ∼ 240 Oe (24 mT) for magnetite par-
ticles with saturation magnetizationMs ∼ 480 G (480 kA∕m), we
obtain χ⊥ ∼ 2 [G∕Oe], and find that the induced magnetization in
a 20 Oe field is only approximately 40 G compared to 480 G for
the saturation magnetization (that is, its corresponding ρ value is
1∕24). Even for χ⊥ ∼ 12 (Hc ∼ 40 Oe), the induced magnetiza-
tion in a 20 Oe field is less than half of the magnetic remanence
ðρ ∼ 1∕4Þ.
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Fig. S1. Nomogram for rotational actuation. Cut-off-values for synchronous rotation of a magnetic cell with permanent magnetic dipole moment μ and short
half-axis a, for two different fB∕B ratios. Solid lines correspond to fB ¼ 0.33 Hz and B ¼ 2.1 mT (21 Oe), dashed lines correspond to fB ¼ 0.33 Hz and
B ¼ 8.4 mT. Blue: spherical cells, with cell radius a; green: cells rotating about long axis, with axial ratio 1.6 and short half axis a; red: cells rotating about
short axis, with axial ratio 1.6 and short half axis a. Experimentally well accessible μ values for a given cell dimension and a given experimental fB∕B ratio are
above the corresponding line. In the calculations the viscosity of the medium was taken as 1 mPa sec (1 cPs).
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Fig. S2. Influence of the distance of the fluid boundary from the surface of a spherical cell on the rotational friction coefficient C. The relative deviation (in
percent) of Cðb∕aÞ from C∞, is plotted as a function of the ratio of the fluid boundary radius, b to the radius of the sphere, a, (bottom axis) and in terms of the
clear distance d between the sphere and fluid boundary, relative to the diameter 2a of the sphere (top axis).
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Fig. S3. Influence of the distance of the fluid boundary from the surface of an ellipsoidal cell on the rotational friction coefficients C1 and C3. (C2 is very close
to C3 and therefore omitted here). The relative deviation (in percent) of the Ciðb∕a1Þ from the respective limit values C∞;i , is plotted as a function of the ratio of
the fluid boundary radius, b, to the long semiaxis of the ellipsoid, a1, (bottom axis) and to its short semiaxis, a3 (with a1 ¼ 1.8, a2 ¼ 0.9, a3 ¼ 0.6).

Fig. S4. Differential rotation for a magnetic inclusion (radius a) in a cell of radius b, according to Eq. S10.
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Fig. S5. Maximum rotation frequency fmax
B ðρ; δÞ in units of fmax

rem as a function of induced-to-remanent ratio ρ ¼ fmax
ind ∕fmax

rem for various angles δ between
remanent magnetization and axis of maximum susceptibility. The curves for δ ¼ π∕4 (orange) and δ ¼ −π∕4 (blue) form an envelope to all other curves.
For 0 ≤ δ ≤ π∕2, the curves are monotonous, with the green curve demarcating the boundary to nonmonotonous behavior. The dashed red line defines
an asymptote to the blue curve.
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Fig. S6. Maximum frequency fmax
B ðρ; δÞ∕fmax

rem as a function of both induced-to-remanent ratio ρ ¼ fmax
ind ∕fmax

rem and angle δ.
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Fig. S7. Reflected-light images and scanning-electron micrographs of the magnetic cell shown in Fig. 3 of article. (A) Widefield reflectance, imaged with a
Zeiss Epiplan 40x (0.85 NA) objective, with focus on the highly reflective object (arrow). The object extending vertically on the left-hand side is a cell that was
identified as magnetic by its rotational motion in a rotating magnetic field. After transfer of the cell to another coverslip, the cell membrane lost integrity and
the cell lost most of its cytoplasm (light flat object to the right of the cell). (B) Widefield reflectance, imaged with a Nikon 100x (0.9 NA) objective, with focus on
the cell surface. The highly reflective object (red arrow) is visible too. (C) Scanning electron image produced with backscattered electrons (incident electron
energy was 15 kV). Brightness depends strongly on atomic number. The brightest domain (red arrow) in this micrograph occurs exactly where the reflective
objects are located in A, B, and where elemental analysis (c.f. D) shows a strong iron peak. This is the only region in the sample that strongly backscatters
electrons and has detectable iron. This comparison demonstrates that the light-reflecting objects are iron rich and carry the magnetism of the cell. (D) Energy-
dispersive X-ray (EDX) analysis of the region in C that strongly backscatters electrons (15 keV incident electron energy). The two lines marked by arrows are
diagnostic for iron. Bin size is 0.02 keV. (E) Scanning electron micrograph (incident electron energy 15 kV) produced with secondary electrons, emitted from
very shallow depths (within 10 nm of the sample surface at most). The arrow points to the area that strongly backscatters electrons in C but is rather incon-
spicuous in secondary electron imaging and therefore not a surface feature. (F) The region of interest in E (blue box) was scanned at higher magnification at the
same voltage as in E and only shows topographic features but no material contrast. This demonstrates that the iron-rich regions are intracellular inclusions, not
surface features.
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Movie S1. The movie shows a suspension of cells from dissociated trout olfactory epithelium under the influence of an external magnetic field rotating in the
focal plane at a frequency of 0.33 Hz (transmitted light in bright field). One can clearly see a rotating cell (in the lower right quadrant, close to the center), while
the other cells do not rotate. A few objects above the focal plane display linear motion due to desiccation induced drift. The rotating cell has an opaque
inclusion close to the pole about which the cell rotates. See also Fig. 1A in article.

Movie S1 (AVI)

Movie S2. The movie shows a suspension of cells from dissociated trout olfactory epithelium (treated with lipophilic fluorescent dye FM1-43) in a rotating
magnetic field. Widefield fluorescence (stimulated by oblique illumination with blue light) and reflected light (dark field) were simultaneously recorded to see
both cell membrane (green) and reflective objects (white) at the same time. One can clearly see a rotating cell (in the lower left quadrant) with a strongly
reflective object. See also Fig. 1B in article.

Movie S2 (AVI)
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Table S1. Experimentally determined critical frequencies and cellular magnetic moments

# a; b; c (μm)
Cc

(10−15 m3)

f1ðHzÞ
H1ðmTÞ
μ1ðfAm2Þ

f2ðHzÞ
H2ðmTÞ
μ2ðfAm2Þ

f3ðHzÞ
H3ðmTÞ
μ3ðfAm2Þ

f4ðHzÞ
H4ðmTÞ
μ4ðfAm2Þ

f5ðHzÞ
H5ðmTÞ
μ5ðfAm2Þ

f6ðHzÞ
H6ðmTÞ
μ6ðfAm2Þ

f7ðHzÞ
H7ðmTÞ
μ7ðfAm2Þ

1A 6; 7; 6 6.6 1.2 0.55 1.5 1.9
2.0 1.0 2.6 3.2

25.0 22.9 24.0 24.7
1B 9; 7.5; 8 14.0 0.77 0.4 1.0 1.3 0.8

2.0 1.0 2.6 3.2 2.0
33.8 35.1 33.8 35.7 35.1

2A 10; 7; 7 14.2 0.66 0.34 0.9 1.55
2.0 1.0 2.6 3.2

29.5 30.4 31.0 43.4
2B 6; 6; 7 6.0 0.31 0.21 0.01 0.31 0.27

2.6 2.0 1.0 3.2 2.6
4.5 3.9 0.4 3.6 3.9

2C 11; 9.5; 8 23.7 1.12 0.67 1.6 1.96 1.12
2.0 1.0 2.6 3.2 2.0

83.2 99.6 91.5 91.0 83.2
3 5; 4; 4 2.2 4.0 1.82 0.8 5

2.0 1.0 0.4 2.6
27.2 24.8 27.2 26.2

4 7; 4.5; 5 4.6 0.2 0.3 0.15
2.6 3.2 2.0
2.2 2.7 2.2

5 8.5; 8; 8 13.9 0.45 0.32 0.19
3.0 2.1 1.5

13.1 13.3 11.0
6 10; 6; 6 11.7 0.45 0.26 0.66 0.3 0.49

2.1 1.5 3.0 1.5 2.1
15.7 12.7 16.1 14.6 17.1

7A 14.5; 6.5;
6.5

25.8 0.51 1.03 0.45
2.1 3.0 1.5

39.4 26.2 22.9
7B 9; 6.5; 6.5 10.9 0.5 0.29 0.71 0.51 0.3

2.1 1.5 3.0 2.1 1.5
16.2 13.2 16.1 16.6 13.6

7C 3; 15; 8.5 26.0 1.61 0.8 1.16 0.4
3.0 1.5 2.1 0.9

87.7 87.1 90.2 72.6
8 9.5; 5; 6 9.4 1.6 1.2 0.74 0.22 2.8 1.75 1.26

2.1 1.5 0.9 0.3 3.0 2.1 1.5
45.2 47.4 48.8 43.5 55.3 49.4 49.8

Column no.: number indicates the individual fish from which a given magnetic cell was derived; letters A, B, or C are used to distinguish among cells from
the same individual.
Column a, b, c: principal semiaxes of the cell; rotation is about the c axis.
Column Cc : frictional coefficient for rotation about semiaxis c.
Columns f j , Hj , μj ∷ j-th measurement of critical frequency at a given rotating magnetic field setting (frequency f j amplitude Hj [0.1 mT ¼ 1 Oe]), and

resulting dipole moment. The magnetic moment is given in 1 fAm2 (10−15 Am2), or 10−12 Gcm3 ¼ 1 pemu (e:m:u: ¼ electro magnetic units) in cgs units.
The μj (Hj) for each cell are plotted in Fig. 4 of the paper. Scatter in the μj (Hj) values for a given particle is due to the fact that the magnetic moment is not

exactly parallel to one of the principal axes of the cell.
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