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1 SLRP formulas

We aim to estimate the Maximum A Posteriori configuration in the Bayesian

network in Figure 1. The network has observed variables ga
j ∈ {Hom 0, Het,

Hom 1, Missing} for the genotypes and hidden variables ha
j ∈ {00, 01, 10, 11}

for the diplotypes and pa,b
j for IBD relationships. The IBD indicator variables

pa,b
j can take values (1) IBD on first haplotypes, (2) IBD on first and second

haplotype of a and b respectively, (3) IBD on second and first haplotype,

(4) IBD on second haplotypes or (5) not IBD.

Figure 1: Bayesian network model for SLRP. Red variables are hidden, blue

ones are observed.

The Bayesian network defines a probability distribution

P(h, p|g) ∝ P(g|h, p)P(h, p) = P(g|h)P(p|h)P(h) (1)

=
n−1∏
a=0

m−1∏
j=0

P(ga
j |ha

j )P(ha
j )

a−1∏

b=0

P(pa,b
j |pa,b

j−1, h
a
j , h

b
j) (2)

Equation (2) is the factorization defined by the Bayesian network in Fig-

ure 1. The only factor that is non trivial to compute is the last one, for the

probability of an IBD state given the IBD state on previous marker and the

2



diplotypes on current marker. This can be computed by observing that

P(pa,b
j |pa,b

j−1, h
a
j , h

b
j) =

P(pa,b
j , ha

j , h
b
j|pa,b

j−1)

P(ha
j , h

b
j|pa,b

j−1)
(3)

=
P(pa,b

j |pa,b
j−1)P(ha

j , h
b
j|pa,b

j , pa,b
j−1)

P(ha
j , h

b
j|pa,b

j−1)
(4)

=
P(pa,b

j |pa,b
j−1)P(ha

j , h
b
j|pa,b

j )
∑

q P(P a,b
j = q, ha

j , h
b
j|pa,b

j−1)
(5)

=
P(pa,b

j |pa,b
j−1)P(ha

j , h
b
j|pa,b

j )
∑

q P(P a,b
j = q|pa,b

j−1)P(ha
j , h

b
j|P a,b

j = q)
. (6)

Equation (3) follows from the formula for conditional probability and

Equation (4) from the chain rule. Equation (5) uses the Markov property

of (pj) in the numerator and marginalisation in the denominator. Finally

Equation (6) follows from application of the chain rule and Markov property

in a similar manner as in equations (4) and (5).

The prior probability of diplotype P(hi
j) is mostly irrelevant when the

genotypes are observed since it is strongly dominated by the likelihood of the

observed genotype. In the implementation the diplotype prior is essentially

uniform, but with a small random noise added to break symmetries and to

help convergence of the message passing algorithm. Since the noise level is

low, this does not have a strong effect on the posterior but does provide an

easy way to break symmetries in the model.

The “transition” probabilities P(pa,b
j |pa,b

j−1) are given by matrix exp(dQ)

where d is the genetic distance between markers j − 1 and j and Q is the

rate matrix with rate g of gaining an IBD relationship and rate l of losing

IBD. This results in a rate matrix

Q =




−l 0 0 0 l

0 −l 0 0 l

0 0 −l 0 l

0 0 0 −l l

g g g g −4g




(7)

The expected length of a non-IBD IBS segment (the expected waiting time
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in the 5th state) is (4g)−1 and the expected length of an IBD segment is l−1.

The probability P(IBD at site j|no IBD at state j−1) is additionally bound

from above with the kinship coefficient given as an input parameter (default

0.04).

Conditional joint probability of diplotypes P(ha
j , h

b
j|p) is the product of

the allele frequencies of the freely variable alleles (three frequencies in IBD

states, four in the non-IBD state) when the IBD state is consistent with the

diplotypes and zero when the IBD state is inconsitent with the diplotypes.

The allele frequencies are estimated from the data using the Beta–Binomial

model with prior frequency distribution Beta(1, 1) which is the equivalent of

one heterozygous “pseudoindividual”.

2 Min–Sum algorithm for MAP estimation

The called phases and IBD relations are based on the maximum posterior

probability (MAP) setting of the multidimensional distribution P(x), where

x = (x1, . . . , xL) = (h, p) are the diplotype and IBD state variables.

We find approximate MAP settings of the variables in Figure 1 by the

Min–Sum algorithm [Kschischang et al., 2001] which is a variant of a gen-

eral class of message passing algorithms similar to e.g. Cluster Variation

Method[Kikuchi, 1951], LDPC[Gallager, 1962] and Turbo Code[Berrou et al., 1993]

decoding, Forward-Backward, Viterbi[Durbin et al., 1998] and Loopy Belief

Propagation[Pearl, 1988] algorithms. Instead of maximizing the product in

the right hand side of Equation (2) the algorithm minimizes the negative

logarithm counterpart of it

n−1∑
a=0

m−1∑
j=0

(
− log P(ga

j |ha
j )− log P(ha

j )−
a−1∑

b=0

log P(pa,b
j |pa,b

j−1, h
a
j , h

b
j)

)
(8)

The algorithm proceeds by iteratively updating “messages” sent along the

edges between the variables (nodes) of the network in Figure 1. The algo-

rithm is initialized by setting all messages to zero.

To describe the Min–Sum algorithm for Bayesian networks, we follow

the presentation in [Kschischang et al., 2001] with notation transferred from
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the (
∑

,
∏

) semiring to (min,
∑

). In Bayesian networks the messages are

always a function of the parent variable. Let πY (x) denote a message sent

from parent X to child Y (down an edge) and λY (x) a message sent from

child Y to parent X (up an edge). Intuitively the messages code for “beliefs”

of the source variable about the values of the target variable. We denote

the parents of a variable X by A(X), its children by D(X) and its value

by x. For every variable X we have message λX(a) to its parent variable

A ∈ A(X), with other parents being B, C, etc.

λX(a) = min
x,b,c,...



− log P (X = x|A(X) = (a, b, . . .))

+
∑

D∈D(X)

λD(x) + πX(b) + πX(c) + . . .



 (9)

and message πD(x) to its child variable D ∈ D(X)

πD(x) = min
a,b,c,...



− log P (X = x|A(X) = (a, b, . . .)) +

∑

A∈A(X)

πX(a)





+
∑

D∈D(X)\{D}
λD(x). (10)

The messages are further shifted so that the minimum value of each message

vector equals zero, i.e. minx πD(x) = minx λA(x) = 0 for all D and A.

The final “beliefs” are obtained by calculating

BEL(x) = min
a,b,c,...



− log P (X = x|A(X) = (a, b, . . .)) +

∑

A∈A(X)

πX(a)





+
∑

C∈D(X)

λC(x). (11)

whose min approximates the−log maximum posterior probability and arg min

is the most probable value for x. For proofs and motivation for the formulas,

see [Kschischang et al., 2001].

One potential issue with the Min-Sum algorithm is ensuring convergence.

To improve it we do not use the messages calculated in Equations (9)-(10)
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as is, but instead dampen the update by setting the new message to be a

weighted average of the previous and the newly calculated message. The

weight, or damping factor, is given by the user (default 0.75) with higher

values resulting in slower but more robust convergence [Murphy et al., 1999].

With these parameters, and the default expected non-IBD segment length

of 1 cM and expected IBD segment length of 10 cM, we have observed the

message updates to converge within our default of 30 iterations.

2.1 Message equations for SLRP

Derived from equations (9) and (10) the Min–Sum message update formulas

for the Bayesian network in Figure 1 are

λGa
j
(ha

j ) ←− log P
(
Ga

j = ga
j |Ha

j = ha
j

)
(12)

πP a,b
j

(ha
j ) ←− log P(Ha

j = ha
j ) + λGa

j
(ha

j ) +
∑

x6=b

λP a,x
j

(ha
j ) (13)

πP a,b
j+1

(pa,b
j ) ← min

p,h,h′

{
− log P(P a,b

j = pa,b
j |P a,b

j−1 = p,Ha
j = h,Hb

j = h′)

+πP a,b
j

(Ha
j = h) + πP a,b

j
(Hb

j = h′) + πP a,b
j

(P a,b
j−1 = p)

}
(14)

λP a,b
j

(pa,b
j−1) ← min

p,h,h′

{
− log P(P a,b

j = p|P a,b
j−1 = pa,b

j−1, H
a
j = h,Hb

j = h′)

+πP a,b
j

(Ha
j = h) + πP a,b

j
(Hb

j = h′) + λP a,b
j+1

(P a,b
j = p)

}
(15)

λP a,b
j

(ha
j ) ←min

p,p′,h

{
− log P(P a,b

j = p|P a,b
j−1 = p′, Ha

j = ha
j , H

b
j = h)

+πP a,b
j

(P a,b
j−1 = p′) + πP a,b

j
(Hb

j = h) + λP a,b
j+1

(P a,b
j = p)

}
(16)

The messages in Equations (12) – (16) are updated a predefined (default

30) number of times. New message values do not completely replace the old

ones but the updates are “dampened”by calculating a weighted average of

new and old messages, with a predefined damping factor of 0.75 contribution

of old messages.[Murphy et al., 1999]
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The MAP phase for a diplotype Ha
j is found as

arg min

{
− log P(Ha

j = ha
j ) + λGa

j
(ha

j ) +
∑

x

λP a,x
j

(ha
j )

}

which approximately corresponds to the max–marginal of the diplotype, i.e.

most probable phase when other variables are set to their maximal value.

A diplotype phase is not called if the two most probable phases are within

a defined MAP probability ratio of each other (default 2). The implementa-

tion stores only the current diplotype beliefs and the messages coming from

the IBD variables to the diplotype variables.

The Min–Sum algorithm is executed only over markers and pairs of indi-

viduals that are found IBD during preprocessing.

2.2 Computational performance

To enable phasing of large datasets including tens of thousands of individuals,

the implementation includes features to distribute the workload over multiple

processors on shared and non-shared memory architectures using threads or

MPI. Furthermore there are options to decrease the memory requirement by

using single, instead of double, precision floating point numbers and by doing

the message passing in a wave over the chromosome. Also, there is an option

to to prune the set of plausible IBD segments such that each site is covered

at least by given number of most likely plausible IBD segments. Briefly, in

the pruning mode, we search, for each individual, all plausible IBD segments

and retain the most likely such that each site is covered by the given number

of segments, if possible. In essence, this method provides a soft lower bound

for depth of coverage of plausible IBD segments. In practice, most sites seem

to be covered by 2-3 times the limit coverage, when given sufficiently large

number of individuals to phase. Neither the wave or the pruning modes were

used in the experiments presented in the main paper.

In the wave mode, illustrated in Figure 2, the message passing is executed

only on the plausible IBD segments overlapping a fixed width segment of the

chromosome (the wave) up to the leading edge but including parts prior to
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the trailing edge of the wave. This way the software needs to store only

a limited number of messages without causing severe discontinuities on the

segment boundaries.

Figure 2: Wave mode for message passing.

Plausible IBD segments a−e for one pair of individuals. The wave is between

the trailing and the leading edge. The messages are passed on the dashed

magenta segments b, c and d. The dotted segment a has already been pro-

cessed. Solid green segments e and part of d are not yet being processed.

3 Other supplemental methods

For ORCADES, pedigree, surname and genetic analyses [McQuillan et al., 2008,

Wilson et al., 2001] indicate that a very high proportion of their ancestry

dates back centuries in Orkney; the descendants of late 20th century immi-

grants are excluded from the study. Genetic diversity in this population is

decreased compared to Mainland Scotland, consistent with the historically

high levels of endogamy. Data for participants aged 18-100 years, from a

subgroup of ten islands, were used for this analysis. All participants gave in-

formed consent and the study was approved by Research Ethics Committees

in Orkney and Aberdeen.

A total of 151 individuals out of the 599 in the ORCADES dataset have

at least one full or half sibling in the dataset.

Mach was run according to instructions in the README file with 200

states and 50 rounds.

Beagle phasing used version 3.0.2 with 20 iterations instead of the default

10 to improve the phasing accuracy. GERMLINE was run as instructed in
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the user manual on Beagle phased haplotypes with the length of the called

IBD segments limited to 5cM. The missing genotypes were imputed by Beagle

during phasing.

Beagle IBD detection was done with version 3.2 with the default num-

ber of iterations for the background haplotype distribution estimation. The

parameters ibd2nonibd and nonibd2ibd were estimated from the simulation

outcome and the true values were given to the program (ibd2nonibd=0.187015

and nonibd2ibd=0.00926624). The genetic map given to Beagle was iden-

tical to the one used to generate the data.

Beagle fastIBD was run as ten times with distinct random seeds 1-10. The

output fibd files were processed with process fibd.py by Sharon Browning (

http://faculty.washington.edu/sguy/beagle/ibd and hbd/ibd and hbd.html ).

The results for different thresholds (used in post processing) are given in Ta-

ble 3. The results reported in the main text are for threshold 10−6 which was

recomended in the fastIBD paper.
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Threshold Type FDR(median) Sensitivity(median)

1.00E-06 15% 93%

1.00E-06 1% Missing 15% 93%

1.00E-06 5% Missing 17% 93%

1.00E-06 0.2% Error 15% 92%

1.00E-06 2% Error 19% 86%

1.00E-10 8% 87%

1.00E-10 1% Missing 8% 87%

1.00E-10 5% Missing 9% 87%

1.00E-10 0.2% Error 8% 86%

1.00E-10 2% Error 7% 72%

1.00E-20 5% 72%

1.00E-20 1% Missing 5% 72%

1.00E-20 5% Missing 5% 71%

1.00E-20 0.2% Error 5% 69%

1.00E-20 2% Error 3% 35%

1.00E-30 4% 59%

1.00E-30 1% Missing 4% 59%

1.00E-30 5% Missing 4% 57%

1.00E-30 0.2% Error 4% 55%

1.00E-30 2% Error 2% 14%

1.00E-40 4% 48%

1.00E-40 1% Missing 4% 47%

1.00E-40 5% Missing 4% 45%

1.00E-40 0.2% Error 3% 43%

1.00E-40 2% Error 2% 6%

Table 1: False discovery rates and sensitivities for different thresholds with

fastIBD method
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