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Nonparametric Estimation of the Stochastic Integro-Difference Equa-
tion (SIDE) from Point Process Observations. Standard nonpara-
metric methods may be easily extended to estimate unknown
quantities in the SIDE. First, for υ ¼ jjs − rjj, it can be shown that

ln gk;kþ1ðυÞ ¼ ½kI � ln gk;k�ðυÞ; [S1]

where * is the convolution operator. Nonparametric estimators
for the pair auto-correlation function (PACF) and the pair
cross-correlation function (PCCF) are well known (SI Text), sug-
gesting that the kernel kIðυÞ can be obtained through the decon-
volution of Eq. S1. The problem may be seen as one of image
restoration where the task is to recover an original image kIðυÞ
from a degraded image ln gk;kþ1ðυÞ, for which standard image
processing techniques such as the direct inverse filtering can
be used. Further, one can show that

kQðυÞ ¼ ðln gkþ1;kþ1ðυÞ − ½kI � kI � ln gk;k�ðυÞÞ: [S2]

The proofs for Eqs. S1 and S2 are given below. For ease of the
exposition we consider a one-dimensional domain s; r ∈ R,
υ ¼ js − rj with the intensity defined as λkðsÞ ¼ expðzkðsÞÞ where
zkðsÞ is a homogeneous Gaussian process with zero mean and
covariance function σ2

kψkðυÞ. The results hold for a homoge-
neous and isotropic field in any dimension.

Proof for Eq. S1: Because zkðsÞ has zero mean, the following rela-
tionships hold:

E½zkðsÞ þ ½kI � zk�ðsþ υÞ� ¼ 0; [S3]

E½zkðsÞ2� ¼ σ2
k ; [S4]

E½zkðsÞ½kI � zk�ðsþ υÞ� ¼ σ2
k ½kI �ψk�ðυÞ; [S5]

E½½kI � zk�ðsÞ2� ¼ σ2
k ½kI � kI �ψk�ð0Þ: [S6]

By Eq. 1 and the assumption that ekðsÞ is uncorrelated with zkðsÞ,
the intensity cross second moment is given by

λð2Þ
k;kþ1ðυÞ¼E½λkðsÞλkþ1ðsþυÞ�

¼E½expðzkðsÞþzkþ1ðsþυÞÞ�
¼E½expðzkðsÞþ½kI � zk�ðsþυÞþekðsþυÞÞ�

¼ exp
�
σ2
k

2
þσ2

k ½kI �kI �ψk�ð0Þ
2

þσ2
k ½kI �ψk�ðυÞþ

kQð0Þ
2

�
:

[S7]

Because λk ¼ expðzkðsÞÞ, the quantities λð1Þ
k and λð1Þ

kþ1 (through
Eqs. S4 and S6) are given as

λð1Þ
k ¼ expðσ2

k∕2Þ; [S8]

λð1Þ
kþ1 ¼ exp

�
σ2
k ½kI � kI �ψk�ð0Þ

2
þ kQð0Þ

2

�
; [S9]

so that the log PCCF is given by

ln gk;kþ1ðυÞ ¼ σ2
k ½kI �ψk�ðυÞ: [S10]

But by Eq. 4 ln gk;kðυÞ ¼ σ2
kψkðυÞ to give Eq. S1.

Proof for Eq. S2: To obtain an expression for kQðυÞ, the PACF at
subsequent time steps is considered. Again, considering zero
mean stationarity of zkðsÞ

λð2Þ
kþ1;kþ1ðυÞ ¼ E½expð½kI � zk�ðsÞ þ ½kI � zk�ðsþ υÞ þ ekðsÞ

þ ekðsþ υÞÞ�; [S11]

which, after some lengthy algebraic manipulation, can be shown
to be

λð2Þ
kþ1;kþ1ðυÞ ¼ expðkQð0Þ þ kQðυÞ þ σ2

k ½kI � kI �ψk�ð0Þ
þ σ2

k ½kI � kI �ψk�ðυÞÞ: [S12]

Eq. S2 subsequently follows from Eqs. 4 and S9.

Nonparametric Estimation of First-Order and Second-Order Point
Process Statistics. Denote the spatial point process at k as Pk.
If Pk is first-order stationary, then an estimator for λð1Þ

k is given
as (1)

λð1Þ
k ¼ Nk

jOj ; [S13]

where Nk is the cardinality ofPk. In some cases, this assumption
does not hold and one may instead employ either standard linear
regression methods to mark out clear intensity trends (2) or a
standard nonparametric kernel estimator (3)

λð1Þ
k ðsÞ ¼ ∑

si∈Pk

kbðjjs − sijjÞ
cO;bðsiÞ

: [S14]

Here, cO;bðsiÞ is an edge-correction factor given as cO;bðsiÞ ¼
∫ Okbðjjs − sijjÞÞds and kbðsÞ is the Epanečnikov kernel which in
one dimension is given as

kbðsÞ ¼
3

4b

�
1 −

s2

b2

�
1ðjsj ≤ 1Þ: [S15]

A nonparametric estimator for the PACF is given by (2)

ĝk;kðυÞ ¼
1

2πυjOj ∑
≠

si ;sj∈Pk

kbðjjsi − sjjj − υÞ
λð1Þ
k ðsiÞλð1Þ

k ðsjÞwðsi; sjÞ
; [S16]

where wðsi; sjÞ is the fraction of the circle (in two dimensions)
with center si and radius jjsi − sjjj lying inO. Similarly, an estimate
of the PCCF is given by
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ĝk;kþ1ðυÞ ¼
1

2πυjOj ∑
≠

si ∈ Pk

sj ∈ Pkþ1

kbðjjsi − sjjj − υÞ
λð1Þ
k ðsiÞλð1Þ

kþ1ðsjÞwðsi; sjÞ
: [S17]

If the processes are taken to be second-order stationary also in
time, to smooth out the nonparametric estimates an average over
all K time steps may be taken so that

ḡk;kðυÞ ¼
1

K∑
K

k¼1

ĝk;kðυÞ; [S18]

ḡk;kþ1ðυÞ ¼
1

K − 1∑
K−1

k¼1

ĝk;kþ1ðυÞ: [S19]

The set of nonparametric estimators Eqs. S16–S17 and the
averaged estimates Eqs. S18–S19may be used to estimate Eq. S2.
Note that if temporally averaged PACF/PCCFs are used, the
inverse filter is given as

k̂IðυÞ ¼ F−1
�
Fðln ḡk;kþ1ðυÞÞ
Fðln ḡk;kðυÞÞ

�
: [S20]

Case Studies: Nonparametric Estimation from Point Process Observa-
tions. High frequency (small-scale) spatial interactions.Here we con-
sider the SIDE of Eq. 1 with f 1ðzkðsÞÞ ¼ zkðsÞ, Δt ¼ 1, kIðυÞ ¼
0.05 expð−jjυjj2Þ and kQðυÞ ¼ 0.8 expð−jjυjj2∕5Þ on a domain
s ¼ ðs1; s2Þ ∈ O ¼ ½36 × 36�. Synthetic data was generated by dis-
cretizing Eq. 1 on a 50 × 50 grid and carrying out the recursion
for K ¼ 100 time points; this involved the discretization of kQðυÞ
to obtain a 2; 500 × 2; 500 covariance matrix which was then
sampled from. The initial field z0ðsÞ was assumed to be drawn
from the distribution of the disturbance. Point process
observations were then generated using the method of thinning
(4) from the exponentiated underlying field. The sequence of
time frames shown in Fig. S5 is representative of the whole
set; here the point process observations are superimposed on
the instantiation of the spatiotemporal field which in this case
is known, but not used in the analysis.

In the analysis stage, intensities governing the point process at
each time instant were first assumed to constitute a series of cor-
related log-Gaussian Cox processes (LGCPs) with first-order sta-
tionarity, the estimate of which is given through Eq. S13.
Algorithm S1 was then carried out on the dataset to give nonpara-
metric estimates of the mixing kernel k̂IðυÞ and the noise kernel
k̂QðυÞ using the exact inverse filter of Eq. S20. Fig. S6A shows that
the estimates (red) conform excellently with the true kernels
(blue). The figure also compares the bandwidth of the estimated
kernels to the true ones and it clearly shows that the spatial dy-
namics are very localized (high frequency) when compared to the
in-time correlations.

Low frequency (large-scale) spatial interactions. A second synthetic
dataset was generated under the same conditions as above but
with a significantly wider mixing kernel characteristic of a diffu-
sion process, kIðυÞ ¼ 0.01 expð−jjυjj2∕15Þ. The data was subse-
quently analyzed with Algorithm S1. As seen in Fig. S6B, the
kernel estimates are seen to conform well with the true kernels.
Note that in this case the dynamics exhibit interactions over a
wide range.

Finite-Dimensional Reduction of the SIDE. For conciseness, define
AzkðsÞ ¼ ∫ kIðs; rÞzkðrÞdr. We now employ a standard Galer-

kin-type finite-dimensional reduction on zkðsÞ by first expanding
zkðsÞ ≈∑n

i¼1 ϕziðsÞxk ¼ ϕT
z xk; ϕzðsÞ ∈ Rnz to obtain

ϕzðsÞTxkþ1 ¼ AϕzðsÞTxk þ ekðsÞ; [S21]

and, subsequently projecting through the inner product with
ϕzðsÞ, hϕzðsÞ; ·i, to obtain

hϕzðsÞ; ϕzðsÞTixkþ1 ¼ hϕzðsÞ;AϕzðsÞTixk þ hϕzðsÞ; ekðsÞi:
[S22]

Let Ψ x ¼ hϕzðsÞ; ϕzðsÞTi and ΨA ¼ hϕzðsÞ;AϕzðsÞTi. Then

xkþ1 ¼ Ψ −1
x ΨAxk þ Ψ −1

x hϕzðsÞ; ekðsÞi: [S23]

We next decompose the heterogeneous effects in μQðsÞ; kIðs; rÞ
and kQðs; rÞ using vectors of basis functions ϕμQ

∈ RnμQ ;
ϕkI ∈ RnkI and ϕkQ ∈ RnkQ respectively to obtain

μQðsÞ ¼ ϕμQ
ðsÞTϑ; [S24]

kIðs; rÞ ¼ ϕkI ðsÞTΣIϕkI ðrÞ; [S25]

kQðs; rÞ ¼ ϕkQðsÞTΣQϕkQðrÞ; [S26]

where ϑ ∈ RnμQ , ΣI ∈ RnkI ×nkI and ΣQ ∈ RnkQ×nkQ are unknown
and, in addition to each xk, need to be estimated from the data.
Under this decomposition, ΨA is given by

ΨA ¼ hϕzðsÞ;AϕzðsÞTi [S27]

¼ hϕzðsÞ;
Z
O
ϕkI ðsÞTΣIϕkI ðrÞϕzðrÞTdri [S28]

¼
ZZ

O
ϕzðsÞϕkI ðsÞTΣIϕkI ðrÞϕzðrÞTdrds [29]

¼ hϕzðsÞ; ϕkI ðsÞTiΣIhϕkI ðsÞ; ϕzðsÞTi; [S30]

to give

ΨA ¼ Φz;kIΣIΦT
z;kI

; [S31]

where Φz;kI ¼ hϕzðsÞ; ϕkI ðsÞTi. Similarly, the mean of the added
disturbance wk ¼ Ψ −1

x hϕzðsÞ; ekðsÞi is given by

E½wk� ¼ E½Ψ −1
x hϕzðsÞ; ekðsÞi� [S32]

¼ Ψ −1
x hϕzðsÞ; ϕμQ

ðsÞTiϑ; [S33]

to give

E½wk� ¼ Ψ −1
x Φz;μQ

ϑ: [S34]

Further, the second moment is given by

Zammit-Mangion et al. www.pnas.org/cgi/doi/10.1073/pnas.1203177109 2 of 14

http://www.pnas.org/cgi/doi/10.1073/pnas.1203177109


E½wkwT
k � ¼ Ψ −1

x E½hϕzðsÞ; ekðsÞihekðrÞ; ϕzðrÞTi�Ψ −1
x

¼ Ψ −1
x

ZZ
O
ϕzðsÞE½ekðsÞekðrÞ�ϕzðrÞTdsdrΨ −1

x

¼ Ψ −1
x ½

ZZ
O
ϕzðsÞϕμQ

ðsÞTϑϑTϕμQ
ðrÞϕzðrÞTdsdr

þ
ZZ

O
ϕzðsÞϕkQðsÞTΣQϕkQðrÞϕzðrÞTdsdr�Ψ −1

x ;

[S35]

so that

cov½wk� ¼ Ψ −1
x hϕzðsÞ; ϕkQðsÞTiΣQhϕkQðsÞ; ϕzðsÞTiΨ −1

x ; [S36]

to give

cov½wk� ¼ Ψ −1
x Φz;kQΣQΦT

z;kQ
Ψ −1

x ; [S37]

where the matrices Φz;μQ
¼ hϕzðsÞ; ϕμQ

ðsÞTi and Φz;kQ ¼
hϕzðsÞ; ϕkQðsÞTi.

As shown in the main text considerable simplifications are ob-
tained when choosing the basisϕzðsÞ ¼ ϕμQ

ðsÞ ¼ ϕkI ðsÞ ¼ ϕkQðsÞ.

Consistency in Event Rate Between the Afghan War Diary (AWD),
Afghanistan NGO Safety Office (ANSO) Armed Opposition Groups (AOG)
Reports, Armed Conflict Location and Event Dataset (ACLED), and Glo-
bal TerrorismDatabase (GTD) Datasets.TheAWD is a large but highly
heterogeneous collection of event logs but the reluctance of gov-
ernment officials to confirm the dataset as being factually accurate
and a complete portrayal of the Afghan war (5) has led a few to
doubt its use as a reflection of the ground truth. As a result, sub-
stantial verification efforts were carried out by several researchers
and organisations alike. The New York Times Company, for in-
stance, cross-validated a number of logged entries with its own
media reports*. O’Loughlin et al. on the other hand compared the
spatial and temporal distribution of violent events in the AWD to
that in the ACLED, finding significant correlation in support of
consistency (6).

Whilst it is is beyond the scope of this article to verify the AWD
as a representatory dataset, here we show some of our own cor-
relation tests between the AWD and ACLED (7), the ANSO Q4
reports on AOG initiated attacks†, and the GTD‡ in the hope that
our results help to further evidence consistency across different
databases. Throughout, our basic assumption is that the inci-
dence rate in the AWD, both violent and nonviolent, should cor-
roborate with that in other datasets, both geographically and tem-
porally. We note here that the corroborating datasets are not free
from sampling biases themselves: for instance, NGO reports from
extremely dangerous regions such as Helmand may underesti-
mate the event counts simply because NGOs may have a lesser
presence there due to security reasons. We stress therefore that
the level of corroboration we expect to find needs not be perfect,
but simply a confirmation of general trends.

ACLED.The ACLED dataset is an extensive one, constructed from
a variety of local and international media sources and NGO
reports. The majority of logs in the ACLED dataset denote in-
stances of political violence, where force is exercised by one or
more actors (governments, militias, rebel groups) for a political
end. As such one would expect the incidence rate of ACLED
events to corroborate with violent events in the AWD and indeed

(6) found a significant correlation in the respective geographical
distributions in 2008/2009. Here we replicated the study with the
difference that we included all of the AWD in the analysis, and
not just violent events. A geographical assessment revealed
significant correlations in both years, with a Pearson’s correlation
coefficient of r ¼ 0.88 in 2008 and r ¼ 0.92 in 2009. See Fig. S7 A
and B.

ANSO AOG reports. ANSO monitors the activity of AOG nation-
wide and its Q4 reports provide detailed overviews of the fre-
quency of AOG incidents on a provincial basis. A similar geo-
graphical assessment to that carried out with ACLED revealed
significant (although weaker) correlations between AOG activity
and event log incidence in the AWD, with a Pearson’s correlation
coefficient of r ¼ 0.73 in 2008 and r ¼ 0.59 in 2009. Omission of
Helmand, a clear outlier in this analysis, improved r to 0.84 and
0.89 respectively. See Fig. S7 C and D.

GTD. The GTD is a collection of international terrorist incidents,
1,783 of which are located in Afghanistan between 2004 and 2009.
Most terrorist attacks are reported as being perpetrated by the
Taliban and list a number of targets including private citzens,
the telecommunication infrastructure, government buildings
and personnel and NGOs. As with the ANSO reports we thus
expected the prevalence of logs in this database to corroborate
with the AWD and a correlation test across all years strongly con-
firmed this with a coefficient of r ¼ 0.93. See Fig. S7E. Because
the geographical location in the GTD is coded through city
names, generally inconsistent with those in standard shapefiles,
a comparison on a provincial level was omitted. String similarity
checks with the use of, for instance, the Levenshtein distance, did
not produce reliable merges in this case.

Basis Function Selection. For basis selection we adopt a frequency-
based approach. First the Fourier transform of the average PACF
is found, from which a cutoff frequency of νc cycles/unit is se-
lected. Second, localized reconstruction kernels are placed at reg-
ular intervals throughout the spatial domain. The resolution of
the lattice on which the functions are placed has to be small en-
ough to avoid aliasing by satisfying Shannon’s sampling criterion.
In particular, if the centers of the basis functions, denoted fζ ign

i¼1,
are set equal to the sequence of vectors describing a regular lat-
tice of edge length Δs in O, then it is required that

Δs <
1

2νc
¼ 1

2α0νc
; [S38]

where α0 is an oversampling parameter. Lastly, the ‘width’ of the
local functions, which determines the range of frequencies they
can represent, is set to cater for the frequency content of the spa-
tial field at each time point.

To demonstrate the last step, consider the case when the basis
functions are Gaussian radial basis functions (GRBFs) with func-
tional form ϕðsÞ ¼ expð−s2∕2σ2

b Þ. The Fourier transform of the
GRBF is yet another GRBF (in the frequency domain) given as

ϕðνÞ ¼ FfϕðsÞg ¼
ffiffiffiffiffiffiffiffiffiffiffi
2πσ2

b

q
expð−2π2σ2

bν
2Þ; [S39]

so that the variances in the spatial and frequency domain are re-
lated through the mappings (8)

σ2
ν←

1

4π2σ2
b

; σ2
b←

1

4π2σ2
ν
: [S40]

The range of frequencies which can be represented by the basis
functions has to exceed that of the field for adequate reconstruc-
tion. To this end Sanner and Slotine (8) suggest the following
relationship

*http://www.nytimes.com/2010/07/26/world/26editors-note.html?_r=1
†Reports are freely available from the official ANSO website http://www.afgnso.org.
‡National Consortium for the Study of Terrorism and Responses to Terrorism (2011)
Retrieved from http://www.start.umd.edu/gtd
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σν ¼
1ffiffiffi
2

p νc: [S41]

Given σν, [S40] can then be used to find the width of the desired
GRBF in O. By substitution of Eq. S41 in [S40], σb ¼
ð2ν2

c π2Þ−1∕2. The resulting basis is hence a set of GRBFs with
parameter σb placed in the spatial domain centered on the coor-
dinates fζ ign

i¼1.
Because GRBFs are not of compact support (and hence have a

diminishing yet far-reaching effect), we instead use a compact
radial basis function, termed the compact GRBF (CGRBF), of
the form

ϕðsÞ ¼
� ð2π−jjτsjjÞð1þðcos τjjsjj∕2Þþ3

2
sinðτjjsjjÞ

3π ; jjτsjj < 2π;
0; otherwise;

[S42]

for τ > 0 and where jj · jj denotes the usual Euclidean distance on
O. The CGRBF closely resembles the usual GRBF with
ϕðsÞ ¼ expð−τ2jjsjj2∕2πÞ, however it is of compact support. For
a given GRBF parameter σb, or a cutoff frequency νc, the
CGRBF parameter is then given by

τ ¼ ffiffiffi
π

p
∕σb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ν2

cπ3:
q

[S43]

For the AWD a cutoff frequency of νc ¼ 0.2 cycles∕unit was
selected from the average PACF shown in Fig. S8A, thus corre-
sponding to the basis parameter τ ≈ 0.9

ffiffiffi
π

p
. CGRBFs were then

equally spaced within the entire domain with an oversampling
parameter of α0 ¼ 1.3. A cross-section of the chosen basis func-
tion is shown in Fig. S8A.

Initially basis functions were placed on a 16 × 16 grid with an
intercentre spacing of Δs ¼ 1.9 and covering the whole of Afgha-
nistan. Many of these basis functions were however considered
redundant, representing areas exhibiting no logged events, or a
very small number of events. To avoid problems of identifiability
in these regions (see also study in SI Text ), a constant background
intensity baseline b1 was used to represent activity in these areas.
Each basis function was analyzed separately; if a basis function
had its center more than 0.4 spatial units outside Afghanistan
or had on average less than eight logged events per year within
1.3 standard deviations from its center (corresponding to a back-
ground event rate b1 ¼ −3.5) it was omitted. The final arrange-
ment of the basis functions together and the spatial distribution
of all the logged events of the AWD in Afghanistan are shown in
Fig. S8 B and C respectively. Note that basis functions are
omitted in ‘quiet’ areas. To cater for the inclusion of the back-
ground event rate, we set the first covariate, d1ðsÞ ¼ 1 so that

λkðsÞ ¼ expðb1 þ b2d2ðsÞ þ b3d3ðsÞ þ…þ zkðsÞÞ: [S44]

As can be seen from Eq. S44, in the absence of other covariates,
the intensity where there are no basis functions simply reduces
to expðb1Þ.

Whilst placing basis functions only in regions which are highly
represented by the data is not new both in spatial (9) and spatio-
temporal (10) systems, care should be exercised if extending the
problem to an online setting. Basis function omission induces a
strong prior on the model, and unexpected changes in unrepre-
sented regions would not be detected with the current setup (11);
a realistic trade-off, in this case, needs to be found between the
computational complexity and level of representation. We note
that this issue is virtually inexistent in offline studies (such as this
one), where it is very common to employ a basis which is not
amenable to substantial changes in temporal behavior (12, 13).

Controlling for Purely Spatial Variation. As is typical in spatiotem-
poral point process applications, we considered the addition of

deterministic components to the intensity model to control for
certain demographical and topological features:

Population density. It is generally an accepted notion in conflict
that more populous regions witness, on average, more conflict
events than rural regions (14). This association was confirmed
by our study which compared extrapolations from the 1979 census
and a precensus survey in 2003/2004 to the spatial intensity of the
AWD, see Fig. S10A. Data, available from the Central Statistics
Organization, http://cod.humanitarianresponse.info/country-
region/afghanistan, is aggregated at the district level.

Distance to major city. Similar to population density, locations far
away from any large concentrations of population are likely to
witness less conflict events. This association was confirmed by
our study which compared a digital map of distances to the 33
major cities (as from 1994) in Afghanistan to the intensity
map, see Fig. S10B. Data for settlement location is available from
the Afghanistan Information Management Service, http://www
.aims.org.af/services/mapping/shape_files/afghanistan/point/.

Elevation and terrain type. In (6) it was seen that most violent
events occurred in flat terrain. This observation does not imply
that flat terrain is more susceptible to conflict and in fact we
found no evidence that this need be the case, see Fig. S10C.
We also found no simple relationship between elevation and
overall event intensity, see Fig. S10D. Topology data was obtained
from the GTOPO30 dataset (U.S. Geological Survey 2007, 30-arc
second resolution).

Distance to Pakistan border. It is well known that the proximity to
borders increases the prospect of conflict. Afghanistan may be no
exception; insurgents are known to use regions across the Pakistan
border for refuge. However, an analysis showed that there was no
direct association between the distance to the Pakistan border and
the conflict intensity map. The lack of association is most probably
due to the high intensities in the central border area (e.g., Pakitka,
Nangarhar, and Kunar) being offshot by the relatively quiet re-
gions in the south near Nimroz and the north in Badakhshan,
see Fig. S10E.

As a result of this study the intensity model was augmented so
that dðsÞ ¼ ð1; d1ðsÞ; d2ðsÞÞ where the first element corresponds
to a background intensity rate (established in SI Text), d1ðsÞ the
population density and d2ðsÞ the distance to the closest major city,
the latter two variables deemed as having strong associations with
the overall spatial intensity of the AWD.

Variational Bayes (VB) Update Equations. By finding a lower bound
on the marginal likelihood it can be shown that the required
VB marginals for the unknown states XK and parameters
θ ¼ ðϑ; Σ−1

Q Þ and b ¼ ½b1; b2;…; bd� (d denoting the number of
covariates) are given as (19)

~pðXKÞ ∝ expðE ~pðθÞ ~pðbÞ½ln pðYK;XK; θ; bÞ�Þ; [S45]

~pðϑÞ ∝ expðE ~pðXK Þ ~pðθ∕ϑÞ ~pðbÞ½ln pðYK;XK; θ; bÞ�Þ; [S46]

~pðΣ−1
Q Þ ∝ expðE

~pðXK Þ ~pðθ
∕Σ−1

Q Þ ~pðbÞ
½ln pðYK;XK; θ; bÞ�Þ; [S47]

~pðbiÞ ∝ expðE ~pðXK Þ ~pðθÞ ~pðb∕bi ÞÞ½ln pðYK;XK; θ; bÞ�Þ; i ¼ 1…d;

[S48]

where θ∕θ denotes the set of variables θ without θ and E ~pð·Þ½·� is
used to render specific the distribution relative to which we are
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taking expectations. Next, we formulate the algorithm used to in-
fer the unknown quantities. Throughout, the notation ijj refers to
the estimate at time i conditioned on data up to time j. For ease
of the exposition the model is rewritten as

xkþ1 ¼ xk þ ϑ þ ~wk; [S49]

where ~wk is now with 0 mean.

State inference. For the computation of [S45] we employ an
approximate variational Kalman smoother (15). Let x0 ∼
Nx0ðμ0; Σ0Þ. and denote the variational forward message as
~αðxkÞ ¼ ~pðxkjy1∶kÞ. This latter quantity is further approximated
through the Laplace method as

~αðxkÞ ∝
Z

~αðxk−1Þ expðE ~pðθÞ ~pðbÞ½ln pðxkjxk−1; θÞpðykjxk; bÞ�Þdxk−1

!Laplace
Nxkðx̂kjk; ΣkjkÞ; [S50]

where yk is conditionally independent of θ. Similarly the back-
ward message ~βðxkÞ ¼ ~pðykþ1∶K jxkÞ is given by

~βðxkÞ¼
Z

~βðxkþ1ÞexpðE ~pðθÞ ~pðbÞ½lnpðxkþ1jxk;θÞpðykþ1jxkþ1;bÞ�Þdxkþ1

!Laplace
Nxkðx̂kjkþ1∶K;Σkjkþ1∶KÞ: [S51]

The two messages are then combined to give the smoothed esti-
mate:

~pðxkjy1∶KÞ ∝ ~pðxkjy1∶kÞ ~pðykþ1jxkÞ ¼ ~αðxkÞ ~βðxkÞ
¼ Nxkðx̂kjK; ΣkjKÞ: [S52]

The resulting equations of the forward-backward smoother are
quite involved and given in Algorithm S2.

Escalation inference. Let the prior pðϑÞ ¼ Nϑðϑ̂p; Σϑ;pÞ. Then, the
posterior ~pðϑÞ in [S46] is given by

~pðϑÞ ∝ pðϑÞ exp
�
−
1

2
E ~pðXK Þ ~pðΣ−1

Q Þ

�
∑
K−1

k¼0

ðxkþ1 − xk − ϑÞT

× Σ−1
Q ðxkþ1 − xk − ϑÞ

��
; [S53]

so that ϑ ∼Nθðϑ̂; ΣϑÞ where

ϑ̂ ¼ Σϑ

�
Σ−1
ϑ;pϑ̂p þ E ~pðΣ−1

Q Þ½Σ−1
Q �∑

K−1

k¼0

ðE ~pðXK Þ ðiþ1Þ ½xkþ1 − xk�Þ
�
; [S54]

Σϑ ¼ ðΣ−1
ϑ;p þKE ~pðΣ−1

Q Þ½Σ−1
Q �Þ−1: [S55]

Volatility inference. Let the prior pðΣ−1
Q Þ ¼ WiΣ−1

Q
ðV p; dpÞ where

WiΣ−1
Q
ðV ; dÞ denotes a Wishart distribution with V a positive-

definite, symmetric scale matrix and d degrees of freedom.
The variational posterior of [S46] is given by

~pðΣ−1
Q Þ ∝ pðΣ−1

Q Þ exp
�
K
2
ln jΣ−1

Q j − 1

2
trðΓΣ−1

Q Þ
�
; [S56]

where

Γ ¼ ∑
K

k¼1

E ~pðXK Þ ~pðθÞ½ðxk − xk−1 − ϑÞðxk − xk−1 − ϑÞT �: [S57]

It can then be easily shown that ~pðΣ−1
Q Þ ¼ WiΣ−1

Q
ðV̂ ; d̂Þ where

V̂ ¼ ðV −1
p þ ΓÞ−1; [S58]

d̂ ¼ dp þK: [S59]

Evaluation of Γ requires evaluation of the cross-covariance
matrix in addition to the usual posterior covariance matrices.
The computation of the cross-covariance, also requiring Laplace
approximations (see also ref. 16), is given in the last for loop of
Algorithm S2.

Regression parameters. Under VB we let ~pðbÞ ¼ Q
d
i¼1 ~pðbiÞ. Let

the prior pðbiÞ ¼ Nbiðb̂i;p; σ2
bi;p

Þ. Then the variational posterior
~pðbiÞ of Eq. S48, under a Laplace approximation, is given by

~pðbiÞ ∝ pðbiÞ
Y
k∈K

��Y
sj∈yk

expðE ~pðXK Þ ~pðb∕bi Þ½bTdðsjÞ

þ ϕðsjÞTxk�Þ
�
exp

�
E ~pðXK Þ ~pðb∕bi Þ

�
−
Z
O
expðbTdðsÞ

þ ϕTðsÞxkÞ
��

ds
�

!Laplace
Nbiðb̂i; σ2

bi
Þ; i ¼ 1…d; [S60]

where it can be easily shown that

b̂i ¼ b̂i;p

þ σ2
bi;p

�
∑
k ∈ K
sj ∈ yk

diðsjÞ

− ∑
k∈K

E ~pðXK Þ ~pðb∕bi Þ

�Z
O
diðsÞ expðbTdðsÞ þ ϕTðsÞxkÞds

��
;

[S61]

σ2
bi
¼

�
σ−2
bi;p

þ ∑
k∈K

E ~pðXK Þ ~pðb∕bi Þ

�Z
O
d2
i ðsÞ expðbTdðsÞ

þ ϕTðsÞxkÞds
��

−1
; i ¼ 1…d: [S62]

Inference for the AWD was completed in less than an hour on
a standard PC: this included the approximation of integrals within
the optimization routines for variational-Laplace on a 100 × 100
grid, the use of a relatively low tolerance value for terminating the
optimisation routine (0.1% change in sequential function evalua-
tions) and six state-parameter iterations for convergence.

Configuration Notes. State inference:The initial state x̂0j0 was set by
first carrying out nonparametric estimation of the field in the first
week (k ¼ 1) using conventional methods (17) and then regres-
sing this onto the chosen basis ϕ using ordinary least squares. Σ0j0
was set to 30I. In Algorithm S2 the prior from a Kalman filter
running in parallel and assuming point estimates was used as
an initial condition in the first for loop. In the second for loop,
the mean of the forward message was used as initialization. In
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both cases, gradient descent was halted after a change of less than
a 0.1% in sequential function evaluations (typically 20–30 func-
tion evaluations were required). The integrals in Algorithm S2
were approximated on a 100 × 100 discrete grid using numerical
quadrature.

Parameter inference: The parameter priors were configured as fol-
lows (recall that b1 was fixed a priori):

b̂i;p ¼ 0; σ2
bi;p

¼ 10; i ¼ 2; 3; [S63]

ϑ̂p ¼ 0; Σϑ;p ¼ 1000I; [S64]

dp ¼ 1000; V p ¼ 0.025I: [S65]

The prior scale matrix V p was chosen such that its mean is 25I,
where σ−2 ¼ 25 is equal to the squared reciprocal of the standard
deviation of the logged increments in 2006, the largest of the four
years 2006–2009 for which homoskedasticity was met.

Stopping conditions: The VB algorithm was assumed to have con-
verged when the change in ϑ̂ and b̂i; i ¼ 2; 3 in subsequent itera-
tions was less than 0.005, and when all diagonal elements in
E½Σ−1

Q � ¼ d̂ V̂ changed by less than 1%.

Case Study: VB Estimation from Point Process Observations. Simulation
setup.Here we consider the SIDE of Eq. 1 with f 1ðzkðsÞÞ ¼ γzkðsÞ,
γ ¼ 0.1, Δt ¼ 1, kIðυÞ ¼ δðυÞ and kQðs; rÞ ¼ σðsÞσðrÞ expð−jjs −
rjj2∕3Þ on a domain s ¼ ðs1; s2Þ ∈ O ¼ ½0 18� × ½0 18�. Spatially
varying volatility is modeled through σðsÞ¼0.5þ2ðexpð−ðs1−5Þ2∕
6−ðs2−2.5Þ2∕12Þþexpð−ðs1−10Þ2∕6−ðs2−13Þ2∕12ÞÞ and the
nonstationary mean μQðsÞ is itself generated from a Gaussian pro-
cess (GP) μQ∼GPð0; kμQ

Þ where kμQ
ðs; rÞ¼3.2expð−jjs−rjj2∕3Þ.

The intensity function was modeled as in Eq. S44 with b1 ¼ −2
(d1 ¼ 1) and b2 ¼ 0; b3 ¼ 0;…. The simulation configuration re-
flects one which typically gives a total event count of the same order
of magnitude as that present in the AWD.

Synthetic data was generated by discretising the SIDE on a
25 × 25 grid and carrying out the recursion for K ¼ 300 time
points. Point processes observations were once again simulated
using the method of thinning (4) from the true intensity with lin-
ear interpolation used for evaluating the latent data in between
grid points. The complete set of points is shown in Fig. S9A,
where the heterogeneity in the dynamics of the governing inten-
sity is immediately apparent. The simulated growth map and the
volatility surface are shown in Fig. S9 B and C respectively. For
low-rank representation, a set of 8 × 8 grid of CGRBFs of the
form Eq. S42 were placed on a regular grid inside the domain
and on the boundary, truncated were appropriate, see Fig. S9D.
At this stage basis function omission may be carried out to selec-
tively omit functions in highly unrepresented regions; however
here they will be kept to explicitly show problems of nonidentifia-
bility (of the parameters) in these regions.

As assumed in the AWD, the background rate b1 and auto-
regressive parameter γ were considered known in this study.
We then considered two cases, (VB1) one where Σ−1

Q is set to
the identity matrix (which seemed a reasonable fit on visualiza-
tion of the true precision matrix) and (VB2) one where Σ−1

Q is
assumed to be fully unknown, with the aim of showing that esti-
mating the spatially varying volatility may indeed lead to better
a-posteriori inference of the intensity function. In both cases both
the latent field and the growth (through ϑ) were considered un-
known, the latter being equipped with a Gaussian prior with para-
meters

ϑ̂p ¼ 0; Σϑ;p ¼ I: [S66]

In VB2 the precision matrix was assigned a Wishart prior with
degrees of freedom and scale matrix given by

dp ¼ 10; V p ¼ 0.2I: [S67]

For the purpose of this study both priors can be considered
largely uninformative. The VB expectation maximization (VBEM)
algorithm was run for 20 iterations until deemed to have con-
verged. In addition to the VBEM algorithm we also implemented
a standard kernel estimator (KE) of the intensity function using
homogeneous, but anisotropic spatiotemporal kernels of the form
kðs1; s2; tÞ¼expð−ðs1−μ1Þ2∕2σ2

s −ðs2−μ2Þ2∕2σ2
s −ðt−μ3Þ2∕2σ2

t Þ
with σs ∈ ½0.1; 0.2; 0.3; 0.5; 0.8� and σt ∈ ½1; 1.5; 2; 2.5� . Volu-
metric correction was carried out when μ1 � 3σs, μ2 � 3σs or/and
μ3 � 3σt lay outside the spatiotemporal domain OST ¼ ½0 18� ×
½0 18� × ½0 300�.

SI results. Estimation of μQðsÞ and the volatility map σðsÞ by VB2
are shown in Fig. S9 E and F respectively showing a relatively
good agreement with Fig. S9 B and C respectively. Crucially, re-
gions of high volatility are detected independently from the over-
all growth rate in the region.

A comment is due on regions where the algorithm does not
perform so well, in particular in areas which exhibit a consider-
able low event count (this can be seen by comparing to S9A). In
these regions, quantifying parameters such as growth and volati-
lity clearly becomes a futile task; even more so given the expo-
nential form of the intensity function where low intensity fields
correspond to arbitrarily negative latent fields. Clearly spatially
selective priors can be introduced to remedy this problem. How-
ever, in line with existing spatiotemporal literature; e.g., (9, 10),
with the AWD we have opted to simply concentrate modelling
effort in represented areas. This approach also results in obvious
computational savings.

A natural question to ask is whether estimating the spatially
varying volatility contributes to an increase in accuracy to the
latent field and growth variational densities obtained on conver-
gence. To answer this question we computed (i) the mean square
error (MSE) between the true intensity and the a-posteriori med-
ian intensity given by

MSEλ ¼
1

K∑
K

k¼1

�
1

J 2 ∑
s∈OJ

ðλ�
k ðsÞ − expðϕðsÞT x̂kjKÞÞ

�
; [S68]

where � is used to denote the true value, J 2 is the number of
spatial points over which the error is computed (10,000) and OJ
a correspondingly gridded spatial domain with side length J, (ii)
the MSE between the exponentiated growth field and the a-pos-
teriori median exponentiated growth (with the exponential
applied in this case so as not to penalize for excessively negative
growth rates in regions witnessing scarce events)

MSEμQ
¼ 1

J 2 ∑
s∈OJ

ðμ�
QðsÞ − expðϕðsÞT ϑ̂ÞÞ; [S69]

and finally (iii) the bias in the estimated probabilities of the in-
tensity function computed as

biasq ¼ q −
1

KJ 2 ∑
K

k¼1
∑
s∈OJ

I½z�k ðsÞ ≤ zqk ðsÞ�; [S70]

where I is the indicator function, q is a quantile and
~pðϕðsÞTxk ≤ zqk ðsÞÞ ¼ q so that for each k; s zqk ðsÞ denotes the
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qth quantile as supplied by the variational density (for complete
details refer to ref. 20). For a comparison between VB1 and VB2,
the mean of biasq evaluated for selected values of qðq ∈
½0.01; 0.05; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 0.95; 0.99�Þ will
be used.

Results of the analysis shown in Table S1 where it is immedi-
ately evident that estimation of the precision matrix contributes
to a considerable reduction in overall intensity MSE, growth
MSE, and bias. Further, inspection on a frame-by-frame basis
showed that in an overwhelming 93% of the times the intensity
MSE given by VB2 was less than that of VB1, thus firmly estab-

lishing the importance of correct variance estimation in the meth-
odology. Finally, the nonparametric estimator is seen to give
reasonable estimates (only the lowest MSE from all attempted
kernels is shown in Table S1, corresponding to σs ¼ 0.2;
σt ¼ 1). However, and although it is possible that here the MSE
can be further reduced using adaptive methods (18), the key
limiation of the KE method remains its inability to (i) capture
uncertainty in a systematic way and (ii) to provide a mechanistic
description of the underlying process, both limitations which
modern spatiotemporal methods such as that presented here
overcome.
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Fig. S1. (A) Average log PACF ln ḡk;kðυÞ (−) and average log PCCF ln ḡk;kþ1ðυÞ (×). (B) k̂I as computed from Eq. S20.

Fig. S2. Estimated mean intensity E½λkðsÞ� on the first week of the month and respective year.
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Fig. S3. Provincial map of Afghanistan (accurate as from 2010).

Fig. S4. Normalized histograms of log AOG activity count in 2010 per province as obtained from MC simulations, shown together with true growth
(circle, blue) and sample median (circle, red). The two stems overlap considerably in Baghlan, Kunar, Ghor, Nangarhar, and Khost.
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Fig. S5. Three time frames from a single realization of a spatiotemporal point process, where the intensity function exponentiates a field evolving according
to the SIDE of Eq. S1 with kIðυÞ ¼ 0.05 expð−jjυjj2Þ and kQðυÞ ¼ 0.8 expð−jjυjj2∕5Þ.

Fig. S6. Line plots: true (−) and nonparametric estimates (- -) of kIðυÞ and kQðυÞ from point process observations with (A) kIðυÞ ¼ 0.05 expð−jjυjj2Þ, kQðυÞ ¼
0.8expð−jjυjj2∕5Þ and (B) kIðυÞ ¼ 0.01expð−jjυjj2∕15Þ, kQðυÞ ¼ 0.8expð−jjυjj2∕5Þ. Upper surface plots: spatial frequency response of the true kernels. Lower
surface plots: spatial frequency response of the estimated kernels.
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Fig. S7. Correlation between the event incidence in the AWD and other datasets. (A) ACLED 2008 on a province-by-province basis. (B) ACLED 2009 on a
province-by-province basis. (C) ANSO AOG initiated attacks 2008 on a province-by-province basis. (D) ANSO AOG initiated attacks 2009 on a province-by-pro-
vince basis. (E) GTD 2004–2009 on a year-by-year basis.
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Fig. S8. (A) Average log PACF ḡk;kðrÞ as a function of radial distance r between 2004 and 2009 and cross-section of the isotropic basis function employed in
study. Here one unit in r corresponds to approximately 0.4 degrees (latitude/longitude). (B) Spatial location of of all logged events between 2004 and 2009. Of
the roughly 77,000 logs constituting the AWD, the 75,676 located within Afghanistan’s borders were considered in the analysis. (C) Basis function placement in
spatial domain with the red contours denoting the 1σmark. Functions were omitted in regions within the country (such as in the extreme North East and South
West) which contain few, sparse events. These events which are few and far between were instead captured with the use of a background activity baseline

Fig. S9. (A) Superposition of the first 50 spatial point patterns in the simulation study. (B) True growth function μQðsÞ. (C) True variance map σðsÞ2. (D) Basis
function placement in simulation study with the red contours denoting the 1σmark. (E) Mean a-posteriori estimate of μQðsÞ. (F) Mean a-posteriori estimate of
σðsÞ2. Note how mismatches occur in regions of very low event count, as expected.
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Fig. S10. Spatial maps (left) and empirical relationships (right) between the independent variable and the log spatial intensity of the AWD (−) together with
the 1σ interval (red lines, - -) and global mean (- -). (A) Population density. (B) Distance to closest major city. (C) Terrain slope. (D) Elevation. (E) Distance to
Pakistan border. All studies were carried out on a 200 × 200 spatial grid.
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Movie. S1. A-posteriori intensity of the AWD between 2004 and 2009 at regular intervals of one week. The animation shows strong evidence for a consistent
trend of increasing activity in Afghanistan, with particular growth in the Southern provinces from 2006 onwards (MPG; 13.7 MB)

Movie S1 (MPG)

Movie S2. Kernel intensity estimation of the AWD between 2004 and 2009, showed at regular intervals of one week. For this study, the homogeneous kernel
chosen was of the form expð−s21∕0.5 − s22∕0.5 − t 2∕2Þ (MPG; 14.7 MB)

Movie S2 (MPG)

Table S1. Results of simulation
study of SI Text S10

MSEλ MSEμQ
mean(biasq)

VB1 1.939 0.176 −0.099
VB2 1.699 0.161 −0.063
KE 2.324 N.A. N.A.
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Algorithm S1: Analysis for dynamic, homogeneous, isotropic spatiotmporal point processes

1. Estimate λð1Þk ðsÞ∀k using Eq. S13 for stationary systems or simple regression where clear trends (linear or otherwise) are evident.
2. Estimate ĝk;kðυÞ; ĝk;kþ1ðυÞ∀k from Eq. S16 and Eq. S17 respectively.
3. Estimate k̂IðυÞ from Eq. S20 using ḡk;kðυÞ and ḡk;kþ1ðυÞ from Eqs. S18–S19.
4. Estimate k̂QðυÞ from Eq. S2 using k̂I and ḡk;kðυÞ from Eq. S18.

Algorithm S2: VB-Laplace smoother for the AWD model (Note: Integrations are carried out by numerical quadrature).

Time interval Δt ¼ 1 is assumed throughout. Expectations are
taken with respect to the relevant distributions.)

Input: Data set YK , parameters b; μ0; Σ0 and parameter distributions ~pðϑÞ; ~pðΣ−1
Q Þ ¼ ~pðQÞ.

Forward message
Set x̂0j0 ¼ μ0 and Σ0j0 ¼ Σ0.
for k ¼ 1 to K
Σ�
k−1 ¼ ðΣ−1

k−1jk−1 þ E½Q�Þ−1
~Σk ¼ ðE½Q� − E½Q�Σ�

k−1E½Q�Þ−1
~xk ¼ ~Σk

h
E½Q�Σ�

k−1ðΣ−1
k−1jk−1x̂k−1jk−1 − E½Q�E½ϑ�Þ þ E½Q�E½ϑ�

i
:

x̂kjk ¼ arg maxxk
∑sj∈yk

ðE½bTdðsjÞ� þ ϕðsjÞT xkÞ − ∫ OE½expðbTdðsÞÞ� expðϕT ðsÞxkÞds − 1
2 ðxk − ~xkÞT ~Σ−1ðxk − ~xkÞ

Σkjk ¼ ð ~Σ−1
k þ ∫ OϕðsÞϕðsÞT expðϕðsÞT xkjkÞE½expðbTdðsÞÞ�dsÞ−1

end for
Backward message
Set Σ−1

KjKþ1∶K ¼ 0 (ignore estimate of end condition)
for k ¼ ðK − 1Þ down to 0
x 0
kþ1¼ arg maxxkþ1

∑sj∈ykþ1
ðE½bTdðsjÞ� þ ϕðsjÞT xkþ1Þ − ∫ OE½expðbTdðsÞÞ� expðϕT ðsÞxkþ1Þds − 1

2 ðxkþ1 − x̂kþ1jkþ2∶KÞT ~Σ−1ðxkþ1 − x̂kþ1jkþ2∶KÞ
Σ 0
kþ1 ¼

�
Σ−1
kþ1jkþ2∶K þ ∫ OϕðsÞϕðsÞT expðϕðsÞT x0kþ1ÞE½expðbTdðsÞÞ�dsÞ−1

Σkjkþ1∶K ¼ ðE½Q� − E½Q�ðΣ 0−1
kþ1 þ E½Q�Þ−1E½Q�Þ−1

xkjkþ1∶K ¼ Σkjkþ1∶Kð−E½Q�E½ϑ� þ E½Q�ðΣ 0−1
kþ1 þ E½Q�Þ−1ðΣ 0−1

kþ1x
0
kþ1 þ E½Q�E½ϑ�ÞÞ

end for
Smoothed estimate
for k ¼ 0 to K
ΣkjK ¼ ðΣ−1

kjk þ Σ−1
kjkþ1∶KÞ−1

x̂kjK ¼ ΣkjK ½Σ−1
kjkx̂kjk þ Σ−1

kjkþ1∶Kx̂kjkþ1∶K �
end for
Computation of cross-covariance fMkgK

k¼1
for k ¼ K down to 1
MkjK ¼ Σ�

k−1E½Q�½Σ−1
kjkþ1∶K þ E½Q� þ ∫ OϕðsÞϕðsÞT expðϕðsÞT ^xkjKÞE½expðbTdðsÞÞ�ds − E½Q�Σ�

k−1E½Q�−1
end for
Output: fx̂kjK; ΣkjKgK

k¼0; fMkjKgK
k¼1:.

Other Supporting Information
Dataset S1 (CSV)
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