Supporting Information

Jeong et al. 10.1073/pnas.1204302109

Fig. S1. Feeding of free-living *Symbiodinium* cells on diverse prey. Light microscopy images showing *Symbiodinium* cells (Sm) feeding on the haptophyte *Isochrysis galbana* (Ig; A), the cryptophyte *Teleaulax* sp. (Te; B), the cryptophyte *Rhodomonas salina* (Rs; C), and the dinoflagellate *Amphidinium carterae* (Ac; D and E) using a peduncle (arrows). (Scale bars: $5 \mu m$.)

Fig. S2. Host coral and feeding of cultured *Symbiodinium* acquired from the tissues of the coral *Alveopora japonica* on diverse prey. (*A*–*C*) *A. japonica* with many polyps collected by a diver at a depth of ~6 m off Sindo, Jeju Island, Korea, in August 2011. Photos were taken with a digital camera. (*D*) Motile cells of cultured *Symbiodinium* originally isolated from the coral. (*E*–*H*) Scanning images obtained from the upper and lower surfaces by epifluorescence microscopy (EFM), showing a *Symbiodinium* cell containing four ingested bacterium-sized fluorescent beads (1 µm diameter; bright-blue inclusion, arrows). EFM was used to ensure that the beads were located inside the protoplasm of the *Symbiodinium* cell. (*I* and *J*) Between one and three ingested fluorescently labeled bacteria (bright-yellow or greenish inclusions, arrows) inside the protoplasm of *Symbiodinium* cells observed under EFM. (*K* and *L*) Ingested fluorescently labeled *Synechococcus* sp. (bright-yellow or greenish inclusions, arrows) inside the protoplasm of *H. akashiwo* (Ha) was sucked by a *Symbiodinium* cell (Sm) on an *Heterosigma akashiwo* cell (Ha). (*M*) A chloroplast of *H. akashiwo* (Ha) was sucked by a *Symbiodinium* cell (Sm) through a peduncle (arrow). (*N*) A *Symbiodinium* cell (Sm) sucking materials (arrows) from an *H. akashiwo* cell (Ha) through a peduncle. (*O*) Collapse and bursting of the prey cell. (Scale bars: 5 mm for *A*–*C*, 5 µm for *D* and *M*–*O*, 2 µm for *I* and *J*, and 1 µm for *E*–*H*, *K*, and *L*.)

	Equivalent spherical	Initial prey concentration,	Feeding by
Species	diameter, μ m (± SD)	cells mL ⁻¹	Symbiodinium
Bacteria			
Heterotrophic bacteria	0.9 (0.3)	7,000,000	Y
Synechococcus sp.	1.0 (0.2)	7,000,000	Y
Diatoms			
Skeletonema costatum	5.9 (1.1)	150,000	Ν
Prymnesiophyceae			
Isochrysis galbana	4.8 (0.2)	150,000	Y
Cryptophytes			
Teleaulex sp.	5.6 (1.5)	100,000	Y
Rhodomonas salina	8.8 (1.5)	50,000	Y
Rhaphidophytes			
Heterosigma akashiwo	11.5 (1.9)	30,000	Y
Mixotrophic dinoflagellates			
Heterocapsa rotundata (T)	5.8 (0.4)	100,000	Y
Amphidinium carterae (NT)	9.7 (1.6)	30,000	Y
Prorocentrum minimum (T)	12.1 (2.5)	15,000–20,000	Ν
Heterocapsa triquetra (T)	15.0 (4.3)	15,000–20,000	Ν
Scrippsiella trochoidea (T)	22.8 (2.7)	10,000–20,000	Ν
Cochlodinium polykrikoides (NT)	25.9 (2.9)	1,000–3,000	Ν
Prorocentrum micans (T)	26.6 (2.8)	1,000–3,000	Ν
Akashiwo sanguinea (NT)	30.8 (3.5)	1,000–3,000	Ν
Gonyaulax polygramma (T)	32.5 (5.4)	1,500–3,000	Ν
Alexandrium tamarense (T)	32.6 (2.7)	1,000–3,000	Ν
Lingulodinium polyedrum (T)	38.2 (3.6)	1,000–3,000	Ν
Microbeads			
0.5-μm bead	0.5	1,000,000	Y
1-μm bead	1	1,000,000	Y
2-μm bead	2	1,000,000	Y
3-μm bead	3	1,000,000	Ν
4-μm bead	4	1,000,000	Ν

Table	S1.	Таха,	sizes,	and	concentrations	of	prey	species	offered	as	food	to	free-living
Symb	iodini	um sp.	(clade	E) and	d microbeads in	exp	erimei	nt 1					

To confirm that the predators did not ingest certain prey species, additional higher prey concentrations were provided. Y, *Symbiodinium* fed on a living food cell; N, *Symbiodinium* did not feed on a living food cell. The mean equivalent spherical diameters for algae and bacteria were measured with an electronic particle counter (Coulter Multisizer II) and under an epifluorescence microscope, respectively (n > 2,000 for each algal species and n > 30 for each bacterium). The abundance of the predator for each target prey was 2,000–5,000 cells mL⁻¹. T, thecate; NT, nonthecate.

 Table S2. Duration of each stage of the feeding process of freeliving Symbiodinium on H. akashiwo prey

Stage	n	Time, s, range	Time, s, mean \pm SE
1	10	2.0-4.0	3.1 ± 0.2
2	10	540-1,140	812 ± 53
3	10	50–470	260 ± 31
4	5	185–520	315 ± 50

Stage 1: The *Symbiodinium* cell deployed a tow filament and attached a peduncle to a prey cell. Stage 2: The *Symbiodinium* cell fed on the prey cell with spinning. Stage 3: The *Symbiodinium* cell stopped spinning, continued to suck chloroplasts from prey cell, and caused the prey cell to burst. Stage 4: The *Symbiodinium* cell sucked more chloroplasts from the burst *H. akashiwo* cell.

SANG SANG

Table S3. Nitrogen acquisition of free-living Symbiodinium from the algal prey Synechococcus sp. and Heterosigma akashiwo

Prey species	Nutrition condition	I _{max} , prey cells <i>Symbiodinium</i> ⁻¹ d ⁻¹	NPA, pg N cell ⁻¹	ANPD, pg N <i>Symbiodinium</i> ⁻¹ d ⁻¹	NPP, pg N Symbiodinium ⁻¹	% body N of Symbiodinium	Reference
Synechococcus sp.	Replete	127	0.05	6.4	21	30	This study
H. akashiwo	Replete	1.2	13	15.6	21	74	This study
H. akashiwo	F-N	3.7	13	48.1	21	229	This study
H. akashiwo	F-NP	1.7	13	22.1	21	105	This study

ANPD, acquired nitrogen by a predator cell per day; F-N, nitrate depletion; F-NP, both nitrate and phosphate depletion; I_{max}, maximum ingestion rate; NPA, nitrogen content per algal prey cell; NPP, nitrogen content per predator cell used in each experiment; % body N of *Symbiodinium*, percentage of daily acquired nitrogen to the predator's body nitrogen. NPA and NPP for *Synechococcus* sp. and *Symbiodinim* sp. were obtained from Bertilsson et al. (1) and Domotor and D'Elia (2). Bold: Measured value.

1. Bertilsson S, Berglund O, Karl DM, Chisholm SW (2003) Elemental composition of marine Prochlorococcus and Synechococcus. Implications for the ecological stoichiometry of the sea. Limnol Oceanogr 48:1721–1731.

2. Domotor SL, D'Elia CF (1984) Nutrient uptake kinetics and growth of zooxanthellae maintained in laboratory culture. Mar Biol 80:93-101.

Table S4. Nitrogen acquisition of Symbiodinium spp. from dissolved inorganic nitrogen and urea

Nitrogen type	NUC-1, 10 ^{–16} mol N <i>Symbiodinium^{–1}min^{–1}</i>	NUC-2, pmol N Symbiodinium ⁻¹ d ⁻¹	ANPD, pg N Symbiodinium ⁻¹ d ⁻¹	NPP, pg N Symbiodinium ⁻¹	% body N of Symbiodinium	Reference
Ammonium	11.99	1.727	24.2	21	115	(1)
Ammonium		0.507	7.1	21	34	(2)
Nitrate	2.33	0.336	4.7	21	22	(1)
Nitrate	0.55	0.079	1.1	19	6	(3)
Nitrite	2.88	0.415	5.8	21	28	(1)
Urea		0.0024*	0.034	21	0.2	(4)

ANPD, acquired nitrogen by a predator cell per day; NPP, nitrogen content per predator cell used in each experiment; NUC, nitrogen uptake by a *Symbiodinium* cell in a time; % body N of *Symbiodinium*, percentage of daily acquired nitrogen to the predator's body nitrogen. Bold: Measured value. *Calculated from a maximum nitrogen uptake rate of 0.1 nmol N cm⁻²h⁻¹ obtained from Grover et al. (4).

1. D'Elia CF, Domotor SL, Webb KL (1983) Nutrient uptake kinetics of freshly isolated zooxanthellae. Mar Biol 75:157-167.

2. McAuley PJ, Smith VJ (1995) Effect of diel photoperiod on nitrogen metabolism of cultured and symbiotic zooxanthellae. Mar Biol 123:145-152.

3. Domotor SL, D'Elia CF (1984) Nutrient uptake kinetics and growth of zooxanthellae maintained in laboratory culture. Mar Biol 80:93–101.

4. Grover R, Maguer J-F, Allemand D, Ferrier-Pages C (2006) Urea uptake by the sceractinian coral Stylophora pistillata. J Exp Mar Biol Ecol 332:216–225.

Table S5. Estimated removal of *Synechococcus* spp. (prey) by free-living *Symbiodinium* cells (predators) over 1 h at different prey and predator densities in the waters of Lizard Island, Australia

<i>Synechococcus</i> density, cells mL ⁻¹	Symbiodinium density, cells mL^{-1}	IR	PIR	% (h)	
5,000	47	0.067	3	0.1	
5,000	444	0.067	30	0.6	
5,000	810	0.067	54	1.1	
5,000	1,357	0.067	91	1.8	
5,000	2,266	0.067	152	3.0	
118,000	47	1.231	58	0.05	
118,000	444	1.231	547	0.5	
118,000	810	1.231	997	0.8	
118,000	1,357	1.231	1,670	1.4	
118,000	2,266	1.231	2,789	2.4	
200,000	47	1.797	84	0.04	
200,000	444	1.797	798	0.4	
200,000	810	1.797	1,456	0.7	
200,000	1,357	1.797	2,439	1.2	
200,000	2,266	1.797	4,072	2.0	

IR, ingestion rate (prey eaten Symbiodinium⁻¹h⁻¹); PIR, population ingestion rate (prey eaten ml⁻¹ h⁻¹); % (h), percentage of removed prey cells relative to the initial prey density over 1 h. Data on densities were obtained from Moriatry et al. (1) and Littman et al. (2).

1. Moriarty DJW, Pollard PC, Hunt WG (1985) Temporal and spatial variation in bacterial production in the water column over a coral reef. Mar Biol 85:285-292.

2. Littman RA, van Oppen MJH, Willis BL (2008) Methods for sampling free-living Symbiodinium (zooxanthellae) and their distribution and abundance at Lizard Island (Great Barrier Reef). J Exp Mar Biol Ecol 364:48–53.

,