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SI Text

S.1. Experimental Paradigm. The task comprised five study and five
test phases. Only test phases were scanned. Each study phase
comprised 32 trials, where participants were presented with a cue
saying either SUBJECT or EXPERIMENTER. After 500 ms,
either a word pair (e.g., bacon and eggs; perceive condition) or the
first word of a pair and a question mark (bacon and ?; imagine
condition) appeared. If the cue read SUBJECT, the participant
had to either read the presented word pair aloud (perceive
condition) or imagine the second word pair and say the word pair
out loud (imagine condition). If the cue read EXPERIMENTER,
the experimenter performed the task and read the word pair aloud
over the scanner intercom. The subject/experimenter and per-
ceive/imagine conditions were crossed in a 2 x 2 factorial design.

Test phases, which were scanned, consisted of five sessions,
comprising eight blocks of four trials each. Each block was pre-
ceded by an instruction presented for 2-8 s indicating the type of
judgment required (Fig. S1). A single, centrally presented word
was then shown, and participants were required to recollect the
context in which the second word in the pair had been presented
based on the instruction cue (i.e., did you perceive or imagine it
or did you or the experimenter read it?). Participants had 4.5 s
to make their response. The semantic baseline asked participants
to judge whether a nonstudied word referred to a manmade or
naturally occurring object. Blocks alternated between contextual
memory and semantic baseline in an A;A,BBA;A,BB format,
where A, and A, refer to the different types of recollection judg-
ments (i.e., perceived/imagined or self/experimenter). The pre-
sentation order of the recollection blocks was counterbalanced
across subjects. The intertrial interval was jittered between 500
and 1,400 ms according to an exponential distribution. Responses
were made using a button box. When making a response, partic-
ipants held down the button to indicate their confidence in the
response. A confidence bar at the bottom of the screen increased
in size to indicate their confidence level. Additional details can be
found in ref. 1.

S.2. Image Acquisition, Preprocessing, and General Linear Modeling.
Echo planar functional images were acquired using a 3T Siemens
TIM Trio system (36 sequential 2-mm-thick axial slices with 1 mm
interslice gap oriented ~10-20" to the anterior commissure—
posterior commissure (AC-PC) transverse plane and with a time-
to-repetition (TR) = 2.25 s and time-to-echo (TE) = 30 ms)
across five sessions (200 volumes per session). The first five
volumes were discarded to allow for T1 equilibration.

Images were preprocessed and analyzed using SPMS (http://
www.fil.ion.ucl.ac.uk/spm/software/). Functional images were first
corrected for head motion and slice-timing differences. The mean
of these functional images was coregistered to each participant’s
T1-weighted image. These T1 images were also segmented into gray,
white, and cerebrospinal fluid tissue compartments and spatially
normalized to Montreal Neurological Institute stereotaxic space.
The realigned, slice time-corrected functional volumes were then
spatially realigned using the T1-weighted normalization param-
eters and resampled in 3-mm?® voxels. The functional data were
spatially smoothed with an 8-mm full-width, half-maximum iso-
tropic Gaussian kernel, temporally filtered (high-pass cutoff of
1/128 Hz) and corrected for temporal autocorrelation using an
autoregressive AR (1) model. All image processing and sub-
sequent analyses were performed using Matlab 7.8 (Mathworks).

Task-evoked activity was characterized using a general linear
model (GLM) in which the onsets of each event were modeled
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with zero-duration 8-functions convolved with a canonical he-
modynamic response function. Unique covariates modeled the
onsets of each correctly responded recollection trial (i.e., per-
ceive/imagine and self/experiment) and their corresponding
baseline conditions and instruction periods. A separate regressor
modeling incorrectly responded trials was included along with
the time and dispersion derivatives of each covariate. Model
parameter values were computed by restricted maximum likeli-
hood estimation (additional details in ref. 1). Contrasts between
these parameter estimates were used to isolate task-related in-
teractions between networks and brain regions. Although self/
experimenter and perceive/imagine recollection trials were
modeled separately, the major task-related influence on network
activity involved the distinction between semantic baseline and
recollection (irrespective of the type of recollection) (Fig. 1).
Thus, for simplicity, we focused our analysis on this contrast and
collapsed across self/experimenter and perceive/imagine recol-
lection judgments.

S.3. Independent Component Analysis. Component identification. We
used spatial independent component analysis (ICA) to identify
spatially independent, temporally coherent networks of voxels in
the functional data. Spatial ICA is a widely used method for
decomposing high-dimensional functional MRI (fMRI) data into
distinct signal and noise components (2-4), and it has been ap-
plied to consistently identify the default mode network (DMN)
and different external attention system (EAS) components across
diverse experimental paradigms (5-8). A particular advantage of
this method is that it makes no a priori assumptions concerning
the nature of blood oxygenation level-dependent (BOLD) re-
sponses evoked by the task (ie., it is completely data-driven).
This property was desirable for present purposes given variability
and contradictions concerning how the EAS should be best de-
fined. For example, ICA consistently identifies the cingulooper-
cular network (CON) as distinct from the dorsal attention
network (DAN) and frontoparietal systems (6, 9), whereas seed-
based correlation approaches typically include these networks in
one unitary system (10). The differences between the two tech-
niques arise because seed-based techniques identify regions
showing strong functional connectivity with the seed region
alone, whereas ICA identifies regions making a strong contribu-
tion to the network as a whole, while also maximizing spatial
independence between components. This property of ICA en-
sured that our network definitions were not biased by a priori
selection of specific seed regions and allowed a finer-grained
analysis of the specificity of interactions between the DMN and
different EAS components. Examining this specificity is critical
given metaanalytic evidence for functional dissociations between
EAS components (6, 11). Functional dissociations between EAS
components were also evident in our findings.

Spatial ICA was implemented using the Group ICA for fMRI
Toolbox (http://mialab.mrn.org/software/gift/). Briefly, the anal-
ysis proceeded in three broad stages. The dimensionality of the
data was reduced from 195 (the number of time points per session)
to 21 components through a two-step principle components
analysis and subjectwise data concatenation procedure. The
dimensionality of the data (number of components) was deter-
mined by information theoretic criteria (12). A group spatial
ICA was then performed on the concatenated and reduced data
using the Infomax algorithm. Spatial maps and representative
time courses of each component were subsequently estimated for
each subject through back-reconstruction, allowing representation
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of interindividual variation in component anatomy and temporal
dynamics. The resulting output was a series of spatial maps and
representative time courses for each subject, each session, and
each of the 21 estimated components. Both spatial maps and time
courses were calibrated using z scores. As such, voxel intensities in
the spatial maps encoded the degree to which that voxel’s activity
time course was coherent with the overall component time course;
the units in the time course reflected moment-to-moment fluctu-
ations in component activity relative to the session mean. Detailed
descriptions of the methods have been provided elsewhere (2).
Spatial mapping. The spatial anatomy of each component was
characterized by entering the participant-specific spatial maps into
a second-level, one-sample ¢ test to identify voxels with group-
averaged z scores that were significantly different from zero. The
threshold for significance was set using a familywise error rate
correction procedure as implemented in SPM5 (P < 0.05, cluster
extent = 10 voxels). These spatial maps were in combination with
the unthresholded component maps and time courses to identify
the DMN, CON, DAN, left frontoparietal network (LFPN), and
right frontoparietal network (RFPN) based on their known
functional anatomy and comparisons with prior literature (10, 11,
13-15). These five networks could be clearly differentiated from
other components reflecting signal and noise in the data.
Task-related modulation of component time courses. To understand
how activity in the DMN, CON, DAN, LFPN, and RFPN was
modulated by the task, each network’s time course was regressed
against covariates modeling condition-specific activity defined in
the GLM activation analysis (S Text, section S.2). The result was
a series of B-coefficients quantifying the degree to which each
network’s activity covaried with each task condition. To isolate
task-related modulations of network activity specific to contextual
recollection, we compared the magnitude of these p-coefficients for
recollection trials (collapsed across perceive/imagine and self/ex-
perimenter conditions) with the corresponding coefficients for se-
mantic baseline trials using one-way ANOVA. As reported in the
text, this analysis revealed that activity was significantly greater
in recollection than baseline trials in the four EAS components,
whereas DMN activity was greater for baseline compared with
recollection trials.

S.4. Network Interaction Analysis. Functional interactions between
the DMN, DAN, CON, LFPN, and RFPN were characterized
using functional connectivity analysis. Functional connectivity
refers to a statistical dependence between spatially distinct
neurophysiological signals (16). In our analyses, this dependence
was computed using partial correlations between network time
courses, as described below. These analyses were performed
separately to estimate task-unrelated and task-related functional
interactions between networks. This distinction is critical, because
correlations between raw time courses measured during task-based
fMRI can arise for a number of reasons. Primary among these
reasons are task-unrelated, spontaneous, or intrinsic functional
dynamics; task-related, context-dependent modulations of func-
tional coupling; physiological and/or scanner noise; and in-
terregional coactivation induced by the task, which can arise from
independent task-related regional activation in the absence of
direct functional interaction. Our analyses aimed to separate
task-related and task-unrelated components of functional in-
teractions between networks, while controlling for noise-related
effects and coactivation.

Measuring task-unrelated network interactions. Spontaneous fluctua-
tions of the BOLD signal recorded in the absence of an explicit
task are highly organized, showing temporal coherence across
spatially distributed and well-characterized functional networks
of brain regions (17). These correlations persist during task
performance (18), account for a major source of variance in task-
evoked activity (19-21), and are under strong genetic influence
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(22, 23). Thus, these task-unrelated processes putatively reflect
intrinsic interregional synchronization dynamics (17).

We used previously described and validated methods to isolate
task-unrelated interactions between the DMN and the four EAS
networks. Specifically, for each participant, each of the five net-
work time courses of interest was band pass-filtered (0.008 < f <
0.08) to remove very low-frequency confounds, high-frequency
physiological noise and isolate the low-frequency fluctuations
known to dominate spontaneous BOLD signals (24). These tem-
porally filtered time courses were then orthogonalized with re-
spect to the following variables: (i) six head motion parameters
(three translation and three rotation parameters) estimated dur-
ing motion correction of the functional volumes; (if) signal time
courses extracted from spherical seed regions placed in the ce-
rebrospinal fluid (CSF) and white matter; (iii) a mean signal ex-
tracted from a mask of the entire cerebrum; and (iv) all task
regressors (including time and dispersion derivatives) included in
the GLM as well as additional regressors modeling sustained
activity across each task block.

The temporal filtering and correction for head motion, white
matter, CSF, and global signals emulate preprocessing strategies
traditionally used in analyses of spontaneous BOLD signal cor-
relations (25). These methods are routinely used to investigate
anticorrelated interactions between large-scale brain networks
(5, 26, 27). Orthogonalization with respect to the task design
matrix removed as much task-related variance from the network
time courses as possible. Functional connectivity measures de-
rived from the residuals of this correction process have been
shown to yield results comparable with those findings obtained
using task-free, resting-state fMRI data (28), and the method has
been used to link individual differences in task performance to
putative anticorrelated spontaneous dynamics recorded during
the task (5).

Network interactions were estimated as the partial correlation
between each subject’s noise- and task-corrected DMN time
course, tpyn, and each of the four noise- and task-corrected
EAS network time courses, fg4s,, while controlling for the
effects of the remaining three networks [i.€., ri,yy oy, 4r.4s\[1245, 1>
where fr4s5 = {fcon 'pAN, fLFPN, IRFPN - This procedure allowed
us to isolate functional interactions that were specific to each
DMN and EAS component pair.

Orthogonalizing fMRI time series with respect to task design
matrices has often been used to approximate task-unrelated
functional processes that putatively reflect intrinsic neural dy-
namics during task performance (5, 28). We preferred this method
to using a pure resting-state design because we wanted to examine
these processes during performance of the actual task and not
during a completely different psychological context and experi-
mental preparation. This choice is justified by recent evidence
indicating that psychological context can indeed influence func-
tional connectivity measures obtained during resting-state record-
ings (29-31). It is important to note that although the correction
procedure described above is able to reproduce functional
networks observed during resting-state designs with high fidelity,
some differences can be apparent and possibly reflect residual,
unmodeled task-related variance in the data (28). In our analy-
ses, a failure to adequately remove task-related activity would
increase the similarity between task-unrelated and task-related
network interaction measures and reduce our power to detect
differences between the two. As such, our findings may represent
a conservative estimate of the true variation between task-
related and task-unrelated functional dynamics.

Measuring task-related, context-dependent network interactions. Task-
related functional connectivity describes interregional inter-
actions that vary in accordance with changing task conditions (i.e.,
interactions that change from one task condition to the next). As
such, they reflect interregional synchronization dynamics spe-
cifically associated with the cognitive operation(s) being probed

2 of 12


www.pnas.org/cgi/content/short/1204185109

L T

/

D\

v
ar

by the experimental task. It is important, however, to distinguish
these context-dependent effects from task-unrelated, spontane-
ous processes and coactivation effects. The latter may arise
simply because task stimulation drives activity in two different
regions in a similar way, causing their time courses to be
correlated even if the regions do not directly interact with each
other (i.e., the two regions activate independently to the task).

To isolate task-related network interactions while controlling
for such effects, we implemented a correlational technique based
on the logic of psychophysiological interactions (PPI) (32). In a
traditional PPI analysis, a representative activity time course of a
seed region, ¢, is extracted and multiplied by a task regressor of
interest, y, to generate a term reflecting the psychophysiological
interaction between the seed region’s activity and the specified
experimental manipulation. Voxels showing significant co-
variations with the seed region’s task-related activity are then
identified using a GLM of the form (Eq. S1)

yi =1 B+ [twG] - B +ei, [S1]

where y; denotes the activity in voxel i, [; = t; X y (the PPI term
for seed time course #;), G denotes a matrix with columns that
contain covariates of no interest, and e; represents experimental
error. The coefficient f; is the parameter estimate for the PPI term
I;, and f represents the parameter estimates for the main effects
t, w, and . Including the main effect of ¢ in the model controls
for task-unrelated covariance between # and y; and/or any noise-
related processes correlated with . Including the main effect of y
in the model controls for possible coactivation effects induced by
the task waveform. Thus, the model isolates context-sensitive al-
terations in functional coupling, while controlling for task-un-
related functional connectivity, noise, and coactivation effects.

The model defined in Eq. S1 is inherently directional; i.e.,
for any given pair of time series, one must be designated as the
predictor and the other must be designated the response vari-
able. The analysis therefore provides a rudimentary model of
effective connectivity (32) and works well when there are clear
hypotheses about which region might be driving activity in other
areas. However, in cases where no such predictions can be made,
the assignment of one or the other time course to the left- or
right-hand side of Eq. S1 can be arbitrary.

To avoid arbitrary directional assumptions and retain a focus
on analysis of functional rather than effective connectivity be-
tween networks, we used a partial correlation framework to es-
timate task-related, pairwise interactions between the DMN and
the four EAS networks. Specifically, for each pair of networks, we
generated two PPI terms, Ipyn and Ir4s,, by separately multi-
plying the task regressor y with the two network time courses
tpmn and feg4s,, respectively. We then computed the partial cor-
relation 77, 1.5 > Where Z = {tppyn, teas w}. This correlational
PPI (cPPI) approach thus quantifies covariations in task-related
activity modulations of the DMN and each EAS network (the
PPI terms Ipyn and Ig4s,), while controlling for background
fluctuations (and correlated noise processes) in the activity of the
DMN and all four EAS networks (¢pynv and tx4s), as well as any
coactivation effects induced by the task stimulation (y). In our
analyses, our task regressor modeled activity modulations that
were greater during recollection than semantic baseline trials,
consistent with our interest in this particular task manipulation.

When computing the interaction term I for each time series,
we used the deconvolution approach advocated in ref. 33. Spe-
cifically, we used an empirical Bayesian method for hemodynamic
deconvolution of the original BOLD time series, f, to estimate
underlying neuronal activity. This estimated neural signal was then
multiplied by the unconvolved task regressor and reconvolved to
generate a BOLD-level measurement of the neural PPI term.
Computing the PPI interaction term with signals already con-
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volved with a hemodynamic response function is not equivalent
to the hemodynamic convolution of an interaction computed at
the neural level [i.e., (Hy)(Ht) # H(yt), where H is the hemo-
dynamic response function in Toeplitz matrix form]. The de-
convolution step therefore provides a more direct estimate of
interactions between neural activity and the task, because such
interactions occur at the neural rather than hemodynamic level
(additional details in ref. 30). Software for implementing cPPI
analysis is freely downloadable at http://www.psychiatry.unimelb.
edu.au/centres-units/mnc/research/connectivity_software.html.
Addressing motion and other confounds. In our analyses, we accounted
for the potential effects of head motion and other confounds
by analyzing the residuals obtained after regressing our signals of
interest against time courses representing these noise effects,
consistent with widely used protocols (17). Recent work has sug-
gested that such an approach may not be sufficient to remove all
noise-related effects from the data (34, 35). Residual noise effects
are unlikely to impact our findings for several reasons.

First, our main finding, that recollection reaction time (RT) is
correlated with DMN-RFPN #i, and not ni; values, persisted after
we corrected for time courses extracted from all other compo-
nents identified in the ICA. These components represent a variety
of sources of both neural signal and noise, including complex
head motion and physiological artifacts (36). Thus, these effects
cannot explain the observed brain—behavior associations.

Second, our analyses were focused on examining differences
between task-related and task-unrelated components of network
interactions within the same individual and dataset. Thus, any
contributions of head motion or physiological noise to these data
will be equivalent and subtract out in any comparisons.

Third, we reanalyzed the data after controlling for several
additional parameters describing various head motion properties.
Specifically, we computed the number of significant movements
(defined as >0.10 mm relative displacement between adjacent
volumes), mean head displacement, maximum head displacement,
and mean head rotation, as described in ref. 34. The association
between DMN-RFPN #i, and RT values actually strengthened
(p = =0.771, P = 0.005), whereas the association between RT and
ni; was virtually unchanged (p = —0.353, P = 0.26).

S.5. Modularity Analysis. We used graph theoretic techniques (37,
38) and modularity analysis (39-41) to characterize, in more
detail, the roles that individual brain regions played in facilitat-
ing functional interactions between the DMN and RFPN. For
each participant, we modeled interactions between regions com-
prising the DMN and RFPN as a weighted, unthresholded graph
of 34 nodes connected by all possible (34> — 34)/2 = 561 edges. In
all graphs, the nodes represented the different brain regions
constituting each network (20 DMN and 14 RFPN regions), and
they were defined by generating 4-mm-radius spheres centered on
the stereotactic coordinates of each significant cluster maximum
and submaxima in the statistically thresholded component spatial
maps (Fig. 2 4 and E and Table S2). Two separate graphs were
constructed for each participant, representing task-unrelated and
task-related interactions between regions, as estimated using the
methods described above.

Participant-specific modular decomposition. Modularity detection
algorithms enable a data-driven partition of a graph-based rep-
resentation of network connectivity into subgroups of nodes,
termed modules, which show higher connectivity with each other
than with other areas. Identifying the optimal modular decom-
position of a graph is a rich field of inquiry within complex
network science, and many alternative algorithms are available
(reviewed in ref. 42). Typically, these algorithms attempt to
maximize some quality function reflecting the goodness of the
partition. Most commonly, this function reflects the difference
between the degree of observed intramodular connectivity and
the degree expected by chance (40). In our analysis, we used a
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generalization of this definition applicable to unthresholded,
weighted, and signed graphs (39), where the goodness of the
partition was given by (Eq. S2)

1 + + 1 T .
o == zy:(wlj - eij>5MxMr T rv- Z]:(WU ~ G )'51%%-
[S2]

In this formulation, w;; and w;; reflect the positive and negative

connection strengths between nodes i and j, respectively, and

dum; = 1if nodes i and j belong to the same module, M (Sya; =

0 otherwise). The chance-expected positive connectivity between
stst

i

nodes i and j is given by e;. =L, where s reflects the sum of

each node’s positive weights and v* reflects the sum total of
positive weights in the graph. Similarly, the chance-expected

. .. . e . _ S8
negative connectivity between nodes i andj is given by e; = -

The factor -1 rescales the contribution of positive within-module
connectivity to the range [0, 1]. The factor Wiy, rescales the
contribution of negative within-module connectivity in the same
range, while also down-weighting the contribution of negative
relative to positive weights in the final estimation of network
modularity, Q*. This asymmetric weighting is applied, because
positively weighted connectivity directly associates nodes with a
given module (i.e., high positive connectivity between nodes
implies that they serve similar functions and should be assigned
to the same module), whereas negative connection weights in-
directly associate nodes with modules by dissociating them from
other nodes (i.e., high negative connectivity between nodes im-
plies that they serve opposing functions and should be placed in
distinct modules, although a specific modular identity is not nec-
essarily assigned; additional details in ref. 39). By this formulation,
a graph partition maximizing Q* will be one with high positive and
low negative intramodular connectivity between nodes. We used
the Louvain method (43) to find partitions optimizing Q*, as im-
plemented in freely available software (https://sites.google.com/a/
brain-connectivity-toolbox.net/bct/).

Determining the optimal modular decomposition of a graph
is a nontrivial (nondeterministic, polynomial-time hard) problem,
and heuristics are often used to estimate the optimum solution
(42). As a result, severe degeneracies in the final solution can
arise; i.e., the final decomposition may represent one example of
a range of alternative partitions with comparable goodness-of-fit
estimates (44). To account for any potential degeneracies in
our data, we iterated the algorithm 10,000 times for each dataset.
Across these iterations, the number of unique partitions found
was generally very low. For the task-related connectivity networks,
the mode percentage of degenerate partitions found across par-
ticipants was <0.01%, and the maximum was 1.4%; for the task-
unrelated connectivity networks, the mode was <0.01%, and the
maximum was 1.5%. For all datasets, the most frequently found
partition was the partition with the maximal Q* value. These
data strongly suggest that this partition represented the optimum
modular decomposition for each dataset.

Group-level representation of modular architecture. Due to intersubject
variability in brain network organization, the brain’s modular
structure will vary from person to person. Identifying which nodes
are consistently coclassified into the same module and which nodes
show a more variable pattern of module membership, therefore,
represents a critical step in understanding conservation and vari-
ability of brain functional organization across subjects. To this end,
we adapted previously described methods (45) to derive a group-
level characterization of modular architecture. Specifically, we
took the optimal modular decomposition for each subject iden-
tified in the degeneracy analysis described above and constructed
a 34 x 34 coclassification matrix, such that C; = 1 if nodesi andj
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belonged to the same module and C; = 0 otherwise. We then
summed these matrices across subjects to generate a group con-
sistency matrix, G. The weights of this consistency matrix, Gy, re-
flected the number of participants for whom nodes i and j were
classified in the same module (Fig. 2 B and F).

The consistency matrix G was then subjected to a further

modular decomposition. Thus, nodes that were frequently co-
classified in the same module across participants were more likely
to belong to the same module in the decomposition of G. We
iterated the algorithm 10,000 times to test for degeneracies in the
data, although these degeneracies were extremely low (<0.01%
for the task-related data and 0 for the task-unrelated data), pro-
viding confidence in the robustness of the findings. The resulting
partition associated with the highest Q* value was taken as the
optimum modular architecture representative of the entire
sample (Fig. 2 B, C, F, and G).
Node roles. We characterized the roles of each individual node
using cartographic analysis of the modular decomposition of G
(39, 41, 46). In such an analysis, the role that each node plays
within the wider network can be characterized using two mea-
sures: the within-module strength, z, and the diversity coefficient,
h. The within-module strength quantifies each node’s intramodular
connectivity. Formally (Eq. S3),

o = Silmi) = s0mi) [S3]

(;Y(m,)

where m; is the module containing node i, s;(m;) is the intra-
module nodal strength of node i, defined as the sum of the
within-module weights of node i, and 5(m;) and ¢*"") are the
mean and SD of the intramodule strength of all nodes in module
my;, respectively.

The diversity coefficient can be used to characterize how each
node’s connectivity is distributed across different modules, and it
is computed as (Eq. S4)

! > pi(u)logpi (u), [S4]

logm %1

where p;(u) = %, s; (u) is the strength of node i in module u,
and m is the number of modules in the partition M.

In typical applications, nodes with high z are interpreted to
represent local, intramodular information-processing hubs,
whereas nodes with high 4 show a relatively even distribution of
connectivity across all modules (i.e., they support functional in-
tegration between modules). In our analyses, we computed these
measures using edge weights derived from the group consistency
matrix, G. The weights in G do not reflect a direct measure of
connectivity between nodes but rather, the frequency with which
two nodes were coclassified into the same module across sub-
jects. Thus, nodes with high z in our application showed high
classification consistency (i.e., a high probability of being co-
classified with other nodes in the same module relative to the
other nodes). Regions with high z scores therefore represent a
core element of the module to which they belong, showing a
relatively conserved modular identity across subjects. Because of
their conserved nature, these modules are also likely to represent
connectivity hubs within their module. Nodes with high # showed
high classification diversity; i.e., they showed a more equal proba-
bility of being coclassified with nodes assigned to different modules
because their modular identity was variable from person to person.
Thus, these regions retained high levels of connectivity with nodes
assigned to diverse modules across participants, consistent with
a role in facilitating functional integration between modules.

We focused our analysis of node roles on the group consistency
matrix data rather than individual differences in participant-
specific values, because the number of modules found from subject
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to subject was variable. This variability can influence resulting
network measures. The best way of accounting for such variability
is unclear (preliminary work in this area is in ref. 47).

S.6. Analysis of Brain-Behavior Correlations. Associations between
network interaction values and behavioral performance during
recollection trials were computed using Spearman’s rank corre-
lation. The significance of each observed association was tested
against an empirical null distribution obtained by 5,000 permu-
tations of the data. To control type I error rates, correlations
were declared significant only if they survived a Bonferroni
correction of a = 0.05/4 = 0.013, because interaction values
between four network pairs were tested for association with each
behavioral measure. Differences between correlation coefficients
were tested using the Dunn and Clark statistic, ZI* (48).

To test for associations between recollection RT and node-
specific connectivity measures, we computed, for each participant,
the total nodal strength of each of the 34 nodes studied in the
modularity analysis (Fig. 2 and Table S2). This measure is a
commonly used index of the strength of each node’s connectivity
with the rest of the network, and it is formally defined as (Eq. S5)

1
Si :m ZWU7 [SS]

JEN

where w;; represents the absolute connectivity weight between
nodes i and j, and N represents the total number of nodes.

Individual differences in the connectivity strength of each node
were correlated with recollection RT using the same procedure
described above. No significant associations were found, even
when using a relatively liberal threshold of P < 0.05, uncorrected.
Similarly, no associations were found when using strength mea-
sures computed separately for positive and negative connectivity
weights. These results suggest that task performance was specifi-
cally associated with the large-scale collective dynamics of the
DMN and RFPN rather than the contributions of any individual
brain region.

S.7. Results. Behavioral analysis. RTs were significantly slower during
recollection (M = 1,730.8 ms; SD = 209.44 ms) than semantic
baseline trials [M = 1,090.2 ms; SD = 166.89 ms; ¢ (15) = —15.82,
P < 0.001], consistent with the greater demand placed on memory
retrieval processes during the former condition. The variance in
accuracy measures (percentage correct) during baseline trials was
not sufficient to allow statistical analysis, because all participants
were at ceiling (median = 0.99, interquartile range = 0.02), al-
though it was, on average, higher than in recollection trials (me-
dian = 0.83, interquartile range = 0.10).

Individual differences in task-related and task-unrelated network
interactions. Fig. S2 illustrates the individual variability of task-
unrelated and task-related network interaction estimates for each
DMN-EAS component pair. Estimates derived using raw net-
work time courses are presented for comparison (the only pro-
cessing applied to these data was a high-pass filter with a cutoff
at 0.008 Hz to remove low-frequency noise). As can be seen,
functional interactions between the DMN and each EAS com-
ponent varied considerably across individuals and in a network-
and context-specific manner.

In general, a range of positive and negative network inter-
actions were observed for functional connectivity between the
DMN and CON and DMN and RFPN, indicating that these
network pairs interacted competitively for some participants and
cooperatively for others. In contrast, there was a strong trend for
DMN-LPFN interactions to be cooperative and DMN-DAN
interactions to be competitive for most participants. These gen-
eral trends were, however, modulated by whether the task-un-
related or task-related component of network interactions was

Fornito et al. www.pnas.org/cgi/content/short/1204185109

being assessed. In particular, both DMN-DAN and DMN-RFPN
task-related interaction values, ni;, were significantly higher than
task-unrelated interactions, ni;. For the DMN-DAN pair, this
finding reflected an attenuation of the average degree of anti-
correlation apparent in task-unrelated interactions [e.g., median
nig = —0.50; median ni, = —0.14; t (15) = =9.61, P < 0.001]. For
the DMN-RFPN pair, the sample average functional connectivity
shifted from negatively to positively correlated when moving from
task-unrelated to task-related estimates [median ni; = —0.10;
median ni, = 0.11; ¢ (15) = =5.87, P < 0.001]. Although a range
of both positive and negative values was observed for both task-
unrelated and task-related DMN-RFPN interactions, this shift to
more positive ni, values is consistent with our brain-behavior cor-
relations, suggesting that cooperative, context-dependent inter-
actions between these networks facilitate better task performance.

DMN-CON interactions were relatively constant across task-
unrelated and task-related components, suggesting relatively
little contextual modulation of functional interactions between
these networks. On average, interactions between the DMN and
LFPN were cooperative, and there was a trend for ni; to be
higher than ni, values [t (15) = 2.07, P = 0.06). This finding
highlights substantial differences in the way in which the left- and
right-lateralized aspects of the frontoparietal system interact
with the DMN and how these interactions are modulated by task
context. This result, combined with our finding of a specific as-
sociation between DMN-RFPN i, values and recollection RT,
supports our analysis of the LFPN and RFPN as distinct func-
tional networks.

Collectively, these results highlight three important points: (i)
there is substantial individual variability in terms of whether any
given pair of networks interacts competitively or cooperatively;
(ii) there is considerable diversity of interactions between the
DMN and different components of the EAS; and (iii) complete
characterization of this diversity requires a distinction between
task-related and task-unrelated components of the functional
interactions between networks. In particular, interactions be-
tween the DMN and DAN and DMN and RFPN showed sig-
nificant differences in task-related and task-unrelated interaction
values, suggesting that functional connectivity between these
network pairs was particularly affected by task performance.
Reanalysis of the data using nonparametric statistics (Wilcoxon’s
signed rank test) generally yielded the same results (the only
notable variation was that the difference between ni, and ni,
for DMN-LFPN interactions changed from trend-level to barely
significant; i.e., from P = 0.06 to P = 0.049), indicating that
outliers or violations of parametric assumptions did not drive the
findings.

One concern is that the above differences reflect the global
signal correction procedure implemented when estimating task-
unrelated network interactions. We used this step to emulate
traditional preprocessing strategies in resting-state analyses, but
the procedure is known to enhance the degree of anticorrelation
between DMN and EAS regions (27, 49). We therefore repeated
the analyses using measures of task-unrelated network inter-
actions that were not corrected for the global mean signal (Fig.
S3). The results for comparisons between task-related and task-
unrelated network interactions were similar; the major variations
were that the difference between DMN-RFPN ni; and ni,
reached significance (P = 0.02), whereas the differences between
raw and task-unrelated network interactions for the DMN-DAN
and DMN-RFPN pairs were no longer significant (P = 0.08 and
P = 0.12, respectively). The correlation between recollection RT
and DMN-RFPN ni; was still not significant when ni; was esti-
mated without global signal correction. This finding was the case
after correcting for covariance with signals from the CON,
LFPN, and DAN components (p = —0.42, P = 0.11) as well as
after correcting for covariance with all other components iden-
tified in the ICA (p = —0.06, P = 0.83).
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Study Phase Test Phase

SUBJECT
Laurel

Laurel and Hardy

1=seen 2 =imagined

EXPERIMENTER
bacon

bacon and ?

1=seen 2 =imagined

SUBJECT

Romeo

Romeo and ?

1 = self 2 = experimenter

EXPERIMENTER
rock
rock and roll

1 = self 2 = experimenter

Fig. S1. Example of task stimuli used during the study (Left) and test (Right) phases. [Reproduced with permission from ref. 1 (Copyright 2008, MIT Press
Journals).]
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Fig. S2. Box-and-whisker plots illustrating the range of network interaction values observed for each network pair computed using raw network time courses
(red), the task-unrelated, putative spontaneous component of these time courses (green), or the task-related component (blue). The central lines in each box
represent the sample median, and the boxes represent the interquartile range. Whiskers mark the 5th and 95th percentiles; colored asterisks indicate values
beyond this range. Thick horizontal lines indicate differences significant at P < 0.05. *P < 0.01; **P < 0.001. CON, cinguloopercular network; DAN, dorsal
attention network; DMN, default mode network; LFPN, left frontoparietal network; RFPN, right frontoparietal network.
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Fig. S3. Box-and-whisker plots illustrating differences between raw, task-related, and task-unrelated (putative spontaneous) network interaction values,
where task-unrelated interaction values have been estimated without global signal correction (raw and task-related interaction values remain unchanged from
Fig. S2). The central lines in each box represent the sample median, and the boxes represent the interquartile range. Whiskers mark the 5th and 95th per-
centiles; colored asterisks indicate values beyond this range. Thick horizontal lines indicate differences significant at P < 0.05. **P < 0.001. CON, cinguloo-
percular network; DAN, dorsal attention network; DMN, default mode network; LFPN, left frontoparietal network; RFPN, right frontoparietal network.
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Fig. S4. Scatterplots of the association between recollection RT and DMN-RFPN interaction values. A shows the association between RT and task-unrelated
interaction values computed after correcting for covariance with signals from the CON, DAN, and LFPN components. B shows the association between RT and
task-related interaction values corrected in the same way. C and D show the associations between RT and task-unrelated and task-related interaction values,
respectively, after correcting for covariance with signals from all other components estimated in the ICA.
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Table S1. Regions showing significant group-averaged functional connectivity within each ICA

component
Region X y z Size (voxels) V4
CON
L anterior insula 36 12 -3 443 7.59
R dorsal anterior cingulate cortex 3 33 27 1,188 7.40
R anterior insula -45 12 -6 530 6.35
R midbrain -3 -18 3 245 6.23
R caudate 15 9 15 70 6.05
L midcingulate cortex -6 =21 33 60 5.79
R middle frontal gyrus 30 51 18 25 5.61
L precentral sulcus -39 -3 51 25 5.35
L middle frontal gyrus -30 51 24 40 5.22
R precentral sulcus 33 -3 54 10 5.15
DAN
L intraparietal sulcus -27 —69 39 1,093 7.30
R intraparietal sulcus 33 -45 48 926 6.72
R posterior superior temporal sulcus 51 -42 15 18 5.89
L frontal eye fields -48 6 30 39 5.72
L dorsal precentral sulcus =27 -6 63 30 5.50
L cuneus -12 -102 3 1 5.22
LFPN
L intraparietal lobule -45 -66 39 818 7.19
L middle temporal gyrus -60 —45 -6 264 6.90
L inferior frontal gyrus -48 18 24 871 6.58
L dorsomedial prefrontal cortex -6 36 42 267 6.45
L precuneus -3 -63 39 29 6.00
L frontal operculum -36 18 -18 10 5.48
L precuneus -9 -45 39 12 5.46
RFPN
R intraparietal lobule 54 -45 45 804 7.48
R precuneus 6 -72 48 72 6.92
R inferior frontal gyrus 36 48 -3 845 6.52
L superior parietal lobule -39 =51 48 65 6.02
R anterior insula 39 24 -6 19 5.66
R dorsal posterior cingulate cortex 6 -39 39 34 5.56
R middle temporal gyurs 63 -36 -6 21 5.52
R inferior frontal gyrus 54 21 15 10 5.50
R middle frontal gyrus 21 57 24 13 5.32
DMN
Anterior medial prefrontal cortex 0 63 15 2,378 >9
R posterior cingulate cortex 3 =51 27 234 6.75
L midcingulate cortex -3 -18 39 65 6.38
R angular gyrus 54 -57 36 79 6.17
L angular gyrus -45 -57 33 84 6
L frontal operculum -36 27 -15 35 5.54
R frontal operculum 42 27 -15 32 5.46

CON, cinguloopercular network; DAN, dorsal attention network; DMN, default mode network; L, left hemi-
sphere; LFPN, left frontoparietal network; R, right hemisphere; RFPN, right frontoparietal network.
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Table S2. Names and coordinates of regions of interest studied in the modularity analysis

Region Abbreviation* X y z

RFPN
L superior parietal lobule L SPL -39 -51 48
L inferior parietal lobule L IPL =51 —-45 48
R dorsal posterior cingulate cortex R dPCC 6 -39 39
R precuneus R PCUN 6 -72 48
R anterior superior frontal gyrus R aSFG 21 57 24
R posterior middle frontal gyrus R pMFG 36 9 51
R anterior inferior frontal gyrus R alFG 36 48 -3
R anterior insula R aINS 39 24 -6
R anterior middle frontal gyrus R aMFG 45 45 15
R superior parietal lobule R SPL 48 -42 51
R anterior angular gyrus R aANG 51 -51 36
R inferior parietal lobule R IPL 54 -45 45
R posterior inferior frontal gyrus R pIFG 54 21 15
R middle temporal gyrus R MTG 63 -36 -6

DMN
L posterior cingulate cortex’ L PCC -2 -57 21
L subgenual prefrontal cortex* L sgPFC -2 6 -12
L medial prefrontal cortex® L mPFC -2 63 15
L midcingulate cortex L MCC -3 -18 39
L paracentral lobule L PCL -3 -30 51
L ventral posterior cingulate cortex L vPCC -6 -57 9
L ventral insula L vINS -30 18 -15
L middle frontal operculum L mFOP -36 27 -15
L angular gyrus L ANG —-45 -57 33
L frontal operculum L FOP -48 27 -12
R ventral posterior cingulate cortex" R vPCC 2 -57 21
R subgenual prefrontal cortex* R sgPFC 2 6 -12
R medial prefrontal cortex® R mPFC 2 63 15
R posterior cingulate cortex R PCC 3 =51 27
R pregenual anterior cingulate cortex R pgACC 3 48 3
R dorsomedial prefrontal cortex R dmPFC 3 54 21
R orbitofrontal cortex R OFC 33 21 =21
R frontal operculum R FOP 42 27 -15
R angular gyrus R ANG 54 -57 36
R posterior middle temporal gyrus R pMTG 54 -63 21

DMN, default mode network; L, left hemisphere; R, right hemisphere; RFPN, right frontoparietal network.
*Abbreviations correspond to the region of interest (ROI) abbreviations used in Fig. 2.
"*5These regional pairs were created from an original single cluster maximum located at x = 0. To avoid generating
an ROI centered on the midline, where CSF is prevalent, two ROIs were instead created and symmetrically placed
2 mm from the midline with the same y and z coordinates.
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