Supporting Information

West et al. 10.1073/pnas.1208984109

SI Materials and Methods

VRC01-Like Antibodies That Lack Some PVL Characteristic Residues. Although many VRC01-like antibodies that lack one or more of the potent VRC01-like (PVL) characteristic residues are clearly less broad and potent than the main PVL antibodies (Abs), a few have nearly the same activity. For example, VRC-H5, VRC03 heavy chain paired with the VRC01 light chain, and 12A21 have very strong neutralization profiles (1-3). VRC03_{HC}/VRC01_{LC} and VRC-H5 lack Trp100B_{HC}. In the crystal structure of VRC03_{HC}/ VRC03_{LC} complexed with gp120 (3), Asn279_{gp120} is hydrogen bonded to Asp100C_{HC}, rather than Phe100D_{HC}, the residue that occupies the usual location for Trp100B_{HC}. Inspection of the sequence of VRC-H5 in this region suggests that the roles that Trp100B_{HC} normally plays can instead be performed by a large hydrophobic residue (e.g., Phe or Leu) at position 100B paired with a potential hydrogen bond donor or acceptor (e.g., Asn or Asp) at position 100A. Thus, the characteristic residues we have identified are not strictly necessary for potent neutralization. We suggest, however, that the most common path for Abs to develop broad VRC01-like activity is by possessing the PVL characteristic residues.

Polymorphism at 50_{HC} in the Human VH1-2 Gene. The singlenucleotide polymorphism (SNP) that distinguishes VH1-2 alleles with Trp50_{HC} (*02, *03, and *04; nucleotide T) from those with Arg50_{HC} (*01 and *05; nucleotide C) is RefSNP rs1065059 [National Center for Biotechnology Information dbSNP at www.ncbi.nlm.nih.gov/projects/SNP/]. The minor allele frequency (those alleles encoding Arg50_{HC}) is 23.0% (504 of 1,094 genomes or 2,188 chromosomes). Thus, if the minor allele is distributed evenly in the population, the fraction homozygous for the Arg50_{HC} allele is $0.23 \times 0.23 = 0.053 = 5.3\%$.

J Gene Segment Assignment for PVL Abs. Previous analysis of the D and J_H segments used by PVL Abs did not reveal a clear pattern of J gene segment use (1, 3). For example, VRC01, VRC-PG04, and VRC-CH31 Abs were reported to use IGHJ1*01, IGHJ2*01, and IGHJ4*01, respectively (2, 3). However, the relatively high sequence identity between J_H gene segments combined with the extensive hypermutation of PVL Abs makes the J_H gene assignments uncertain.

One problem with definitive assignment of J_H gene segments in Abs is that the number of nucleotides assumed to be removed by

- Scheid JF, et al. (2011) Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. *Science* 333:1633–1637.
- Wu X, et al. (2010) Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329:856–861.
- Wu X, et al.; NISC Comparative Sequencing Program (2011) Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. *Science* 333: 1593–1602.
- Souto-Carneiro MM, Longo NS, Russ DE, Sun HW, Lipsky PE (2004) Characterization of the human Ig heavy chain antigen binding complementarity determining region 3 using a newly developed software algorithm, JOINSOLVER. J Immunol 172:6790–6802.

exonuclease activity during V-D-J joining can affect the segment assigned to be the closest match. JoinSolver (4), which uses a different algorithm from that of ImMunoGeneTics (IMGT)/V-QUEST (5), assigns IGHJ1*01 for VRC01 partially due to the assumption that 7 nt were removed from the J gene segment, whereas the average number of nucleotides removed from the 5' end of the J segment is 6 (6). Retention of the codon for Trp100B_{HC} within the J_H gene segment requires removal of 4 or fewer nt. Examination of a set of human Abs derived from IGHJ2*01 suggests that retention of these nucleotides is not uncommon (e.g., retention occurs in 7 of 10 of the IGHJ2*01containing Abs included in a previous study) (7).

To further explore the J gene segment assignment by IMGT/V-QUEST, we attempted to remove any bias caused by inclusion of the Trp100B_{HC}. Even if the Trp100B_{HC} codon is changed to CCT, a codon not found in any J_H gene segment at that position, VRC-PG04 and 3BNC117 are still predicted by IMGT/V-QUEST to derive from IGHJ2*01, whereas VRC01 and 12A12 are then predicted to derive from IGHJ1*01 and IGHJ4*02, respectively.

Sequence Features That Vary Among PVL Abs, Including Insertions, Deletions, and Variations Within the CDRs. Although PVL Abs share common features, other aspects of these Abs vary considerably. For example, the CDRH1 length varies between 10 in many PVLs; 11 in VRC-PG04, VRC-H12, VRC-H15; and 19 in VRC-CH31 and related clones (1–3). For PVLs VRC01 and NIH45–46, CDRH1 disulfide bonds with CDRH3. Although Trp100B_{HC} near the C-terminal end of CDRH3 is common to PVL Abs, the preceding portion of CDRH3 is highly variable. For some PVL Abs, this region of CDRH3 may contact the inner domain of gp120, as observed for NIH45–46 (8), whereas the shorter VRC01 CDRH3 does not.

In the light chain, the CDRL1 length is quite variable: 7 in the 3BNC clones; 9 in VRC01, NIH45–46, and VRC-PG04; and 11 in 12A12 and the VRC-CH31–related clones (1–3). The shorter versions are deletions from the germ line.

Several insertions also occur in PVL Abs. In VRC03, in framework region 3 (after $Arg71_{HC}$) there is a seven-residue insertion. In 3BNC60 and related potent clonal variants, there is a four-residue insertion (sequence WDFD) in apparently the same location. When these Abs are complexed with gp120, these insertions are predicted to contact the V1V2 base in the bridging sheet (1).

- Brochet X, Lefranc MP, Giudicelli V (2008) IMGT/V-QUEST: The highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. *Nucleic Acids Res* 36(Web Server issue):W503–W508.
- Souto-Carneiro MM, Sims GP, Girschik H, Lee J, Lipsky PE (2005) Developmental changes in the human heavy chain CDR3. J Immunol 175:7425–7436.
- Jackson KJ, Gaeta B, Sewell W, Collins AM (2004) Exonuclease activity and P nucleotide addition in the generation of the expressed immunoglobulin repertoire. *BMC Immunol* 5:19.
- Diskin R, et al. (2011) Increasing the potency and breadth of an HIV antibody by using structure-based rational design. *Science* 334:1289–1293.

Fig. S1. Sequence alignment of CD4 binding site Abs. (A) Sequence alignment of highly active agonistic anti-CD4bs (HAAD) heavy chains, precursor germ-line V gene segments (*Upper*), and the 8ANC195 heavy chain (1). Characteristic PVL residues are highlighted in purple. (B) Sequence alignment of HAAD and 8ANC195 light chains (1). Characteristic PVL residues are highlighted in purple.

Fig. S2. Fraction of residues changed from germ line in a set of 253 VH1-2*02-derived Abs. Characteristic PVL residues are shown in purple. CDRH1 and H2 (a contact-based definition as defined by ref. 1) are shown in red.

1. MacCallum RM, Martin AC, Thornton JM (1996) Antibody-antigen interactions: Contact analysis and binding site topography. J Mol Biol 262:732–745.

Fig. S3. Stereo depiction of the NIH45–46/gp120 complex highlighting the common interactions of PVL Abs (heavy chain in magenta and light chain in cyan) with gp120 (black). The perspective is the same as used in the schematic illustration in Fig. 3.

Full amino acid sequence:

(signal peptide) MGWSCIILFLVATATGVHS

(VH)

QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPNSG GTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCARQRSDFWDFDLWGRGTL VTVSS

(CH1-CH3)

ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS SGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDK SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

Alignment of 3BNC60 germline (GL) with 3BNC60 mature heavy chain:

GL QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPNSGGTNYA 61 QV L QSGA V KPGASV+VSC+ASGY + +++HW RQAPGQGL+W+GWINP +G N 3BNC60 QVHLSQSGAAVTKPGASVRVSCEASGYKISDHFIHWWRQAPGQGLQWVGWINPKTGQPNNP 61

 GL
 QKFQGRVTMTR----DTSISTAYMELSRLRSDDTAVYYCARQRSDFWDFDLWGRGTLVTVSS
 119

 ++FQGRV++TR
 D
 +
 YM+L
 +RSDDTA+Y+CARQRSDFWDFDLWG GT
 VTVSS

 3BDC60
 RQFQGRVSLTRQASWDFDTYSFYMDLKAVRSDDTAIYFCARQRSDFWDFDVWGSGTQVTVSS
 123

Fig. S4. Sequence of the 3BNC60 germ-line heavy chain used in the surface plasmon resonance binding experiment shown in Fig. 4. The underlined sections match VH1-2*02 and IGHJ2*01. The red section (mainly the D gene segment and added nucleotides) matches the mature 3BNC60 heavy chain. Point mutants were made at the residues shown in blue. The germ-line construct is also shown aligned with the mature 3BNC60 heavy chain.

NIH45-46 VRC01 12A12 3BNC17 3BNC60 VRC-CH31 VRC-PG04 IGHV1-2*02 # IGHV1-8*01 IGHV1-8*01 IGHV1-5*01 # IGHV1-58*01 # IGHV1-58*01 IGHV1-5*01 IGHV1-24*01 IGHV1-24*01 IGHV1-68*01 # IGHV1-c*01	QVRLSQSGGQMKKPGESMRLSCRASGYEFLNCPINWIRLAPGRRPEWMGWL QVQLVQSGGQMKKPGESMRISCRASGYEFIDCTLNWIRLAPGKRPEWMGWL SQHLVQSGQVKKPGASVRISCQASGYSFIDYVLHWWRQAPGQCLQWVGWI QVQLQSGAAVTKPGASVRVSCEASGYKISDHFIHWWRQAPGQCLQWVGWI QVQLVQSGAAVTKPGASVRVSCEASGYKISDHFIHWWRQAPGQCLQWVGWI QVQLVQSGAAVTKPGASVRVSCKASGYKFISHFIHWRQAPGQCLEWLAWM QVQLVQSGAEVKKPGASVRVSCKTS-EDIFEFTSYIMHWVRQAPGQCLEWLGWV QVQLVQSGAEVKKPGASVRVSCKASGYTFTSYIMHWVRQAPGQCLEWMGWI QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYIMHWVRQAPGQCLEWMGWI QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYIMHWVRQAPGQCLEWMGWI QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQCLEWMGWI QMQLVQSGAEVKKPGASVKVSCKASGYTFTSYAIMWVRQAPGQLEWMGWI QMQLVQSGAEVKKPGASVKVSCKASGYTFTSYAIMWVRQAPGQLEWMGWI QMQLVQSGAEVKKPGASVKVSCKASGYTFTSSAVQWVRQAPGQLEWMGWI QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYAMHWVRQAPGQLEWMGWI QVQLVQSGAEVKKPGASVKVSCKASGTFTSYAIMWVRQAPGQLEWMGWI QVQLVQSGAEVKKPGASVKVSCKASGTFTSYAIMWVRQAPGQLEWMGGI EVQLVQSGAEVKKPGSSVKVSCKASGTFTSYAIMWVRQAPGQLEWMGGI QVQLVQSGAEVKKPGSVKVSCKASGTFTSYAIMWVRQAPGQLEWMGGI QVQLVQSGAEVKKPGSVKVSCKASGTFTSYAIMWVRQAPGQLEWMGGI QVQLVQSGAEVKKPGSVKVSCKASGTFTSYAIMWVRQAPGQLEWMGGI QVQLVQSGAEVKKPGSVKVSCKASGT	$51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\$
NIH45-46 VRC01 12A12 3BNC117 3BNC60 VRC-CH31 VRC-PG04 IGHV1-2*02 # IGHV1-8*01 IGHV1-8*01 IGHV1-8*01 IGHV1-8*01 # IGHV1-58*01 # IGHV1-69*01 IGHV1-69*01 IGHV1-69*01 IGHV1-68*01 # IGHV1-c*01	KPRGGAVNY-ARKFQGRVTMTR DVYSDTAFLELRSLTSDDTAVYFCTRGKYCTARD KPRGGAVNY-ARRFQGRVTMTR DVYSDTAFLELRSLTVDDTAVYFCTRGKYCTARD KPVYGARNY-ARRFQGRINFDR DVYSDTAFLELRSLTVDDTAVYFCTRGKYCTARD NPKTGQPNN-PROFQGRVSLTR ASWDFDTFSFYMDLKALRSDDTALYFCARQR NPKTGQPNN-PROFQGRVSLTR QASWDFDTYSFYMDLKALRSDDTALYFCARQR NPNTGAVNY-AWYLNGRVTATR DRSMTAFLEVKSLRSDDTAVYYCARAQKRGR NPNSGGTNY-AQKFQGRVTMTR DTSTSTVMELSSLRSDTAVYYCAR	106 103 104 104 113 98 98 98 98 98 98 98 98 98 98 98 98 98
NIH45-46 VRC01 12A12 3BNC117 3BNC60 VRC-CH31 VRC-PG04	YYNWDFEHWGRGAPVTVSS 125 -YNWDFEHWGRGTPVIVSS 121 -TSWHLDPWGQGTLVIVSA 122 SDYWDFDVWGSGTQVTVSS 123 SDFWDFDVWGSGTQVTVSS 123 -SEWAYAHWGQGTPVVVSS 131 -QGWYFDLWGRGTLIVVSS 125 100B	

Fig. S5. Alignment of PVL heavy-chain sequences with IGHV1 gene segments. PVL characteristic residues are highlighted in purple. Germ-line segments indicated with "#" have PVL characteristic residues Trp50_{HC}, Asn58_{HC}, and Arg71_{HC}.

PNAS PNAS

VRC01	Clone	270	280	450	460 470
1C50	Consensus	. EVVIRSSNF	T <mark>DN</mark> AKIII	. ITGLLLT <mark>RDGC</mark>	NSTNNTETFRPG
	HxBc2	EVVIRSVNF	T <mark>DN</mark> AKTII	ITGLLLTRDGC	NSNNESEIFRPG
0.017	1_95C5	DIE	. <mark>K.</mark> T.N	••••••••••••••••••••••••••••••••••••••	ENVT
0.020	45_01dG5	•1•••E•1	K	· · · · · · · · · · · · · · · · · · ·	FDO T
0.049	45 01dH5	D	к <mark></mark>	· · · · · · · · · · · · · · · · · · ·	G
0.089	N26_07TC40	ID	S <mark>N.</mark> T	<mark></mark>	NEDNGGP
0.143	N90_08B11		• <mark>• •</mark> • • • • •	· · · · · · · · · · · · · · · · · · ·	IN
0.328	N90_08B16	• • • • • • • • • •	····	· · · · · · · · · · · · · · · · · · ·	KN Z
0.591	N26 07A38	IA.L	мт.	I	D.KDN
0.644	N90_08B6		. <mark></mark>		A
0.661	18_99A27	.IE.I	. <mark>N.</mark> T	• • • • • • • • • <mark>• • • •</mark>	NETNKTI
0.703	N90_08B2	·····		· · · · · · · · · · · · · · · · · · ·	HCN FUD
1.000	N90 08A15				
1.100	18_99TB13	.IE.I	. <mark>N.</mark> T		
1.200	18_99B51	.IE.I	S <mark>N.</mark> T	• • • • • • • • • <mark>• • • •</mark>	
1.300	N90_08A16		· <mark>· ·</mark> · · · · ·	· · · · · · · · · · · · · · · · · · ·	A
1.600	N26 07A21	IA	s т		NNNDRTNNGSDSNSTOI
1.600	18_99B46	.IIE.I	. <mark>N .</mark>	<mark></mark>	
1.700	N90_08B17		. <mark></mark>	• • • • • • • • • <mark>• • • •</mark>	A
1.900	18_99B15	.IE.L	. <mark>S.</mark> V.T	· · · · · · · · · · · · · · · · · · ·	HGN.ETDE
2.500	N90 08A13		5		
2.900	N90_08B4		. <mark></mark>	<mark></mark>	A
3.100	B7B5_88A3	A	S <mark>N.</mark> V.T	• • • • • • • • • • • • • • • • • • •	EQN
3.500	B7B5_88A6	A	SN.V.T	· · · · · · · · · · · · · · · · · · ·	UCN EED
3.600	45_01dH1	.IIE.L	TL.		NI.TNETT
4.800	18_99B1	.IE.I	.NT		
9.600	B7B5_88TB2	E	SE.V.N		YKNESN.SNESKP
11.400	B7B5_88TB3	E	SE.V.N	·····	YKNESN.SNESKP
14.600	1_01A20 1_95TC14	DIE	.E.T.T	I	
17.000	B7B5_88A1	A	s <mark></mark> v.т		GN.EP.N
17.500	45_06A3	.IMPK.I	s <mark>e.</mark> dd	••••••••••••••••••••••••••••••••••••••	Q
19.000	N26_07B18	.IIEDL	.NT	· · · · · · · · · · · · · · · · · · ·	NSSTNNGSDSNSTKI
25.900	B7B5 88A10		S. V.T.		
31.200	45_06C7	.IMPK.I	S <mark>E.</mark> DD		Q
50.000	45_01A8	.IIE.L	. <mark>K.</mark> Q.T	• • • • • • • • • <mark>• • • •</mark>	NI.TNE.T
50.000	45_01A10	.IIE.L	.E.H.T	· · · · · · · · · · · · · · · · · · ·	NI TNE
50.000	45_01A14 45_01A21	.IIE.L	.K.O.T		
50.000	45_01B14	.IIE.L	.R.Q.T		E
50.000	45_01E8	.IIE.L	. <mark>Е.</mark> Н.Т	<mark></mark>	NI.TNE.T
50.000	45_01E11	.IIE.L	. <mark>Е.</mark> Н.Т	· · · · · · · · · · · · · · · · · · ·	E
50.000	45_01E17 45_01F4	.IIE.L	. Б. Н. Т	••••••	NT. TNE. T
50.000	45 06A1	.IMPK.L	S <mark>E.</mark> DD	I.	Q
50.000	45_06A2	.IIE.L	. <mark>А.</mark> Н.Т	<mark></mark>	Q
50.000	45_06A4	.IIE.L	. <mark>Е.</mark> Н.Т	I. <mark></mark>	Q
50.000	45_06A8 45_06A10	.IIE.L	SE DD	•••••••••••••••••••••••••••••••••••••••	NIT. E.IT
50.000	45_06C8	.IIE.L	. <mark>A.</mark> H.T		
50.000	45_09A5	.IIE.L	. <mark>Е.</mark> Н.Т	••••••••••••••••••••••••••••••••••••••	Q
50.000	45_09A6	IR.L	S <mark>E.</mark> .D	· · · · · · · · · · · · · · · · · · ·	Q
50.000	45_09A10 45_09B3	. IM PK. I	SE.D		
50.000	45_09C5	IE.L	. <mark>A.</mark> H.T.	<mark> I</mark>	Q
50.000	45_09C8	.IMPK.I	s <mark>e.</mark> dd	••••••••••••••••••••••••••••••••••••••	Q
50.000	45_09C20	.IIE.L	.E.H.T	· · · · · · · · · · · · · · · · · · ·	Q
50.000	45_09C28 45_09TA1	. T R.L	SE.D		
50.000	1_95A21	DIE	. <mark>к.</mark> т		ENVTI
50.000	1_95C1	DIE	. <mark>H.</mark> T.T	· · · · · · · · · · · · · · · · · · ·	
50.000	1_95C10 1_95TC1	DIE	A.T.T.	· · · · · · · · · · · · · · · · · · ·	FDO K T
50.000	1 95TC6	DIE.	. <mark>к.</mark> т.т.	v	
50.000	1_95TC13	DIE	. <mark>н.</mark> т	<mark></mark>	EDQ.K
50.000	1_01A10	DI.LE	.K.SNN	I <mark>.</mark>	NT.SQS.T
50.000	1_01A19	DI.LE	.K.SNN	·····	NT SOS M
50.000	1_01TB5	DI.LE	.E.S.T	I	NT.SOS.T
50.000	1_06B1	DI.LE	. <mark>K.</mark> SNN	I <mark></mark>	NTQS.T
50.000	1_06B3	DI.LE	.E.SNN	· · · · I · · · · · · ·	NTQS.A
50.000	1_06B9	DI.L.E.	K.SNN	····1··	NT OS T
50.000	1_06C3	DI.LE	.E.SNN	I	NTQS.T
50.000	1_06C5	DI.LE	.E.SNN	I <mark></mark>	NT.SQS.T
50.000	1_06D29	DI.LE	.K.SNN	I <mark>.</mark>	NTQS.T
50.000	N26_07A10	.IIEDL	NU.H.N	····I····	D KDN
50.000	N26_07A14 N26_07A16	.IEDL	NO.H.N.	I	N
50.000	N26_07A22	.IEDL	N <mark>Q.</mark> H.N		NSSTNNGSDSNSTKI
50.000	N26_07B9	.IIEDL	.R.E.T	· · · · · · · · · · · · · · · · · · ·	NETKHEN
50.000	N26_07B10 N26_07B22	.IIEDL	K.E.T.	· · · I · · · · · · · ·	NNNSSTNNGSDS, NSTK T
50.000	N26_07B36	IA.T	м т.		NETKHEN.
50.000	N26_07B41	.IEDL	N <mark>Q.</mark> H.N	I <mark></mark>	D.KDN
50.000	B7B5_88A4	E	S <mark>E.</mark> T	· · · · · · · · · · · · · · · · · · ·	QNSSN
50.000	D/BD_88A5 B7B5_8847	E	SESV.T.	•••••••••••••••••••••••••••••••••••••••	D STN
50.000	B7B5 88TB1	E	S <mark>E.</mark> V.T		QNSSN
50.000	B7B5_88TB6	E	s <mark>e.</mark> v.t		ENSSD
50.000	18_99A38	.IE.L	.NSV.T	· · · · · · · · · · · · · · · · ·	
50.000	18 99B39	.IE.T			NGN.ETDE
50.000	18_99B48	.IE.I	s <mark>n.</mark> т	I	
50.000	18_99TA3	.IE	. <mark>s.</mark> v.t	<mark></mark> .	

Fig. S6. Sequences of envelopes from donor 45 and four other individuals as reported in ref. 1. Sequences for residues 269–285 and 449–471 are shown; strains are listed in order of their VRC01 IC₅₀. Residues 279, 280, and 456–459 are highlighted.

1. Wu X, et al. (2012) Selection pressure on HIV-1 envelope by broadly neutralizing antibodies to the conserved CD4-binding site. J Virol 86:5844–5856.

PNAS PNAS

Class	Members				
PVL Abs, neutralizing >75% of strains	VRC01, VRC02 NIH45-46 3BNC60, 3BNC117, 3BNC62, 3BNC95, 3BNC176 12A12 VRC-PG04 VRC-CH31, VRC-CH30, VRC-CH32, VRC-CH33, VRC-CH34 VRC03HC/VRC01LC gVRC-H5(d74)/VRC-PG04LC gVRC-H12(d74)/VRC-PG04LC*				
Almost PVL Abs, related to known PVL Abs, neutralizing 10–75% of strains	VRC03 VRC01HC/VRC03LC 3BNC55, 3BNC91, 3BNC104, 3BNC89 12A21 VRC-PG04b				
Defective PVL Abs, related to known PVL Abs, neutralizing <10% of strains	3BNC42, 3BNC53, 3BNC66, 3BNC72, 3BNC102 3BNC108, 3BNC142, 3BNC153, 3BNC156, 3BNC158 Germ-line parents of PVL Abs				
Non-PVL HAADs	8ANC131 8ANC134 182530 1NC9 And related clones				
Other CD4-binding site Abs	HJ16 [†] b12 b13 F105 8ANC195				

Table S1. Classification of CD4-binding site Abs

Antibodies are described in refs. 1-4.

SANG SANG

*Plus seven additional HC clones (paired with PG04 LC) from deep sequencing of donor 74.

⁺HJ16 sequences (patent WO2011092593) do not appear to be particularly similar to PVLs. CDRL3 is 9 aa long,

the heavy chain does not derive from VH1-2, and the Ab is missing several of the signature PVL residues.

1. Corti D, et al. (2010) Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. PLoS ONE 5:e8805.

Scheid JF, et al. (2010) Analysis of memory is centresponses and solution of novem movem medicalizing breader medicalizing

Гable	S2.	Cross-species	analysis	for	the	presence	of	PVL
charao	terist	tic residues in l	heavy-cha	ain V	′ gen	e segment	ts	

Species	No. V _H s examined	No. w/W50 and R71	No. w/W50, N58, and R71
Human	70	7*	4†
Mouse	269	0	0
Rat	204	1 [‡]	0
Rabbit	49	2 [§]	0
Sheep	10	0	0
Pig	5	0	0
Rhesus macaque	89	1¶	0

 $V_{\rm H}$ gene segment sequences from the IMGT database were examined, except for the macaque sequences, which were obtained from the Rhesus macaque Ig gene database (http://www.kcl.ac.uk/immunobiology/Mac_ig/). For the human genes, all V_H alleles in IMGT were also checked. *VH1-2*02, VH1-45*01, VH1-58*01, VH1-68*01, VH1-c*01, VH1-3*01, and

VH1-8*01.

SANG SANG

[†]VH1-2*02, VH1-45*01, VH1-58*01, and VH1-68*01 (pseudogene).

[‡]IGHV12S1*01.

[§]IGHV1S55*01 and IGHV1S56*01.

¶IGHV1I.

Table S3. HIV-1 strains with sequence variations at critical PVL contact residues: Analysis based on NIH45–46 data as described in ref. 1

Critical contact residues on gp120				gp120	IC ₅₀ , μg/mL			
279	280	456	458	459	VRC01	NIH45-46	VRC-PG04	3BNC117
Asx	Asn	Arg	Gly	Gly				
Lys		Ser		Asp	>50	>50	>50	>15
		Ser	Asn		ND	>50	ND	>50
	Ser	Ser	Tyr		>50	>50	>50	>50
	Ser	Ser	Tyr		>50	>50	ND	>50
		Trp			>50	>50	>50	>50
				Pro	>50	>50	>50	>15
Ala				Glu	>50	>50	>50	>15
				–/lle	ND	>50	ND	>50
				Val	>50	>50	>50	>50
Lys				Asp	>50	>30	>50	>15
	Critic 279 Asx Lys Ala	Critical conta 279 280 Asx Asn Lys Ser Ser Ala Lys	Critical contact resid 279 280 456 Asx Asn Arg Lys Ser Ser Ser Ser Ser Trp Ala	Critical contact residues on279280456458AsxAsnArgGlyLysSer SerSer SerAsn Tyr TrpAlaLys	Critical contact residues on gp120279280456458459AsxAsnArgGlyGlyLysSerSerAsnSerSerTyrAspSerSerTyrProAla-/IleValLysSerAsp	Critical contact residues on gp120279280456458459VRC01AsxAsnArgGlyGlySerLysSerSerAsnNDSerSerTyr>50SerSerTyr>50SerSerTyr>50AlaGluSon-/lleLysVRC01VRC01	Critical contact residues on gp120 IC ₅₀ , 279 280 456 458 459 VRC01 NIH45–46 Asx Asn Arg Gly Gly Gly VRC01 NIH45–46 Lys Ser Asg Gly Gly Set Set	$ \begin{array}{c c c c c c c c } \hline Critical contact residues on gp120 & IC_{50r} \ \mu g/mL \\ \hline \hline 279 & 280 & 456 & 458 & 459 & VRC01 & NIH45-46 & VRC-PG04 \\ \hline Asx & Asn & Arg & Gly & Gly & \\ \hline Asx & Asn & Arg & Gly & Gly & \\ \hline Lys & & Ser & Asn & & ND & >50 & >50 \\ Ser & Ser & Tyr & & >50 & >50 & ND \\ \hline Ser & Ser & Tyr & & >50 & >50 & ND \\ \hline Ser & Ser & Tyr & & >50 & >50 & ND \\ \hline Ser & Ser & Tyr & & >50 & >50 & ND \\ \hline Ala & & & & & & & & \\ \hline Ha & & & & & & & & & & \\ \hline Lys & & & & & & & & & & & & \\ \hline Lys & & & & & & & & & & & & & & \\ \hline Lys & & & & & & & & & & & & & & & & \\ \hline Lys & & & & & & & & & & & & & & & & & & &$

Neutralization data are from refs. 2–4. Position 279_{gp120} was previously shown to be important in resistance to VRC01; specifically the effects of mutation D279A_{gp120} in JRCSF, T278_50, BL01, and TV1_29 viral strains were evaluated (5).

1. Diskin R, et al. (2011) Increasing the potency and breadth of an HIV antibody by using structure-based rational design. Science 334:1289–1293.

2. Scheid JF, et al. (2011) Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 333:1633–1637.

3. Wu X, et al. (2010) Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329:856-861.

4. Wu X, et al. (2009) Mechanism of human immunodeficiency virus type 1 resistance to monoclonal antibody B12 that effectively targets the site of CD4 attachment. J Virol 83: 10892–10907.

5. Li Y, et al. (2011) Mechanism of neutralization by the broadly neutralizing HIV-1 monoclonal antibody VRC01. J Virol 85:8954-8967.