Supporting Information For

Silicon Nanowires with High-k Hafnium Oxide Dielectrics for Sensitive Detection of Small Nucleic Acid Oligomers

Brian R. Dorvel^{*12,4}, J. Bobby Reddy, Jr^{*1,2}, Jonghyun Go, Carlos Duarte Guevara^{1,2}, Eric Salm^{1,3}, Nima Jokilaakso, Muhammad Ashraful Alam⁴, and Rashid Bashir^{1,2,3,^}

 ¹Micro and Nanotechnology Lab, ²Department of Electrical and Computer Engineering,
³Department of Bioengineering, ⁴Department of Biophysics and Computational Biology, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801

⁴School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN. 47906

The measured leakage current from the device to the fluid gate (Ifg) over time for a nanowire.

Figure S2.

Id-Vg transfer curves of the surface functionalization process with PLL (9-14K) and probe DNA. The changes in surface potential from the reference HfO_2 (inset) show a negative shift for the PLL deposition and a corresponding postive shift for the probe immobilization. The deposition of PLL shifts the threshold voltage to the left by ~160mV, relative to the HfO₂ reference. The probe DNA immobilization shifts the threshold voltage back to the right by ~90mV, relative to the PLL functionalization.

The change in surface potential of probe DNA conjugation to nanowires (w=100nm) and nanoplates (w= $2\mu m$) for different surface functionalization procedures. Probe DNA was spotted in a 10uM concentration for each of the different surface chemistries for a direct comparison.

The change in surface potential from I_d -V_g curves for miR-10b target hybridization to probe DNA on nanoplate (w=2µm) devices. The error bars represent the variance for n=3 devices, swept 5 times each. The procedure for measuring the devices and the target hybridization can be found in the methods section of the paper for device sensing.