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SI Text
Nondimensionalization. The differential equation system of the
model for development of huanglongbing in a citrus tree is given
by (see Fig. 1 for the meaning of the symbols)
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We note that P = H + W + X + Y. Let
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The variables ~H, ~W , ~X , and ~Y are fractions of the total flush
population such that ~H þ ~W þ ~X þ ~Y ¼ 1 + and ~E, ~N

u
, ~N

i
, ~A

u
,

~A
i
1, ~A

i
2 are the densities of the vectors in the respective classes

per flush. We note that the rate of change of the total flush
population dP/dt ≠ 0 but dP/dt = ξ(t)H − δpP. Substituting the
new variables into model system (Eq. S1) and dropping the tildes
(∼), the equations for the proportion of flushes and vector
populations per flush become
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The disease-free equilibrium of the model system (Eq. S3) is
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where Ê is the egg population at the disease-free equilibrium, and
ðδn þ γÞ þ �ξ− δp > 0; ðδa þ κÞ þ �ξ− δp > 0; and δe þ σ þ �ξ− δp > 0:
The expression (ξ− δp) gives the net growth rate constant of

the flush population in a disease-free population. In the absence
of HLB infection, the population size PðtÞ declines exponentially
to 0 if (ξ− δp) < 0, remains constant if (ξ− δp) = 0, and grows
exponentially if (ξ− δp) > 0.

Reproductive Number.The expression for the reproductive number
R0 of the plant-vector model (Eq. S3) is given by
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The parameter �ξ ¼ 1=T
R T
0 ξðvÞdv is the average value of the

maturation rate of the flush population taken over a cycle of
period T. It has been shown in several studies that in some
nonautonomous epidemic models, expressed in terms of differ-
ential equations the basic reproductive number can be obtained
from the corresponding autonomous model by using time aver-
ages of the coefficients (1–4).
The reproductive number R0 can also be derived using heu-

ristic arguments as follows. If an infected adult vector (in the Ai
1

state) is introduced into a population of susceptible flush, it
infects the flush at a rate βp over its infectious period
1=ðκ þ δa þ �ξ− δpÞ. The probability that the infected flush be-
comes infectious is η1=ðη1 þ �ξÞ. The average number of flush that
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If, on the other hand, there is an infectious asymptomatic flush
and a population of adult vectors, the vectors become infected at
a rate βa Â

u over the infectious period of the flush 1=ðη2 þ �ξÞ.
The asymptomatic infectious flush becomes symptomatic at
a rate η2. In the symptomatic state the flush infects vectors at
a rate βaθ2 Â
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Following similar arguments, the number of infected adults that
were infected in the nymph stages is
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and the number of flush infected by the adults in the Ai
2 class is
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Therefore, the average number of infected vectors that arise from
a single infected vector without the infection from flush to flush
is Q2 ¼ RA1

P RP
A1

þRA2
P RP

A2
. Following the above arguments, it is

clear that the average number of infected flush from a single
infected flush is 2Q1 in the absence of the vector population.
A similar approach of finding the reproductive number for
a vector-transmitted disease was considered elsewhere (5).

Parameter Values. To obtain some of the parameter values, we
used information for mean developmental periods and survi-
vorship of immature stages of D. citri from Table S1, part of
which was extracted from Liu and Tsai (6). To estimate the rate
of mortality of nymphs, the sum of the survivorship proportion of
each of the five nymphal stages was divided by five to obtain the
average survivorship for the nymphs. The result was subtracted
from 1 to get the probability of death and divided by the number
of days taken by the nymphs to become adults. The value ob-
tained gives the mortality rate of nymphs per day, δn. The same
approach was used to obtain the parameter for the rate at which
eggs become nonviable, δe. Several studies have shown that it
might take 15–30 min for adults to acquire the bacteria (7, 8) but
reports on acquisition vary widely. We assume that nymphs would
take much longer to acquire the bacteria than the adults because
of the shorter piercing mouths of young nymphs. Therefore, the
acquisition time for nymphs, πn, is assumed to be 2 h.

Sensitivity Analysis. Relative importance of model parameters to
disease transmission and prevalence is determined through
sensitivity analysis. Sensitivity analysis of parameters is commonly
carried out to determine robustness of model predictions to
variation in parameter values. The parameters that are crucial in
the model are those that appear in the reproductive number R0
because these parameters influence the number of secondary
infections either positively or otherwise. They should be con-
sidered whenever intervention strategies are to be implemented.
The ratio of the relative change in a variable to the relative
change in a parameter is the normalized forward sensitivity index
of the variable to that parameter. The variable in this case is the
reproductive number, which is a differentiable function of the
parameters. Therefore, sensitivity indexes may alternatively be
defined using partial derivatives (9). For example, the computa-
tion of the sensitivity index of R0 with respect to the within-tree
transmission rate λ using parameter values in Table 1 is given by
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¼ 0:9373> 0: [S10]

The value 0.9373 shows that R0 is an increasing function of λ.
The sensitivity indexes of the remaining parameters are shown
in Table 2.
Three parameters associated with tree characteristics, namely

maturation rate of flush (�ξ), internal movement of the pathogen
within the tree λ, and latent period 1=η1, are all very influential on
the value of R0 (Table 2). When λ is reduced, the dynamics
of HLB development change drastically from continued expan-
sion of HLB symptoms to a dynamic equilibrium between healthy,
asymptomatic, and symptomatic flush (Fig. 3). When the latent
period is varied between 30 and 180 d, there are large differences
in the maximal proportions of asymptomatic flush attained (35–
60%) (Fig. S1A), but there are only slight differences in the time
needed to reach 100% symptomatic flush (Fig. S1B).

Scenario Analysis. If an insecticide is applied starting from 360 d or
450 d after initial infection, increases in the proportion of healthy
flush and decreases in the proportion of asymptomatic infected
flush ensue (Fig. 4 A and B). Although early spraying reduces the
temporal increase in infected flush, it does not eliminate the
pathogen from a tree (Fig. 4B). As expected, spraying the vectors
reduces the psyllid populations in all categories, but they con-
tinue to oscillate (Fig. S2).
If insecticides are applied when λ = 0.25, all flush and vector

categories continue to oscillate similar to the nonsprayed sce-
nario (Fig. S3). However, the populations of adult psyllids are
reduced from a maximum of 4.5 to 4.3 individuals per flush
(Fig. S3A) and the maximum proportion of symptomatic flush is
reduced from 0.35 to 0.29 (Fig. S3B). Thus, if internal resistance
to infection is high, spraying the psyllids will not have a great
impact on the dynamics of the populations.
The effects of varying internal movement of the bacteria λ, on

both healthy and symptomatic flush are shown in Fig. S4. The
great variability in the flush population caused by small changes
in λ shows how sensitive the model is to that parameter. The
results shown in Fig. S4 confirm the analysis obtained from
sensitivity analysis on sensitivity of R0 to λ.
When initial conditions of flush populations are varied with and

without periodic forcing, different end points are obtained. Fig.
S5 shows how changing the initial conditions of the healthy and
latent flush affect the end point of the dynamics of the model
without and with periodic forcing. In the absence of periodic
forcing, that is, when strength of seasonality υ ¼ 0, varying initial
conditions always results in the 100% symptomatic state. How-
ever, when periodic forcing is present, changing the initial con-
ditions results in either an oscillatory state (all populations
present and oscillating) or a 100% symptomatic state. Thus,
periodic forcing affects the dynamics of the model. However,
periodic forcing for growth of flush was included, because it is
observed in the field that flush appearance and growth are sea-
sonal (10).
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Fig. S1. (A and B) Proportion of asymptomatic flush (A) and symptomatic flush (B) when latent period is varied from 60 d to 180 d. The parameter for internal
movement of the pathogen in the tree is λ ¼ 0:33.
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Fig. S2. Populations of total adult psyllids and nymphs per flush when psyllids are sprayed twice a year with an insecticide that is 0.75 effective, at 360 d after
initial infection. The input rate of healthy flush follows a periodic function with two peaks in 1 y. The parameter for internal movement of the pathogen in the
tree is λ ¼ 0:33.
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Fig. S3. (A and B) Proportion of symptomatic flush (A) and adult psyllids (B) when psyllids are sprayed twice a year with an insecticide that is 0.75 effective,
360 d, 450 d, and 540 d after initial infection. The parameter for internal movement of the pathogen in the tree is λ ¼ 0:25.

Fig. S4. (A and B) Proportion of healthy flush (A) and symptomatic flush (B) when λ has values of 0.22, 0.33, and 0.44. All of the other parameters are as shown
in Table 1.
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Fig. S5. (A–D) Phase plane portraits of healthy (H) and symptomatic (Y) flush (A and C) and of healthy (H) and latent (W) flush (B and D). A and B are obtained
when periodic forcing is zero and C and D are obtained when periodic forcing is present. Initial conditions of the healthy and latent flush were varied. The
values show the different initial conditions of healthy flush and those of latent flush are known by subtracting these values from one. All of the other pa-
rameters are as shown in Table 1.

Table S1. Survivorship and developmental stages of immature stages of D. citri at 28 °C

Variable* Egg First instar
Second
instar Third instar

Fourth
instar Fifth instar Egg to adult

Parameters
obtained

Mean ± SE developmental
periods of immature stages
(in days) of D. citri

3.46 ± 0.09 1.57 ± 0.08 1.43 ± 0.08 1.91 ± 0.09 2.29 ± 0.08 3.40 ± 0.09 14.06 ± 0.21 δn
γ

δa
σ

δp
% survivorship of
immature stages of D. citri

96.2 93.4 96.2 99.4 99.1 98.7 83.9 δn
δe

*These values are extracted from tables 1 and 2, respectively, in ref. 6.

Chiyaka et al. www.pnas.org/cgi/content/short/1208326109 4 of 4

www.pnas.org/cgi/content/short/1208326109

