Concordance of experimentally mapped or predicted Z-DNA sites with positions of selected alternating purine-pyrimidine tracts

Andrzej K.Konopka, Johanes Reiter^{1*}, Manfred Jung², David A.Zarling⁺ and Thomas M.Jovin

Abteilung Molekulare Biologie, Max-Planck-Institut für biophysikalische Chemie, D-3400 Göttingen, FRG, ¹Institut für theoretische Chemie und Strahlchemie der Universität, A-1090 Wien, Austria, and ²Abteilung Biochemische Kinetik, Max-Planck-Institut für biophysikalische Chemie, D-3400 Göttingen, FRG

Received 7 December 1984; Revised and Accepted 4 February 1985

ABSTRACT

The recent electronmicroscopic and biochemical mapping of Z-DNA sites in \$\phi X174, SV40, pBR322 and PM2 DNAs has been used to determine two sets of criteria for identification of potential Z-DNA sequences in natural DNA genomes. The prediction of potential Z-DNA tracts and corresponding statistical analysis of their occurrence have been made on a sample of 14 DNA genomes.

Alternating purine and pyrimidine tracts longer than 5 base pairs in length and their clusters (quasi alternating fragments) in the 14 genomes studied are under-represented compared to the expectation from corresponding random sequences. The fragments [d(G·C)] n and [d(C·G)] (n)3) in general do not occur in circular DNA genomes and are under-represented in the linear DNAs of phages λ and T7, whereas in linear genomes of adenoviruses they are strongly over-represented. With minor exceptions, potential Z-DNA sites are also under-represented compared to random sequences.

In the 14 genomes studied, predicted Z-DNA tracts occur in non-coding as well as in protein coding regions. The predicted Z-DNA sites in ϕ X174, SV40, pBR322 and PM2 correspond well with those mapped experimentally. A complete listing together with a compact graphical representation of alternating purine-pyrimidine fragments and their Z-forming potential are presented.

INTRODUCTION

The alternation of purines and pyrimidines in DNA sequences constitutes one of the most important factors potentiating the transition from the right-handed B to the left-handed Z helical conformation *in vitro* (1-4).

Topological stress in the form of negative supercoiling promotes the B to Z transition of protein-free covalently closed circular DNA (ccc DNA) (5-12). Studies of anti-Z-DNA-IgG binding to chromosomal DNA (11-16) have established the existence of potential Z-DNA tracts *in vivo*. It is probable that the combined effects of nucleotide sequence, topological stress, and interactions with ions, proteins and polyamines (5, 11, 12, 17) determine the physiological distribution and functions of left-handed DNA (for a review see 4).

The biological significance of Z-DNA is unknown. It has been suggested that some potential Z-DNA loci in the SV40 genome can play a role in the

control of transcription or in genetic recombination (5, 11, 12 18). Other studies with cytological material have emphasized potential structural roles for left-handed DNA in chromosomal organization (4, 11, 12, 15, 16).

Different alternating purine-pyrimidine sequences in linear synthetic polymers exhibit a hierarchy in the potential for undergoing the B-Z transition (4, 20). The minimum length of a linear alternating oligonucleotide required for the establishment of the Z form in solution has been evaluated as 6 base pairs (20). Although the precise sequence-dependence of the transition equilibrium remains to be experimentally established, it is clear that the G C basepair is much more effective than the A T basepair in stabilizing the Z conformation (4, 20). Thus, we can identify two primary factors which determine the Z-forming potential of a natural sequence: length and base composition. In addition, studies of anti-Z-DNA-Ig binding sites in pBR322 (8, 19) indicate that DNA fragments including bases out of alternation may also assume the left-handed conformation at high superhelix density. It follows that a favorable (clustered) distribution of potential Z-forming tracts may lead to a cooperative and collective behaviour.

The mapping of anti-Z-DNA immunoglobulin binding sites by immunoelectron microscopy provides several examples of naturally ocurring Z-DNA tracts in ϕ X174 (23), PM2 (24-26) and SV40 (18, 27) DNAs. Corresponding data also exist for the cloning vector pBR322 (8). On the basis of the available data, the minimal length of an alternating purine-pyrimidine fragment required for stabilization of the Z conformation in natural sequences is on the order of 8 base-pairs, although shorter tracts composed exclusively of G and C may also be effective (23). The results of these experimental studies have been used to define empirical criteria for identifying potential Z-DNA tracts on the basis of nucleotide sequence (in the next section two working definitions of sequences with the potential for adopting the left-handed conformation are presented). The algorithms based on these definitions have been applied to several viral and episomal DNA genomes. The results of the search together with a corresponding statistical analysis are presented and discussed in this paper.

BASIC PRINCIPLES

<u>Terminology</u>. DNA sequences can be analysed for simple dinucleotide repeating units. In particular, we will consider alternating repetitions of a purine (R) and a pyrimidine (Y). A sequence of purines and pyrimidines in alternation is referred to as an *alternating fragment* (AF). Formally we can consider two kinds of AFs: those which are alternations of only two bases and those which consist of more than two bases. An AF of the first kind will be referred to as a *uniform alternating fragment* (uAF). Examples of uAFs are the sequences: GTGTGTGTGTG, ACACACAC, CGCGCGCGCG, ATATATATAT. The other kind of AF will be referred to as a *mixed alternating fragment* (mAF). Examples of mAFs are the sequences: GCGTACGT, GCACATGTA, ACACGTACATG, ACGTACGTACGT.

In a long DNA tract, AFs can be separated or clustered. The obvious criterion for establishing whether a block of AFs constitute a cluster is based on the distances between the AFs. From the viewpoint of Z-forming potential, we regard one base-pair as a reasonable maximum distance between AFs in a cluster. A cluster of AFs will be referred as a *clustered* alternating fragment (cAF). An example is the sequence: ATACGT TGTGTGT T CGATCGTG. (Here and elsewhere a space will be used to denote the separation between AFs constituting a cAF.) This cluster consists of three AFs. The first two are contiguous (distance = 0). The second and third AFs are separated by one base (distance = 1). Thus, we consider a cAF as equivalent to an AF with a few bases out of perfect alternation. The length of a cAF will be taken as the difference between the positions of the first base of the first AF and of the last base of the last AF in the cluster. Under the assumption that the Z-forming potential can be a property of AFs as well as cAFs, we define a *quasi-alternating fragment* (qAF) as a DNA sequence which is either an AF or a cAF.

<u>Potential Z-DNA</u>. Taking into account the facts briefly described in the Introduction, we should not expect that every qAF has the potential for adopting the Z conformation. In light of available experimental data, the two following definitions of a potential Z-DNA fragment seem to be appropriate. The first definition evaluates the criteria of length and composition for a qAF as a whole, whereas the second considers the length of the longest subfragment of a given qAF.

DEFINITION 1: A potential Z-DNA fragment is a qAF fulfilling the following conditions:

- i. The total length (base-pair units) is > a.
- ii. The fraction of the sequence consisting of A and T in alternating repetition is < b.</p>

iii. If the fragment is a cAF, the constituent AFs have a length > c. DEFINITION 2: A potential Z-DNA fragment is a qAF fulfilling conditions (i) and (iii) from the previous definition and containing a subfragment which fulfills conditions (i) and (ii).

For the reasons given previously, we have applied the search algorithm with

the parameters a = 7, b = 0.3, and c = 4. These values lead to the identification of the binding sites for anti-Z DNA immunoglobulins reported to date (with minor exceptions; see Discussion). Let us consider as examples the following gAFs:

Sequence 1: ATATCG TGTGTG GCATATATAT Sequence 2: GTATATAT TATATAT T CACAC Sequence 3: CGCGCG T CATGTG ACACACAT Sequence 4: CACGTATGTGTGTATATGTGCA Sequence 5: GTGTA

Sequence 1 is a potential Z-DNA fragment according to definition 2 but not definition 1, due to violation of condition (ii). Sequences 2 and 5 are not potential Z-DNA fragments according to both definitions [sequence 5 violates all conditions whereas sequence 2 violates condition (ii)]. Sequences 3 and 4 are potential Z-DNA fragments according to both definitions. DNA sequences studied. The DNA sequences chosen from the EMBL Nucleotide Sequence Library are as follows (ssc, single-stranded circular; dsc, double-stranded circular; dsl, double-stranded linear. Lengths are in base or base-pair units): cloning vector pBR322 (dsc 4362); bacteriophages: \$\phi X174 (ssc 5386), M13 (ssc 6407), T7(dsl 39936), λ (dsl 48502); papovaviruses: SV40 (simian; dsc 5243), BKV (human, strain Dunlop, dsc 5153), Polyoma-A2 (strain A2; dsc 5292); adenoviruses: Adeno-7 l (type 7; dsl 6707; left 0-18.5%), Adeno-2 l (type 2; dsl 11600; left 0-32%) Adeno-2 r (type 2; dsl 10305; right 70.7-100%); mitochondria: bovine (Bos taurus, dsc 16338), murine (Aus musculus, dsc 16295), human (dsc 16569). The sequence of a purine-pyrimidine rich region of phage PM2 (dsc 1757) has been taken from reference 26. The single-stranded DNA genomes have, of course, double-stranded DNA replicative intermediates. Linear genomes can circularize during replication. Occurrence and average length of gAFs in a long DNA sequence. Let us consider the Y/R tracts found in a fragment of the SV40 genome (Fig. 1a-c). Figure 1a shows all AFs not shorter than 4 bases. There are two such fragments in the sequence studied. Both of them are separated AFs. The AFs which are not shorter than 3 bases are shown in Figure 1b. There are four such fragments, two of which make a cluster with two bases out of perfect alternation. Figure 1c shows all possible AFs (including doublets of alternating Ys and Rs) in the DNA fragment studied. In this case 12 AFs are found. Two of them constitute a cluster with two bases out of alternation and another six are involved in a cluster of total length 14.

These examples suggest that in general, a tendency of AFs to cluster is stronger in the case of short AFs (Figure 1c) compared to long AFs (Figure 1a

- a) 1 10 20 30 40 50 GCCTCGGCCTCTGCATAAATAAAAAAAATTAGTCAGCCATGGGGCGGAGA =---- =---
- b) 1 10 20 30 40 50 GCCTCGGCCTCTGCATAAATAAAAAAATTAGTCAGCCATGGGGCGGAGA

<u>Fig. 1.</u> Alternating Y and R repetitions in the first 50 bases of SV40 (a-c) and Adeno-2(1 (d). a) AFs of length > 4; b) AFs of length > 3; c) and d) AFs of length > 2. Every AF is underlined. The = indicates the first base of an AF.

and 1b, which have a smaller number of underlined bases than Figure 1c). When we analyse all possible AFs from different natural DNAs, the tendency to cluster differs. An example is provided by a comparison of the SV40 genome fragment (Figure 1c) with a corresponding Adeno-2 l fragment (Figure 1d). There are 13 AFs in the first 50 bases of the Adeno-2 l but only one is clearly isolated. Another 12 AFs are involved in three clusters. We know from the previous example that there are 12 AFs in the first 50 bases of the SV40 genome; two of them are separated and the other 10 occur in three clusters. Thus, the tendency of short AFs to cluster is greater in the Adeno-2 l than in the SV40 fragment. The clusters in Adeno-2 l are, in general, longer than in SV40 (the lengths of the clusters are 16, 7 and 15 in Adeno-2 l whereas these lengths in SV40 are equal to 4, 10 and 14 bases).

We require a quantitative measure of the clustering tendency. Such a measure consists of the average length of qAFs in a given DNA tract. In order to define this quantity let us assume that a sequence under consideration is of length N bases, and that it contains a number k of qAFs. In addition, let n₂, n₃, ..., n_m be the numbers of qAFs of length 2, 3,..., m bases, respectively. The average length of a qAF is defined by the following general expression:

 =
$$\sum_{i=2}^{m} i \cdot p_i = (1/k) \cdot \sum_{i=2}^{m} i \cdot n_i$$
 (1)

where n_i is the number of qAFs of length i and the probabilities p_i are equal to n_i/k.

Let us return to our example of the 50 bp regions of SV40 and Adeno-2[.] l We have already pointed out that the tendency of AFs to cluster is greater in the adenovirus than in the SV40 fragment. We compute the <L> values for both these fragments by using (1) and distinguish the <L> values for AFs as <L_{AF}> and the values for qAFs as <L_{qAF}>. For the SV40 fragment <L_{AF}> = 2.7 and <L_{qAF}> = 6.6, whereas the corresponding values for the adenovirus fragment are equal to 3.1 and 10.3. It appears from this calculation that although the two <L_{AF}> values are similar, the <L_{qAF}> values are considerably different. This result suggests that the quantity <L_{qAF}> - <L_{AF}> is a good measure of the tendency of AFs to cluster.

<u>Random DNA sequence</u>. Random DNA sequences have been generated and representative examples chosen for Y/R searches. In order to verify our definitions of potential Z-DNA we have generated three categories of random sequences, i.e. those with an equiprobable base composition, those rich in A and T (30% each) and those rich in 6 and C (30% each).

The expected number of AFs longer or equal to 2k bases in a fragment of length L and a given base composition (N_A adenines, N_C cytosines, N_G guanines and N_T thymines) can be calculated in the following way: The frequencies of the bases are: $p_A = N_A/L$, $p_C = N_C/L$, $p_G = N_G/L$, $p_T = N_T/L$. Let α be the frequency of a fragment RY (R = purine, Y = Pyrimidine). If $p(R) = p_A + p_G$ and $p(Y) = p_T + p_C$, we have $\alpha = p_{RY} = p_{YR} = p(R) \cdot p(Y)$. Then the probability of an AF not shorter than 2k bases is equal to $P = [2\alpha + p^3(Y) + p^3(R)] \cdot \alpha^k/(1-\alpha)$ and the expected number A_{exp} of such fragments equals L P.

The expected number of uAFs of a given kind is calculated in a similar way: Let $\beta(AT) = p_A \cdot p_T$, $\beta(AC) = p_A \cdot p_C$, $\beta(GC) = p_G \cdot p_C$ and $\beta(GT) = p_G \cdot p_T$. Then the probabilities of uAFs are:

 $P(AT) = [2\alpha + p^{2}(R) \cdot p_{A} + p^{2}(Y) \cdot p_{T}] \cdot \beta^{k}(AT) \cdot [1 - \beta(AT)]^{-1}$ $P(AC) = [2\alpha + p^{2}(R) \cdot p_{A} + p^{2}(Y) \cdot p_{C}] \cdot \beta^{k}(AC) \cdot [1 - \beta(AC)]^{-1}$ $P(GC) = [2\alpha + p^{2}(R) \cdot p_{G} + p^{2}(Y) \cdot p_{C}] \cdot \beta^{k}(GC) \cdot [1 - \beta(GC)]^{-1}$ $P(GT) = [2\alpha + p^{2}(R) \cdot p_{C} + p^{2}(Y) \cdot p_{T}] \cdot \beta^{k}(GT) \cdot [1 - \beta(GT)]^{-1}$ (2)

The expected numbers of uAFs are then equal to: $A_{exp}(AT) = L P(AT), A_{exp}(AC)$ = L P(AC), etc.

<u>Occurrence of given fragments.</u> <u>Comparison between natural and random</u> <u>sequences</u>. Let the number of fragments of a given kind (for example AFs, qAFs or potential Z-DNA sequences) found in a natural sequence be equal to A. The quantity $F = (A-A_{exp}) \cdot (A_{exp})^{-1/2}$ (analogous to a coefficient of variation) measures the degree to which the frequency of a fragment in a natural sequence differs from that calculated for the corresponding random sequence. If F < 0, we state that the fragment in the natural sequence is F-fold under-represented. If F > 0 we state that a fragment is F-fold over-represented.

RESULTS

<u>Occurrence of AFs</u>. Table 1 shows the frequencies of occurrence of AFs longer than 5 bases. In each case we also show the corresponding values in the random sequences (second row of every case listed). It is evident that AFs

	uAFs							AFs
GENOME	LENGTH	GC+CG	AC+CA	GT+TG	AT+TA		number	۶D
SV40	5243	0	3	2	0	42	47	-3.9
		0.2	0.8	0.8	2.5	77.5	81.8	
вки	5153	0	2	0	8	40	51	-3.3
		0.2	0.7	0.7	2.8	76.0	80.5	
Polyoma	5292	0	1	2	2	54	59	-2.6
		0.6	0.9	0.8	1.2	79.1	82.7	
Human mito.	16569	0 0.7	15 10.8	1 0.3	12 5.0	143 231.2	171 248.1	-4.9
Murine mito.	16295	0 0.3	22 6.8	0 0.5	29 11.6	111 2 32. 5	162 251.6	-5.7
Bovine mito.	16338	0 0.4	14 7.5	0 0.5	21 8.7	131 235.1	166 253.	-5.5
pBR322	4363	1	0	1	2	46	50	-2.2
		1.1	0.7	0.7	0.4	64.9	67.9	
Adeno-2· I	. 11600	36	1	9	3	113	162	-1.4
		4.4	0.9	3.2	0.7	171.2	180.3	
Adeno-2• r	10305	3	10	3	3	93	112	-3.8
		1.4	3.4	0.7	1.8	153.2	160.6	
Adeno-7·1	6707	12	1	3	3	33	42	-6.1
		1.0	0.6	1.9	1.1	99.2	103.8	
M13	6407	0	0	0	5	55	60	-3.8
		0.3	0.5	1.6	2.8	92.0	97.2	
¢X174	5386	1	0	2	0	48	51	-3.6
		0.4	.5	1.4	1.6	79.5	83.	
77	39936	3	16	13	3	459	494	-7.9
		6.4	6.3	8.2	8.1	673.6	702.7	
λ	48502	7	20	16	15	579	637	-4.3
		7.7	6.8	9.1	8.0	723.1	754.	

TABLE 1. Occurrence of uAFs and mAFs longer than 5 bases.^a

^a The second row of every case listed shows the values expected for

random sequences. The first rows show the numbers found in natural sequences. ^b The last column lists the F-values defined in the text.

ABLE 2. Tenden	cy of alternating	tragments	to cluster within DNA geno
GENOME	<l<sub>AF></l<sub>	<l<sub>qAF></l<sub>	<l<sub>qAF> - <l<sub>AF></l<sub></l<sub>
SV40	2.85	9.48	6.61
вки	2.90	8.70	5.80
Polyoma-A2	2.91	9.69	6.78
Human Mito.	2.87	10.97	8.10
Murine Mito.	2.85	11.48	8.63
Bovine Mito.	2.88	11.60	8.72
pBR322	3.00	13.60	10.60
Adeno-2ºl	3.01	11.70	8.69
Adeno-2' r	2.99	11.55	8.56
Adeno-7ºl	2.95	10.72	7.37
M13	2.82	11.60	8.78
¢X174	2.90	12.79	9.89
τ7	2.93	12.38	9.45
λ	3.01	14.02	11.01
RANDOM 8	2.97	12.96	9.99
RANDOM 4	3.02	13.69	10.67

TABLE 2. Tendency of alternating fragments to cluster within DNA genomes^a

 $a_{L_{AE}}$ and L_{aE} are the average lengths of AFs and qAFs, respectively.

are under-represented compared to the expectation for random sequence (see the last column of Table 1 where all F values are negative). The same observation appears for mAFs which constitute about 90% of all AFs.

The above conclusion does not hold in the comparison of the occurrences of uAFs in the genomes studied compared to the corresponding random sequences. Thus, $[d(G-C)]_n$ and $[d(C-G)]_n$ fragments are strongly over-represented in adenoviruses (F = 15 for Adeno-2. L and F = 11 for Adeno-7. L), whereas in all circular DNAs they are generally absent (which is in agreement with the expectation for random sequences: |F| close to 0). However, in phages T7 and λ these uAFs are under-represented (F = -1.3 and -2.5, respectively). This suggests that in circular DNAs, long $[d(G-C)]_n$ and $[d(C-G)]_n$ tracts are avoided and that this circumstance arises at least in part from the base composition (correlation coefficient between the fractions of 6 and C and the F value is equal to -0.73 in these genomes).

Very different patterns of occurrence are displayed by the $[d(A-C)]_n$ and $[d(C-A)]_n$ sequences (and the complementary $[d(G-T]_n \text{ and } [d(T-G)]_n)$. The occurrence of these fragments seems to vary from one genome to another. Even

	000011			Detectici	7-044			
GENOME	Ċ	Ar S	Defini	tion 1	Definition 2			
	Number	% bases	Number	% bases	Number	% bases		
SV40	13	2	10	1	8	1		
	34	5	19	2	18	2		
вки	17	3	7	1	6	1		
	32	6	19	3	19	3		
Polyoma-A2	22	5 ,	12	2	14	3		
	33	8	19	3	18	4		
Human Mito.	44	3	28	2	25	2		
	102	7	61	4	61	5		
Murine Mito.	51	4	21	1	23	2		
	100	8	58	3	56	2		
Bovine Mito.	53	4	21	2	22	2		
	101	8	58	6	58	5		
pBR322	22	5	17	4	16	4		
	26	6	16	4	16	4		
Adeno-2º l	52	5	46	4	46	4		
	72	7	43	4	42	4		
Adeno-2. r	39	4	28	3	29	3		
	64	7	38	4	38	4		
Adeno-7. L	32	6	22	4	21	4		
	41	8	25	5	24	5		
M13	14	2	6	1	4	0.7		
	39	6	23	4	23	4		
¢X174	15	3	12	2	11	2		
	33	7	20	3	20	3		
77	159	5	107	4	110	4		
	246	8	151	5	151	5		
λ	215	5	163	4	149	3		
	299	7	184	5	184	5		

TABLE 3. Occurrence of qAFs and potential Z-DNA sites.^a

^aThe first row of every case corresponds to a natural sequence whereas the second row corresponds to random sequences.

in the papovavirus genomes (SV40, BKV and Polyoma) the F values vary between 0.1 and 2.5. The same observations apply to the sequences of $[d(A-T)]_n$ and $[d(T-A)]_n$.

We can also see from Table 1 that mAFs are about ten-fold more frequent

than uAFs in both natural and random sequences. This means that although AFs are under-represented in natural DNAs, the expected proportion of uAFs to mAFs (about 1:10) is conserved in natural DNA tracts. <u>Tendency of AFs to cluster</u>. Table 2 shows values for the average lengths for AFs ($<L_{AF}>$) and qAFs ($<L_{qAF}>$). The values of $<L_{AF}>$ are almost the same for all genomes studied (i.e. about 3 bases/fragment). In contrast, $<L_{qAF}>$ varies from 8.7 in BKV to 14.2 in the case of phage λ . It appears from Table 2 that the $<L_{qAF}>$ values are higher in procaryotic than in eucaryotic systems ($<L_{qAF}>$ is highest for pBR322 and phage λ , and lowest for eucaryotic papovaviruses SV40, BKV and Polyoma). It is also evident that in the case of single-stranded circular genomes (M13 and ϕ X174) the tendency of AFs to cluster is stronger than in double-stranded circular eucaryotic viruses. The same observations appear from an analysis of the difference $<L_{qAF}> - <L_{AF}>$ (last column of Table 2). In random sequences, there is a very strong tendency of short AFs to cluster (last two rows of Table 2).

The conclusion which can be drawn in this section is that the tendency of AFs to cluster decreases in the order: random sequence > procaryotic DNAs > mitochondrial and linear eucaryotic DNA > circular DNAs of eucaryotic viruses.

<u>Distribution of qAFs and potential Z-DNA within genomes</u>. The frequencies of occurrence of qAFs and potential Z-DNA sites in the DNAs studied (including the corresponding random sequences) are shown in Table 3. The linear maps of qAFs and potential Z-DNA sites for the genomes studied and the two random sequences are shown in the Figures 2 and 3. The plots for random sequences illustrate that our criteria for potential Z-sites restrict the amount of A and T in qAFs.

The general conclusion which appears from Figures 2-4 and Table 3 is that qAFs are under-represented in every case studied. This under-representation is not so universal for potential Z-DNA tracts. Except for the cloning vector pBR322, the circular DNAs studied display strong under-representation of potential Z-DNA sites (particularly in the case of mitochondrial DNAs). The same observation holds for the linear DNAs of phages T7 and λ , whereas potential Z-DNA sites occur with almost random frequency in the linear genomes of adenoviruses (Adeno-2⁻¹ L and Adeno-7⁻¹ L). Complete listings of all qAFs longer than 7 bases found in the DNAs studied are presented in Figures 5 - 8.

It is interesting that potential Z-DNA occurs both within coding and non-coding regions of the genomes studied. This finding is in agreement with existing experimental data (see Discussion).

<u>Fig. 2.</u> Linear maps of qAFs and potential Z-DNA sequences in cloning vector pBR322, papovaviruses, dsc-phage PM2 (partial sequence), and ssc-DNA phages. The maps are rendered linearly starting at the origin defined in the Data Bank (EMBL Nucleotide Sequence Library) and extending to the right. The fragments are shown as vertical lines with lengths in bases given by the ordinate. The top horizontal line (e.g. number 1 in the case of pBR322) corresponds to qAFs, the botom line (number 2) to potential Z-DNA tracts fulfilling definition 1 and the middle line (number 3) to potential Z-DNA fulfilling definition 2. Random 4 is a random sequence rich in A and T (30% each).

Fig. <u>4.</u> Linear maps of qAFs and potential Z-DNA sites in mitochondrial genomes. Conventions as in Fig. 2.

DISCUSSION

We find that in the DNAs studied:

1) Alternating purime pyrimidine tracts are under-represented compared to the expectation for random sequences.

2) Uniform alternating fragments $[d(G-C)]_n$ and $[d(C-G)]_n$ are in general absent in circular DNAs and seem to be over-represented in DNAs of linear eucaryotic viruses.

pBR322			Polyoma-A2						Adeno-2·I					
81 237 560 1233 1410 1452 1707 2243 2290 2315 2785 3096 3696 3696 3696 3873 4212 4256		420 536 6322 775 723 1033 1176 2255 2383 2568 2881 2966 3220 3657 4215 4447 4495 4524 4567 4524 4567 4777	8 12 8 16 8 10 11 10 10 9 1 10 10 9 1 8 11	$\begin{array}{c} 1 & 2 \\ - & 1 \\ 1 & 2 \\ - & 2 \\ 1 & 2 \\ - & 1 \\ 1 & 2 \\ - & 2 \\ 2 & 2 \\ - & 2 \\ 2 & 2 \\ - & 2 \\$	tACATEGG tylatat tagg tACATEGCA TGTATEGCA TGTATEGCA GEGTATEGCA GEGTATEGCA Catggesta AGECA ACAtac GTGTG GEGTACA acatatgig atata acata GEGGET CAtat tataT C TACACA GTGTGTGTGTG GTGTGTGTGTG GTGTGTGTGTG GTGTATEGTGT GTGTATEGTGT GTGTATEGTGT CACCAGELAR GTGTATEGTACA GTGTACA GTGTATEGT	65 1400 1907 1559 1634 1656 2532 2666 3041 3170 3513 3648 4095 4189 4384 5489 4385 4485 5753	10 9 8 99 10 11 10 10 10 10 10 10 10 10 10 10 10	- 1 1 2 2 2 - 2 - 2 2 2 2 2 2 2 2 2 2 2	AGGTE GEGEG ACCATGTE GTGTEGGE GTGTEGGE AGGEGTGTGTTTTT T TATAG AGGEGTGTGTGTTT TGCATG GGTGTG GTATATA AGGEG TGTGGTG GTATATAG ATGTA GCATG TACATG GTGTG GGATA CCGGGG AGGEGATGC AGGEGGGGG ATGCATG G GCATG CATGT FGTGGG AGGEGGGGG CATGT FGTGGG CATGT FGTGGG CATGT FGTGGG					
	ØX174		B	κv		5925 6340	8 24	1 2	ACACATGT TGCACGTat T CGCGCGCA ACGCAC					
763 811 826 1027 1816 2146 3504 3555 4161 4192 4537 4742 4773 4911 5345	14 1 2 TECETETARGEGCA 8 1 2 ACGTECGT 8 1 2 ACGTECGT 10 1 2 GEGLATEC 11 - 9:E18:E162:E26 11 - 9:E18:E162:E3 11 - 9:E18:E162:E3 11 - 9:E18:E162:E3 12 12:E16:E16:E162:E3 10 - A:E18:E162:E3 10 - A:E16:E162:E3 10 - A:E16:E162:E3 10 - 2:E16:E3:E3 11 - 2:E16:E3:E3 12 12:C176:E3:E3 13 12:C176:E3:E3 14 14:C162:E3:E3	822 1341 1429 1969 2526 2667 2769 2941 2972 3569 3907 3928 4076 4194 4235 4316	8 9 8 13 13 12 16 10 10 8 10 2 12 9		activitaç Coloritaç Coloritaç Sofanta Actara tatgitaça gitaça tatgitaça gitaça tatgaca tatacat TACACA A ATGCA catgosistat tatat tatat tojtat atacat tojtat atacat tojtat atacat çitata tatat çitata tatat çitata tatat çitata	6405 6587 6653 6712 6799 6966 7238 7448 8085 8147 8274 8304 8304 8656 8679 9036	10 8 15 10 11 17 19 8 1 8 8 9 10	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CTCLAGEGC GCGCCGT CGGCCGCT CGGCCGCC CGGTACATC GCGTCLAGEA GCGCCLAGEA GCGGTCLAGEA GCGGTCLAGEA GCGGCLAGEA CGGCGCAG CGGCCGCG GCGCCGCG GCGCCGCG GCGCCGCG GCGCCGC					
	M13	4812	12	1 2	acatA GCATGCA	10128	12 14	1 2	TGCAC C TGCGTG gtaTGCGC C CGTGT					
676 1439 1930 2157 2802 2828 3790 4173 5032 5454 5531 6000	13 - tatgst c tgost 1 - tatgst c tgost 11 - tatgst t tatgst 12 - tatgst t tatgst 12 1 tatgst t tatgst 12 1 tatgst t tatgst 12 1 tatgst t tatgst 13 - tatgst t tatgst 14 - tatgst t tatgst 15 - tatgst t tatgst 16 - tatgst t tatgst 17 - tatgst t tatgst 18 - catast tatgst 19 - catast tatgst 12 tatgst tatgst tatgst tatgst	984 1317 1432 1607 1679 2431 2843 2863 2863 3126 3365 3449	Ac 11 12 8 12 8 14 11 17 15 8	den	0-2:r $\frac{1}{1000}$	10197 10559 10821 11294 11310 11477 11513 11568 6 65 178 425	11 9 13 14 10 16 8 13 12 14 10 8	den	CTOTA A STECA COTOCCA COTOCCA COTOCCA COTOCCA COTACOTCA COTACOTCA COTACOTCA COTACOTCA COTACOTCA COTACOTCA COTACOTCA COTACOTCA COTACOTCA COTACOTCA COTACOTACOTACOTA COTACOTACOTA COTACOTACOTA COTACOTACOTA COTACOTACOTACOTACOTACOTACOTACOTACOTACOTA					
	SV40	3488	10 8 12	1 2	gtatgtac GCGCA G ACGCGC	1327	9	1 - 2	ACGTATGCACG ACGTATGCA ATGCATGC TACAtat					
126 198 258 1056 2752 3218 3575 4208 4367 4606 4675 4825 4876	8 1 2 aTGCATGC 8 1 2 ACACACAT 1 2 ACACACAT 10 - atglg gitsg 11 - Atglg gitsg 12 12 ATGCATGC 10 - atglg gitsg 11 1 CTGCATGC 12 12 ICTGATGC 12 12 ICTGCATGC 13 - accast latesec 10 12 AtaTGC 13 - accast latesec 10 12 AtaTGC 13 - accast latesec 11 - GATATGCAT	4194 4347 4642 5168 5436 5576 6170 6431 6866 7163 7656 7660 8135	9 18 13 19 12 11 12 12 12 12 12 12 27	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	TGTBGGTGG TGTBTGGGAAL TGGGTAC CARBATEL CATGTGT CATGTGT GATGGT GATGGT GATGGT GATGGT GATGGT CATGACA AAGCA CATGACA AAGCA CATGACA	2700 2750 2806 2923 3007 3021 3052 3070 3118 3245 3290 3962 4267 4330	11 9 10 12 10 16 10 15 14 9 11	1 2 2 1 2 1 1 2 1 1 2 1 1 2 1	<pre>elactorista tatscarsc atgcarsc atgcarsc geals atalg create atgg create atgg gegeals gegeals gegeals gegeals create atgg gegeals gegeals gegeals tatalggeals tatsggeals catalg</pre>					
	PM 2	8258 8269 8466	12 11	12	CGCACGTB CACGT TGTGCAt GTGCG G GCGTG	4035 5205 5445	15 8 14	1 2	cacatat t tgcat GTGCGCGC gtaTGCAT C CGCAC					
118 129 212 345 483 528 699 770 812 1194 1205 1494 1542	9 1 - TGGGATAC 8 1 2 CGTGTA 9 1 2 CGTGTA 1 2 CGTGTA 1 2 CGGACACA 8 1 2 GGACAGA 8 1 2 GGACAGAC 1 1 2 GGACAGCA 1 1 2 TGGGC TGGGT 1 1 2 AGGAC 1 3 AGGAC 1 3 AGGAC 1 3 AGGAC 1 4 A	8674 9258 9391 9737 10001 10061 10176 10232	8 10 12 8 9 8 9	1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2	CACACACG CATGCA CACACACAC CATGC T CATGCA ACAGGCA CACACACACACACACACACACACACACACACA	5579 5701 5782 5963 6208 6515 6574 6664	11 8 16 11 21 8 10 8	1 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 2 1 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1	ČGTGT Č CÁCGČ GGCGGTGT glatgia J Acaatg Jiatgia J Acaatg Jiatgia J Acaatg Jiggia J Acatg GGCGGGC GGCGGGC GGCAGATA					

Fig. 5. Complete listings of qAFs in papovaviruses (SV40, BKV and Polyoma-A2), adenoviruses (Adeno-2·L, Adeno-2·r and Adeno-7·L), cloning vector pBR322, dsc-phage PM2, and ssc-phages M13 and ϕ X174. In every case, the first and second columns show the position and length of the qAF, respectively. A digit 1 in the third column means that the qAF is a potential Z-DNA sequence according to the definition 1. A digit 2 in the fourth column indicates a potential Z-DNA tract fulfilling definition 2. Non-concordance is indicated by a dash. The sequences are shown to the right. Spaces denote the separation between AFs constituting a CAF. Lower case letters denote bases which do not belong to a potential Z-DNA fragment or subfragment whereas capital letters denote the (sub)fragments with Z-forming potential.

1696

	Во	vir	ne	м	uri	ne		Human	
19	14	1 2	CATEC T CACACAta	111 10	1 2	TACACATGCA	.71	11 1 2 gtaTGCACGCG	
337	13	;;	atatata a acgca	402 8 895 12	1 2	GTACGCACACAC	162	11 1 2 .CGCAC C TACGT 8 1 - GTATGCAC	
545	8	1 2	SCACACAC STACS SCSTA	1767 13	- ;	acatacgegtata	690	10 1 2 tACACATACACAC	
1256	12	1 2	GCACGCACACAC tatataca	2837 9		gtacataca	1535	12 1 2 GLGCGTACACAC 14 tacgcat t tatata	
3478 3846	8	1:	ATACGCAC CACACATAC	3487 10 3649 16	- 2	tatac tatat tatotaTGTG ACAtat	2430	12 1 2 ACACA G GCATGC	
3999	18 11	12	TGTGCATGTG ACACGTat tatat C TGTAC	3697 10 4284 8	11	catacatata TGCACATA	2702	10 1 - GCATA ACACA 8 1 2 GTACATGC	
4957 5142	10 8	12	CACACACATG tatatacg	4430 11 6091 8	1 -	ACACA A ATACG CACATGTa	3200 3394	11 1 2 tatAC C CACAC 8 tatataca	
5863 6792	13	12	CGCACACGCAt acacatAC TACGT	6220 13 6433 14	12	aTGTA G ACACACG atacatac tatgta	4042	13 1 2 acataTG ACGCAC 12 - 2 tACACA ACAtat	
7020	12	- 2	atgcatacaca atatg cataT CACACAt	6666 11 6829 12	1 2	tACAC CACATG catat CACACAt	4209 6710	12 tatatg atatgt 13 atacata g gtatg	
7527	12	1 2	catatg gcatat catACA A GCACG	7163 15 7263 8	1 2	acacatACA A GCACA tatatata	6761 6796	20 1 2 CGTGTG A GCACAC CAtatat 20 1 2 ACGTA G ACACACG A GCAtat	
7846	11	1-	ACGTAT TACAC	7371 8 8192 15	1	CACATACAT T TACAC	6998 7237	24 1 2 CGTAC TACACG ACACGTAC TAC 16 1 2 atgcatACAC CACATG	GT
8948	12	- 2	tataT C TGCATG	8622 15		catgcatat cacata	7589	10 cgtatacata 14 1 2 GCACATGCA GCGCA	
9905	8 12	; :	atgtatac CATACG A ATGTG	9562 12	;;	catatg gtata catatg a atgcg	8921	12 1 2 GCACAC C TACAC	
10248	9	÷:	gtatacata	10707 8	12	ACACACAC	9400	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
10503	8 11	::	tatgtaca tatac t tatac	10925 13	12	atatata gcatac (6(acat6	10717	9 acacatatg 10 - 2 + ArGtatatg	
11120 11248	9 11	1 2	gcatgtata GTACG GTatgc	11371 8 11382 9		gtatatac atatacata	11190	14 1 2 ACGCA G GCACAtac	
11751 11829	12	- 2	tatacatgc aTGCAC T CAtat	11446 10 11535 13	12	CACACACACG	12067	13 1 2 CATGT T CAtacac 9 1 2 CATGCACAC	
12421	15	72	atatg atatatatac ATGCA A ACACA	12053 10 12715 21	1 2	atatatacac tacacat c tgtac c cacgca	13316 13535	19 1 2 TGCACAT C TGTAC C CACGC 14 acatat catacaca	
12936	10		tacat tatgc atatgcgc	12995 15 13338 10	- 2	taTGTACA GCAtacg CGCAT TACAC	13886 13932	9 tatgcacat 13 1 2 CACACAC CGCACA	
13090	17	1 2	CACAT C TGTAC C CACGC catacata	13443 12 14294 14	1 2	CACACA & ACATA CatACAC TACACAt	14177 14663	10 atatatacac 8 gcatacat	
14670	13	- 2	ataca atgtata atACAC TACACAt	14337 8 14378 13	12	ACACACAt atatatACACGCA	15811 16303	10 cgtac tatac 14 gtacata gtacata	
14794	14	- 2	tatataTGCACGTa TGCATACGCA	14455 9 14966 9	1 -	catatacat TGCATACGC	16328	14 1 - CGTACATA GCACAT	
15912	20	1 2	acataACACGC C CAtacaca	15429 11		tatat C CATGT tacata gtaca			
15990	22 10	::	acata atatgtatata gtacat	15545 10		atatatatac			
16060	16 19	::	gtacata atacatata totacata gtacat tatot	15614 14	1 -	ACATACAC CATACA			
16168	11	1 2	CATEC CECETE						
<u>Fig.</u>	<u>6</u> ,	C C	omplete listir	ig of qAFs	in	mitochondrial	DNAs.	Conventions as i	n
F1g.	٥.	,							
	T	7							
731	22	1	2 ACACG GTACG ATGTAC C	ACATG 13391	15	1 2 COTATGTACA ACGTG		26519 11 atatgtatgtg 26832 15 1 2 ACGCATG GTGTACA	t
1291	12	1	2 ACGTGCAatacg	14208	, , , , , , , , , , , , , , , , , , ,	atatgcaca		26865 8 cgtatatg 27135 9 tgtatacat	
1496	10	-	- atgtatatgc	14471	8	1 - GTGCGTAT		27422 11 1 2 GTGTGT CACGT 27603 8 tacgtatg	
168	11	1	2 cgtaTGTACAC	14958	11	1 2 ATACAC TACGT		27671 9 1 2 GTACACACG	
1 82 /	10	1	2 GCGTG GCAta	15077		1 2 TGTACGTa		28484 10 atatgtatac 28768 8 otatacoc	
2333	10	-	- tatac cgcat	15466	2	1 2 GTACGTGTa		28856 15 1 2 tgtaTG GTGCGCAT 28857 11 1 2 tgtaTG TGCGCAT	G
2604	9	-	2 ACATGCAta	16153	8	1 2 GTGTACGT 1 2 GTACACGT		29838 10 tgcgc tatac 30048 8 1 2 TGC4CGTa	
2640	10	1	2 ACGTAC CATACAT 2 CGCGC TGCAC	16290	23	- tgtatgta	G GIACATG	30194 10 - 2 ataTG ATGCA	
3416	8	1	2 TGCACGCAt 2 GCGTACAt	16800	18	- 2 ATGTGTGTG - 2 AtaTGC TGCAT C Ta	tgta	30911 8 1 2 TGCGTACA	
3 81 C 3 93 9) 11) 13	1	2 GTACGC TGCA1 2 CGTGCA G GTGCGC	17016	12	1 2 ACACACG GTatg - 2 GTACGTACAt		31457 9 1 2 TGCGTACAt	
4059	8 5 16	1	2 GTGCGTAC 2 cgtgt t tACGC TGTGT	17080 17213	9 8	1 2 ACATGCACG tatgtacg		32595 10 cacgtatatg	
5337	, 12 , 9	1	2 TGCGC TGTGCAt 2 atgCACACA	17384 18405	13 8	1 2 CACGCG ATGTGTG gcgtatat		33126 8 1 2 GTACATGC	
5516	5 13	1	2 TGTACACA 2 GTGTG G GCACACG	1 86 97 1 87 3 2	9	- 2 taTGCGTAC 1 2 taTGCGTGC		33728 14 1 2 acataT6 GTACGCG	i
5671 5810) 12	ī	- acacatatg 2 CGCGT T CGCGTa	19140	10	1 2 CACATGTGTG 1 2 ACATGTA GCGTAC		34055 9 1 2 TGCACACGT	
6005	59 58	ī	- gtatgcgta - TGCATACG	19323	13	1 2 CGCGTG GTGCGTa - 2 aTGCGTGTatac		34109 8 1 2 GCGTGCAC	
633 636	9 10 2 10	:	2 ataTGTGTAC - catatgtatg	19929	13	1 2 cacatA G GCACAt atocatat		34781 9 1 2 tACACGTAC	
6584 714	9 7 8	1	2 GTGTACGCG - atgtgtat	20323	8	1 2 ACACGCGC 1 2 ACGTGTACAC T CACA	t	34945 10 1 2 CECECETA 34941 9 1 2 ATGCACGTA	
766*	9 3 17	ī	 tgcgtatat GTGTGTGC T TGCGTGTG 	21962	18	- 2 aTGCA G ACGTatatg 1 2 GCGTG GCATG	cat	35470 8 1 2 aTGTGTAC	
7782	2 8 10	;	2 GTACACAC - CGTATGTGCG	22392	11	1 2 GCGTG A GTACG - 2 aTGCAC TGTata		35769 11 - 2 GCGCAC Tatat	
8741	8 8 9 10	:	- tatgcata 2 aTGCGTACAt	22958	11	 atatacatatg 2 CACATG GTACGT 		36546 9 atatgtatg	. u
890 906	5 11 5 9	1	- ACGTA A ATACA 2 CGTGTGCGT	23399	11	1 - TGTGTA ACGTG 1 2 CGCACGCAC C CGCGC	:	37569 11 1 2 CACATGTGCGT	
9203	5 11 5 10	1	- TACGC T TACAT 2 GTGTG GTGCA	24224	21	- 2 tataTGCGC T CAtac 1 2 ACGCA G ATGCA	g atatg	38180 12 1 2 TGCGCG A GCGTG	
10236	9 11	ī	- atatacgca - CACAC T TACAC	24460	8	tgtataca tatgtgtatg		38491 19 1 2 tACGC TGTGC TG	TAC
10712	28 28	1	2 CGTGTACA 2 ACACACGT	24760	11	gtaca atatgc 1 2 tACGC TGTGT		39015 13 1 2 ACACATG ATGCGT 10042 0	
11671	5 10 2 11	ī	→ tacgtatgcg 2 GTGTG ATGTAC	2533	3 9	1 2 TGTACACAt 1 2 #TGCGCAC		39077 8 1 2 aTGTGTAC	
12120	5 8 5 9	1	2 ACATGCGC 2 tACATGCGC	2576	12	1 2 CATGC CACACGC 1 2 tacgc tgtgca		39334 10 tatat tgtat 39334 10 tatat tgtat	
13033	5 11 5 11	;	Z GCGCAC TACGC Z ACACAC CATGT	2630 2641	12	1 2 tACAT CACACGT 1 2 catgtaca		39586 10 1 2 TGCAT CACAC	
Eig.	7.	c	omplete listir	g of qAFs	in	phage T7. Co	nventio	ns are as in Fig. 5.	

Nucleic Acids Research

١

	Λ											
457	12	1	2	tACGCGTGCGCA	16217	13	12	TGCGCG G GCGTat	33679	9		catatgcat
1935	11	1	S	aTGCGCGTatg	16481	8	12	aTGCGTAC	33717	11	1 2	GCATGT TGCGC
2026	8	1	2	TGCGTGTG	16494	11	1 2	CACACA GCGTS	34035	12	1 2	atACACA GTGCA
2129	12	- 1	-	TGTGTATG	16540	11	12	BIGLGL IGIATOC	34641	14	1 2	CATGIGIGIG GCAIGI
2604	11	- 1	ŝ	ALAIGE CAEGIA	17169	12	- 2	atACA GCGTata	34690	8	1 -	ATGTGCAT
2796	10	1	ž	GCATG ACACA	17249	10	1 -	GCACGTATGC	34819	8	12	TGTGCGCA
2831	8	-	-	tatgtatg	17 26 8	14	12	CGTGCA GCATGTGC	34937	8		gcatatat
2888	13	1	2	TGCGCG Aatatgc	17697	10	1 2	CACGC CGCAt	35081	17	1 2	TGCATGTtaTGC CGCGT
2966	11	- 1	S	GTGTG G ATGCA	1/789	10	1 2	GCACGCGT	35111	14	1 2	TGTAC CATGIGCGC
3228	š	-	ξ.	ACGCACGT	18398	11	1 -	GTGTG & ATGCC	35343	14	1.5	GCGTGT T TGTGCAT
3575	12	i	-	GTGCA A ATGTGT	1 87 95	18	1 2	cacoc t tACGT C CACACG	35868	11		atoratatatu
3664	8	-	-	atgtatgc	18833	9		cgtatacgt	36017	13		catatac c catac
3780	12	1	-	CGCGTAT TACGC	1 896 5	17	1 2	atgogta aTGTGTGTGTat	36110	8		tgcatate
4493	. 8	1	-	TATGCGCG	19042	11	12	ACATG GTACGT	36665	13		atgeatatgeata
4803	12	1	ξ.	ataTG G ACACGC	19271	10	1 2	CTOCOTACOC	37131	10		tatet tatet
5171	8		-	CONDICIONO ALATA	19437	16	1 2	otoca aTGCG GCAtac	37890	13	12	TGTGC T CATACON
5293	14	1	2	CATGCGTG ATGCAC	19467	13	1 2	GTGCA G GTataca	37980	. 9	1 2	CGTGCGTGT
5310	9	1	2	aTGCACGTa	1 97 98	11	12	GCATG G ATGTG	38020	9	1 2	TGCATGTAC
5436	10	1	2	GCGCG GCGCA	19877	3	1 -	CGTGTATG	3 80 6 8	12	1 -	TATGCA ATGCGC
5451	13	- 1	2	ACGTG A ACGCGCA	19989	13	1.5	CLACECEC	38111	8		gegtatat
5540	10	-	\$	GCACGCGIGC	20652	ő	1 2	atACGTGCA	58505	10		otgtatgcat
6141		1	2	ATGTACACA	20713	11	1 2	aTGCG G ACACA	38355	8		tacatata
6478	9	1	2	ACATGCGTG	21410	10	12	CGTGC TGTat	38742	10	1 -	GCGTA ATGTG
6662	8	1	-	CACGTATG	21617	12	1 2	CATGC C CACACA	39364	13	12	aTGCCTG A ACGTG
7003	18	1	5	aTGCG G ACGCACA GCGCG	21798	17	12	GTGCACATGCGCAtaca	3 9 3 9 5	12	1 2	ACATG TG TG TG C
7139	12	1	2	CGTGT C CGTACA	21823	13	1 2	CALACE E ACACAC	39846	9	1 2	aTGCGCGTa
7666	15	÷.	5	ATACACA CALGUS	22058	10			40055	ŝ	15	CGTGCGCAC
7775	10	i.	ž	GCGTGCGCGT	22398	11	1 -	GCATAT TGCGC	406.98	11	1 2	CACGCA GTACA
8375	19	1	2	GCATGT CATGCA GCGTGTG	22896	9		tgtatgtat	40 86 2	8	1 2	GTGTGTGT
8481	10	1	2	atACG GCGTG	23234	15		catat tytat catyc	40953	9	12	a TG CG TG Ta
8954		1	2	taTGC C TGTAC	23847	10		atatgtat	41166	13	12	ACGTGCAt tacgt
10036		-	-	ALGIG GIGIAL	24168	14	1 2	ACACGT CGTators	41506		1 2	tatacg gtato +ACAC_CACGTG
10177	11	1	2	GCGTGC CATGC	24369	8	1 2	GTGCATGC	41738	10	1 2	CATGIGCGIG
10266	8	-	-	atatgcac	24857	9		tgcatatac	41 85 3	10	1 2	ACATG GTACG
10286	13	1	2	ACGTACAC CGTGC	25329	10	- 2	TGCAT CAtac	41 94 7	11	1 2	TGCATG ATGCG
10323		-		atatgcat	25658	š	12	CACATGCA	42320	8	12	ACGTGCGC
10947		÷.	-	GCGTATGC	25725	11	15	ACACACGTOCAT	42362	10	15	CACGIGIGIG
11164	11	-i	2	GTGTG GCGCGT	27054	9	11	tacatacot	42839	14	1 2	aTGCGTG GTGTGCA
11300	9	1	-	TGCGTATGT	27162	17	12	CATGT TECATE STGCAC	42880	10	1 -	CGTAT CGCGT
11410	12	1	2	ACATG G GCACGC	27206	11		atgcatatata	43169	8	1 2	ATGCACGC
11551	12		-	tgcgtata	27370	10		gtaTGCATGC	43436	12	12	IGIACGIG
126 85	12	i	5	GCGCAT C CGCGT	28005	12	12	CGTGCGCGCA+>	43818	8		atotatat
13017	12	1	ž	gtgtaTG ACATG	28652	10		atgta acgta	44104	8	12	TGCACACA
13059	13	1.	2	ACACA G ATGCGTG	2 86 99	11	1 -	TGTGT T ÍGTGT	44358	16	12	GCGCA GCAtat cgcgc
13131	11	1.	2	gtaTG G ATGTG	29046	8	1 2	GCGTGCGT	44779	12	- 2	tataT c 1GCACA
13220	12	1	5	ACGTACA GCG1G	29096	16	14	TACACGCA	44903	ž	1 2	316661ACA
13461	13	- 13	\$	ATECAC C CETECE	29183	11	1 2	TGCGC C CAtat	45069	ş		cotocatat
13649	8	1	5	GTACGCGC	29533	11	11	tatat c tatac	45333	8	12	aTGTGCGC
13679	11	1	2	TGTACG GTatg	29672	8		atgtatgt	46123	14	1 2	ACATGCA G ATGCGT
13923	11	1.1		ACGTAT CATGC	29883	8		catatgca	46471	12	12	atACACACGCGC
14160	8	11	2	GCGCACGC	30560	10	12	TGTGT TGCGC	467 89	10		cgtatgtgta
141/4	12	11	;	ATGIGLGL	31190	10	1 -	TGTGCATACA	40000	ŝ	1 2	atgtatgt
14476	10	1		GCACG GTGTG	31469	10		acata atgca	46976	24	12	GCGCGTACACGTat tocat tator
14724	10		2	TGCAC CAtat	31492	8	1 -	CATACGCG	47237	8	12	aTGCGTGT
1 4 7 8 2	10	1	2	ACGCACACAC	31541	17	12	CACATGC TGTAC TGCAC	47311	10	12	ACACG ATGTG
14810	13	1	:	GCATG GCGCGCAt	31688	10	- 2	STALSCATAC	47346	10		atata atgtg
15259	10	11		GIGIG GLGLA	31953	16	1 -	GTGTATGCA	47466	1	1 2	LAIGIG Atacg
15358	9	1	2	aTGCGCGTG	32493	ģ	1 2	GCATGTACA	47839	10	- 2	TGCATGTata
15371	8	1	2	CACGCGTG	33453	18	1 2	gcatatTGCATG GTGTGC	48132	10		atgtatatgc
15789	11	1	2	ataTG ACACGC	33479	8	7.7	tatacata	48430	9	12	CACGCACGT
15925	10		:	atACA ACGTa	33667	8	12	CACACACA				

Fig. 8. Complete listing of qAFs in phage λ . Conventions are as in Fig. 5.

3) Quasi-alternating fragments (qAFs) are under-represented in every case studied.

4) Potential Z-DNA sites are strongly under-represented in the circular DNAs studied (except the recombinant clone pBR322). A particularly strong under-representation (about 5-fold) is displayed by mitochondrial genomes.

5) Potential Z-DNA sites are under-represented in the linear genomes of bacteriophages T7 and λ but not in the linear Adeno-2 and Adeno-7 DNAs.

6) In all the cases studied potential Z-DNA occurs in non-coding as well as in protein-coding regions.

7) The tendency of short AFs to cluster decreases in the order: random sequences > procaryotic DNAs > mitochondrial and linear eucaryotic viral DNA > circular eucaryotic viral DNAs. <u>Comparison of predicted with experimentally mapped Z-DNA sites</u>. The studies of anti Z-DNA Ig binding to plasmid pBR322 DNA (5, 8, 19) provide evidence for 3 major and other minor immunoglobulin binding sites mapped by electron microscopy techniques (8) with a resolution of about 100 bases (major sites) and 300 bases (minor sites). There is good correspondence (with the exception of site B at position 960 \pm 80; ref. 8) with the potential sites we have identified at positions (Figures 2 and 5): 237, 258, 1410, 1452, 2107, 2290, 2315, 2785 and 3099.

The anti Z-DNA Ig binding sites detected in the SV40 genome by filter-binding studies (18) and by immuno-electron microscopy (27) show the existence of 3 major antibody binding sites in the nucleotide sequences associated with the transcriptional enhancers within the nucleosome-free "gap" region of the papovaviral chromatin. These sites occur at positions 126, 198 and 258 and are predicted in this paper (Figures 2 and 5). Three other potential Z-DNA regions predicted by our algorithm (positions 1056, 3218 and 3575 of the SV40 genome) may correspond to minor antibody binding sites observed in the electron microscopy studies. Thus, among 10 predicted potential Z-DNA sites in SV40, 3 and possibly 6 have been experimentally detected, at least within the resolution currently available.

Mapping of anti Z-DNA Ig binding sites in ϕ X174 DNA provides further experimental evidence supporting the predictions of potential Z-DNA sites made in this paper. According to the listing (Fig. 5) and plot (Fig. 2) there are 13 potential Z-DNA sites in ϕ X174 DNA. Nine of them (positions 763, 811, 826, 1027, 2146, 3555, 4161, 4911 and 5345) correspond well with antibody binding sites identified by high resolution darkfield electron microscopy (23). Revet et al. (23) identify a site (no. 8) at position 3542 \pm 62 and consider its possible relationship to the sequence starting at nucleotide 3504. By our criteria, this fragment is rejected due to its high alternating A-T content (Fig. 5). However, we note as a potential site the qAF at 3555 (which meets both definitions) and which is within the resolution limits of the site identified by e.m.

Studies of the PM2 bacteriophage genome also provides evidence for the correspondence of anti Z-DNA Ig binding sites to tracts of purine-pyrimidine repetitions (24, 25). The immunoelectron microscopy mapping of anti-Z-DNA Ig binding sites in the purine-pyrimidine rich region of this phage DNA (26) shows the existence of Z-DNA within a protein coding region. There are 13 potential Z-DNA sites predicted by our algorithm (Fig. 5). Ten of them (positions 129, 212, 345, 483, 528, 699, 812, 1194, 1205, 1494) correspond well with antibody binding sites identified by immunoelectron microscopy (26).

Nucleic Acids Research

The correspondence between experimentally mapped Z-DNA sites in supercoiled circular DNAs and those predicted by the criteria we have defined is satisfactory but not perfect [some experimental positions we cannot account for and others we identify have not (yet) been observed]. As additional data emerge, the specific values of the empirical parameters (a, b, c in definitions 1, 2) will require adjustment. In any event, we expect that they will depend on superhelix density and, to a degree, each other. For example, alternating fragments exclusively composed of G and C are under-represented (Table 1, below) but where they do occur (23, 26) the Z conformation may be expressed even for lengths smaller than the value 8 used in this work. In addition, we do not address the means for defining a *hierarchy* in Z-forming potential, for which the experimental data provide some indications. It is obvious that the ultimate but as yet unattainable goal will be to replace the empirical criteria employed here with rigorous thermodynamically defined relationships.

The under-representation of potential Z-DNA It has already been suggested that Z-DNA could play a role in the control of transcription (22). In the circular DNA molecules, such processes would be coupled to changes in the free energy of supercoiling. (Since the B to Z transition lowers the negative superhelix density, one Z-forming tract may affect the potential of another; 23). Thus, it would seem reasonable that in such genomes the number of sites allowing a B to Z transition would be limited and highly regulated. Furthermore, the genomes examined in this work are almost fully transcribed. For these various reasons, the observed under-representation of potential Z-DNA forming sequences is not unexpected. In this connection, it is noteworthy that $[d(G-C)]_n$ and $[d(C-G)]_n$ tracts are avoided in circular DNA genomes, whereas these are the sequences which undergo the B-Z transition most readily *in vitro*. One can envisage positive as well as negative selection processes accounting for this phenomenon. Clearly, the intervention of proteins with specificity for different helical conformations as well as other factors determining higher order structure of DNA in vivo will determine which of the sites we and others have identified actually undergo the $B \rightarrow Z$ transition and if so, whether functional roles are involved.

ACKNOWLEDGEMENTS

We thank Dr. E. Trifonov for discussions concerning the definition of potential Z-DNA sequences, and Drs. G. Hamm and K. Stüber for discussion and help in exploitation of EMBL Nucleotide Sequence Library. We are indebted to Dr. J.H. van de Sande for providing manuscripts prior to publication. Ms. Melanie Harvey is acknowledged for typing the manuscript. *Present address: Stanford University, Department of Chemistry, Stanford, CA 94305, USA *Present address: University of California-Berkeley, Naval Biosciences Laboratory, Oakland, CA 94625, USA

REFERENCES

- 1. Pohl, F.M. and Jovin, T.M., (1972) J. Mol. Biol. 67, 375-379.
- Wang, A.H-J., Quigley, G.J., Kolpak, F.J., van der Marel, G., van Boom, J.H., and Rich, A., (1981) Science 211, 171-176.
- 3. Drew, H.R. and Dickerson, R.E., (1981) J. Mol. Biol. 151, 535.
- Jovin, T.M., McIntosh, L.P., Arndt-Jovin, D.J., Zarling, D.A., Robert-Nicoud, M., van de Sande, J.H., Jorgensen, K.F. and Eckstein, F., (1983) J. Biomol. Struct. Dynam. 1,21-57.
- Nordheim, A., Lafer, E.M., Peck, L.J., Wang, J.C., Stollar, B.D., and Rich, A., (1982) Cell 31, 309–318.
- Singleton, C.K., Klysik, J., Stirdivant, S.M., and Wells, R.D., (1982) Nature 299, 312–316.
- 7. Pohl, F.M., Thomae, R., and DiCapua, E., (1982) Nature, 300, 545-546.
- DiCapua, E., Stasiak, A., Koller, T., Brahms, S., Thomae, R., and Pohl, F.M., (1983) EMBO J. 2, 1531–1535.
- Wang, J.C., Peck, L.J., and Becherer, K., (1983) Cold Spring Harbor Symp. Quant. Biol. 47, 85-92.
- Peck, L.J. and Wang, J.C., Proc. Natl. Acad. Sci. USA (1983), 80, 6206-6210.
- Zarling, D.A., Arndt-Jovin, D.J., McIntosh, L.P., Robert-Nicoud, M., and Jovin, T.M., (1984a) J. Biomol. Struct. Dynam. 1, 1081-1107.
- 12. Zarling, D.A., Arndt-Jovin, D.J., Robert-Nicoud, M., McIntosh, L.P., Thomae, R., and Jovin, T.M., (1984b) J. Mol. Biol., 176, 369-415.
- 13. Nordheim, A., Pardue, H.L., Lafer, E.H., Moller, A., Stollar, B.D., and Rich, A., (1981) Nature, 294, 417–422.
- Lemeunier, F., Derbin, C., Malfoy, B., Leng, M., and Taillandier, E. (1982) Exp. Cell Res. 141, 508-513.
- Arndt-Jovin, D.J., Robert-Nicoud, M., Zarling, D.A., Greider, C., Weimer, E., and Jovin, T.M., (1983) Proc. Natl. Acad. Sci. USA 80, 4344-4348.
- 16. Robert-Nicoud, M., Arndt-Jovin, D.J., Zarling, D.A., Jovin, T.M., (1984) EMBO J. 3, 721-731.
- 17. Russel, W.C., Precious, B., Martin, S.R. and Bayley, P.M., (1983) EMBO J. 2, 1647–1653.
- 18. Nordheim, A. and Rich, A., (1983) Nature 303, 674-679.
- 19. Azorin, F., Nordheim, A., Rich, A., (1983) EMBO J. 2,649-655.
- Quadrifoglio, F., Mannzini, G., Yathindra, N., and Crea, A., (1983) Nucleic Acids: The Vectors of Life. Pullman, B. and Jortner, J. (eds.) pp. 61-74. D.Reidel, Dordrecht, Holland.
- Rich, A., Nordheim, A., and Azorin, F., (1983) J. Biomol. Struct. Dynam. 1, 1-19.
- Revet, B., Zarling, D.A., Jovin, T.M. and Delain, E., (1984) The EMBO J. in press.
- 22. Rich, A., (1983) Cold Spring Harbor Symp. Quant. Biol. 47, 1-13.
- Stockton, J.F., Miller, F.D., Jorgenson, K.F., Zarling, D.A., Morgan, A.R., Rattner, J.B. and van de Sande, J.H., (1983) EMBO J. 2, 2123-2128.
- Miller, F.D., Jorgenson, K.F., Winkfein, R.J., van de Sande, J.H., Zarling, D.A., Stockton, J. and Rattner, J.B., (1983) J. Biomol. Struct. Dynam. 1, 611-620.
- Miller, F.D., Winkfein, R.J., Rattner, J.B., and van de Sande, J.H., (1984) Bioscience Reports, in press.
- 27. Hagen, F.K., Zarling, D.A., and Jovin, T.M., (1985) EMBO J., in press.