
1 
 

Materials and methods 

Compilation of exons and alternative splicing events 

We built an alternative splicing database by aligning RefSeq, mRNA and EST sequences to the 

mouse genome (coverage >50% and identity >95%).  Splicing graphs were employed to extract 

exons, introns and typical types of alternative splicing events as described previously (S1).  To 

further improve the comprehensiveness of the collection of exons, we included all Refseq/UCSC 

Known Gene exons (S2), in addition to the GU/AG internal exons from our database, resulting in 

a non-redundant set of 274,309 exons in total.  Alternative splicing events used in our Bayesian 

network analysis consist of 13,357 cassette exons (CASS), 3,262 events of tandom cassette exons 

(TACA, 7,531 exons), 682 events of mutually exclusive exons  (MUTX, 1,458 exons), 4,728 

alternative 5´ splice site events (ALT5), 6,355 alternative 3´ splice site events (ALT3), 4,838 

alternative polyA/5´ splice site usage events (APA5), and 2,273 alternative polyA/3´ splice site 

usage events (APA3) (See table S5 for the diagram of each type).  All these events use GU/AG 

splice sites. For each exon, we added annotations of alternative splicing in mouse, as well as the 

conservation of alternative splicing patterns in human and rat, which were mapped to the mouse 

genome by the program liftOver obtained from the UCSC Genome Browser (S2).  

We also compiled candidate exons with a high level of cross-species sequence conservation, but 

not annotated in the mouse genome.  More specifically, we combined all exons mapped from 

human and rat (compiled using the same method as for mouse), and exons predicted by NSCAN 

(S3) and exoniphy (S4). Redundancies were removed and only exons whose coordinates did not 

match known mouse exons were kept.  

 

Genomic mapping of HITS-CLIP tags generated by Illumina 1G sequencer  

HITS-CLIP experiments were performed as previously described and sequenced by the Illumina 

platform (See table S1 for a summary) (S5-7).  Raw reads of 32 nt in length obtained from some 

earlier experiments (datasets 2, 3, 8 in table S1) were filtered to keep only those with an average 

quality score ≥20 due to a relatively high sequencing error rate of the platform, which was 

improved during this study.  Reads (CLIP tags) were mapped to the mouse genome (mm9) by the 

ELAND program included in the Illumina Genome Analyzer pipeline.  To increase sensitivity, 
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each read was trimmed iteratively at the 3´ end and aligned using different sizes from 25 to 32 nt, 

requiring ≤ 2 mismatches.  A read was kept for analysis only if it was mapped to an unambiguous 

locus.  If unambiguous mapping was possible with different sizes, the one with minimum 

mismatches and maximum size was kept.  For each individual CLIP experiment, we further 

collapsed tags with the same starting genomic coordinates to remove potential RT-PCR 

duplicates, and identify unique tags for further analysis. 

 

Clustering of HITS-CLIP tags 

A two-state hidden Markov model (HMM) (S8) was used to define CLIP clusters.  The algorithm 

first calculated the number of overlapping CLIP tags at each nucleotide position, and then 

sampled the resulting CLIP tag coverage profile at a 5-nt resolution.  This sampled profile was 

used to segment the genome into CLIP clusters and non-cluster regions, as represented by the two 

states, “+” and “-”, respectively (fig. S2A).  To reduce computation, we first partitioned the 

genome into segments by grouping neighboring reads ≤ 200 nt apart.  Only segments with ≥2 

reads were kept for further analysis (termed g200_2 set, 386,723 segments, mean 224 nt, median 

134 nt, std 328 nt).  We then ran HMM for two rounds.  

In the first round, a positive training set was generated by an initial clustering procedure to group 

together neighboring reads ≤ 20 nt apart. This resulted in 56,840 clusters with ≥ 10 reads (median 

147 nt, std 149 nt), from which a nonparametric distribution of CLIP coverage for the “+” state 

was estimated.  Since the g200_2 set was very loosely defined, and thus robust CLIP-positive 

regions were expected to be a small proportion of all the segments, we used the whole set as a 

proxy to estimate the distribution of the background CLIP tag coverage for the “-” state.  The 

average length of the positive set, μ[+], was also estimated from the initial clusters (176 nt, 

corresponding to 35.2 sampled values at the 5-nt resolution); the average length of the negative 

set, μ[-], was empirically set to be 20 × μ[+] (3525 nt, 704.9 sampled values).  The two averages 

were used to estimate the transition probabilities between the states.  The HMM was then trained 

and a Viterbi algorithm was used to infer the hidden states.  

In the second round, the positive and negative training sets were refined.  The predicted CLIP 

clusters in the first round were used as the positive training set.  Segments harboring predicted 

clusters were removed from the g200_2 set and the remaining segments were used as the negative 
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training set.  The refined parameters were shown in fig. S2 A and B.  The rest was the same as in 

the first round. 

The two-round procedure is conceptually similar to the Baum-Welch algorithm (S8), an iterative 

method to decompose unlabeled data and to estimate model parameters.  In our case, the results 

are very robust using reasonably chosen parameters in a wide range, and the predictions from the 

first and second rounds are also very similar, so the computationally intensive iterations can be 

avoided.  The resulting clusters were ranked by peak height (PH), i.e., the number of tags in the 

position with the highest coverage. 

 

Ab initio prediction of Nova-bound YCAY clusters 

Many RNA-binding proteins, including Nova, bind clusters of short and frequently degenerate 

motifs, which are difficult to characterize and predict using consensuses or position weight 

matrices of individual motifs.  These concerns were partially addressed in our previous algorithm 

to predict Nova-bound YCAY clusters, although it was based on a set of heuristic rules derived 

from a small subset of Nova target exons, and was not optimized for global prediction (S9).  To 

improve the accuracy, we developed a hidden Markov model  (HMM) (S8) for ab initio Nova-

bound YCAY cluster prediction.  This model took advantage of a large number of in vivo Nova-

binding sites defined by HITS-CLIP data to optimize model parameters and evaluate the 

performance, but not for prediction.  Details of model design, evaluation and comparison with the 

previous heuristic approach will be described elsewhere.  Briefly, three types of essential features 

were characterized to improve signal-to-noise ratios.  Clustering of YCAY elements were 

explicitly modeled by the distance between neighboring elements and also the number of 

elements in each cluster.  The conservation of each YCAY element was measured by a branch 

length score (BLS) (S10), which took the divergence among species into consideration, and was 

effective in predicting Fox targets (S11); twenty mammalian species were used for this 

calculation (S12).  Accessibility or single-strandedness is the probability of each YCAY element 

located in single-stranded regions (estimated by RNAplfold (S13)), which was also included in 

the model because of the distinct distribution observed around CLIP clusters (fig. S2F; also see 

descriptions below).  The model took YCAY elements (represented by these features) in each 

sequence as input and predicted YCAY clusters ranked by a log-likelihood ratio: 
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Log [P(feature| cluster)/P(feature|non-cluster)]. 

To give an unbiased assessment of the prediction accuracy, we split the whole dataset randomly 

into two halves.  Two models were then trained on one half of the data, and tested on the other 

half, and vice versa.  The specificity and sensitivity of the pooled predictions were evaluated by 

comparing predicted YCAY clusters with the footprint regions (i.e., +/- 50 nt around CLIP cluster 

peak) of robust CLIP clusters, to get the standard receiver operating characteristic (ROC) curve 

(fig. S3).  To do this, a subset of ~2000 non-repetitive CLIP clusters with PH≥ 15 and located in 

internal exons with 1kb extension on both sides was used as a surrogate of the true positive 

dataset.  To define a true negative set, we randomly picked the same number of 100-nt sequences 

from exons with 1kb extension on both sides without any CLIP tags.  We call a region predicted 

as positive if an overlapping YCAY cluster above certain thresholds exists, and negative 

otherwise.  Note that ROC curves usually compare the whole range of specificity and sensitivity 

between 0 and 1.  However, there is an intrinsic threshold in the Viterbi algorithm, so that the 

sensitivity of HMM-based predictions never reaches 1 in our case.  Nevertheless, this does not 

affect the comparison in performance, because only the region on the left side is of interest to 

have a reasonably high specificity.   

After ensuring the effectiveness of the method, a full model was trained on the complete dataset 

to predict the Nova-bound YCAY clusters described in this study.   

 

Processing of Affymetrix exon and exon-junction array data 

Splicing changes between wild-type (WT) and Nova knockout (KO) mouse brains (or spinal 

cords) were measured by Affymetrix Exon Array ST 1.0 (S14) or custom Affymetrix exon 

junction arrays, as described previously (S5, 15); either Nova2 KO mice or Nova1/2 double KO 

(dKO) mice were used (See table S2 for a summary).  Exon-junction array data were analyzed by 

ASPIRE2, as described previously (S5).  This algorithm reports a ∆I for each alternative exon, 

which represents the proportional change of exon inclusion (e.g., a change from 60% inclusion in 

WT brains to 20% inclusion in Nova KO brains gives ∆I=0.4).  

For Affymetrix exon arrays, exon intensities and gene intensities were summarized using 

extended probe sets and core probe sets, respectively.  This was done by the PLIER/IterPLIER 
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model implemented in Affymetrix power tools (APT).  Normalized exon intensities were derived 

by subtracting gene intensities from exon intensities in the log2 scale (with a pseudo count of 8 

for log2 transformation).  The statistical significance of splicing changes between WT and KO 

mice was evaluated by the empirical Bayes method (a regularized t-test) (S16).  To minimize 

noises, we also applied multiple filtering criteria, as recommended by the vendor 

(http://www.affymetrix.com/support/technical/technotes/id_altsplicingevents_technote.pdf) with 

minor modifications.  Specifically, a probe set was excluded for analysis unless (i) the average 

log2 gene intensity was ≥7 in both WT and KO samples; (ii) the average log2 exon intensity was 

≥7 in either WT or KO samples; (iii) the difference in the averages of absolute exon intensity 

between WT and KO samples exceeded half of the difference in the average gene intensity.  The 

last filtering criterion removed probe sets with low variance, which frequently indicated either the 

absence or saturation of signal.  

In addition to the quality-filtering criteria, we call an alternative splicing event (for exon-junction 

arrays) or probe set (for exon arrays) with Nova-dependent splicing if |∆I|>0.15 for exon-junction 

array data, or P<0.005 and fold change >1.5 for exon array data, for all the descriptive analyses 

presented in this study (figs. S4 and S11D).  These thresholds were not as stringent as necessary 

to derive the highest possible confidence predictions of Nova-dependent exons, but were 

determined empirically to include ~60% of previously validated Nova target exons.  However, 

Bayesian network analysis does not require this thresholding. 

Probe sets from exon arrays and alternative splicing events from exon-junction arrays were then 

mapped to exons in our database.  When multiple probe sets were mapped to the same exon, the 

probe set indicating the most significant splicing change was used.  We also paid special attention 

to probe set mapping in Bayesian network analysis.  For alternative splicing events of types 

ALT5, ALT3 and APA5, a probe set has to be mapped to the alternative part of each exon (fig. S7) 

to be considered. 

 

Summary of datasets for Bayesian network analysis 

The biochemical map of Nova-RNA interactions in the mouse brain was derived from a large set 

of 81.2 million CLIP tags compiled from 20 independent HITS-CLIP experiments, among which 

51.7 million (64%) tags were mapped unambiguously to mm9.  After removing potential RT-
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PCR duplicates, we obtained 4.4 million unique tags that represented independent captures of 

Nova-RNA interaction sites in the mouse brain (table S1; dataset S1).  The genomic distribution 

of these unique tags is similar to that observed from a smaller dataset (S5).  Overall, 76% unique 

tags were mapped to genic regions, as defined by RefSeq and UCSC Known Genes (S2); 

additional 6% reads were mapped to the extended 3´ UTRs (downstream 10K nt) (fig. S1A).  The 

background level, as estimated by the tag density in intergenic regions, was as low as ~0.05 

RPKM (reads per Kb per million reads (S17)), compared to 0.3 RPKM in genic regions 

(excluding the peak region at 3´end) and 4.1 RPKM near polyA sites.  There is also an 

enrichment of tags in introns flanking alternative exons compared to constitutive exons (fig. S1B), 

which is consistent with the major role of Nova as a splicing regulator. 

To identify Nova-binding sites, we defined 279,631 CLIP clusters ranked by PH (fig. S2 A and B; 

dataset S2), which varies from 2 to 824 tags.  In particular, 36,186 and 6,507 clusters had a PH 

≥10 and 30 tags, respectively (fig. S2C).  Although HITS-CLIP experiments were performed in 

different brain regions of varying ages, a set of highly reproducible CLIP clusters were obtained.  

For clusters with PH ≥ 10 and ≥ 30, 98% and 100% have a biological complexity ≥ 5 (i.e. 

independently detected in ≥ 5 different mouse brains, as defined in ref. (S7)), respectively (fig. 

S2D).  The high-affinity Nova-binding tetramer YCAY (S18, 19), but not YAAY or YACY, is 

enriched in cluster regions compared with flanking sequences (fig. S2E).  Interestingly, Nova-

binding sites in the brain have a clear preference for single-stranded sequences, presumably due 

to the higher accessibility of YCAY elements (fig. S2F). This is consistent with in vitro selection 

experiments demonstrating high-affinity Nova-binding sites with YCAY clusters in the loop 

region of a hairpin structure (S18, 19).  Taken together, these observations confirm the reliability 

and robustness of the CLIP data.  

To complement the biochemical Nova-binding map, we applied our hidden Markov model 

(HMM)-based algorithm to make ab initio predictions of Nova-binding YCAY clusters in the 

whole mouse transcriptome, including full-length introns.  This resulted in 841,501 predicted 

YCAY clusters ranked by a confidence score (YCAY cluster score), as described above.  Overlay 

of the HMM-predicted YCAY clusters and robust CLIP clusters gave a substantial overlap 

between the two datasets, as observed from a clear shift of the ROC curve towards the top-left 

direction from the diagonal, which represents random predictions (fig. S3).  With a threshold to 

include all HMM-predicted YCAY clusters, the model achieved a specificity of 85%, and 
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sensitivity of 74%.  With a more stringent threshold corresponding to a specificity of 99%, the 

model still had a sensitivity of 20%, indicating the effectiveness of the bioinformatic predictions 

of Nova-binding sites. Note that a number of predicted YCAY clusters currently lacking support 

from CLIP data might still be real, partly because the current sequencing depth is unlikely 

saturated, and vice versa (see Gabrg2 in Fig. 3A in the main text for an example and discussion 

below).   

To assess the functional outcome of Nova-RNA interactions, we used custom Affymetrix exon-

junction arrays (S5, 15) as well as standard Exon Arrays (S14).  Previous microarray experiments 

compared WT and Nova1 or Nova2 single KO mouse brains (S5, 15), which might miss a subset 

of target exons due to redundant or complementary roles of Nova1 and Nova2.  To address this 

concern, we made additional comparisons of WT and Nova double-KO (dKO) mice in E18.5 

brains and spinal cords, respectively.  Altogether, analysis of the four microarray datasets (table 

S2) detected 1,331 exons showing Nova-dependent splicing changes in at least one dataset, in 

addition to many probe sets without exon annotations, probably representing intronic splicing 

intermediates or novel exons (fig. S4A).  A relatively small percentage of these exons (15%) 

showed robust splicing changes in at least two datasets, which are correlated with conserved 

alternative splicing patterns (fig. S4 B and C).  In many other cases, significant changes were not 

observed or only observed in one dataset, while more moderate but consistent changes were 

observed in other datasets.  These observations suggest a limited statistical power for microarrays 

alone to distinguish functional splicing targets from noise.   

Taken together, these genome-wide surveys of Nova-RNA interactions and Nova-dependent 

splicing result in a large number of candidate Nova targets, providing an unprecedented and rich 

resource with which to define a high-quality, global Nova splicing-regulatory network. 

 

Design of Bayesian networks for Nova target prediction 

Bayesian network belongs to a class of graph models, because it can be visualized by a graph, 

with nodes representing variables and directed edges representing causal relationships between 

variables.  In the past few years, variations of Bayesian networks have been used to predict 

transcription factor binding motifs, infer regulatory modules from genomic and microarray data, 

transcription factor networks, and protein-protein interactions (S20-25).  We decided to use 



8 
 

Bayesian networks, among many possible machine learning approaches, to integrate multiple 

types of data because of its advantage in modeling the statistical dependency among variables, 

and its flexibility to handle heterogeneous data types (i.e., continuous and categorical variables), 

missing data (which is common in e.g., microarray data as a result of data filtering to remove 

unreliable measurements, described above), and hidden variables (S26, 27).  Furthermore, the 

model learned from Bayesian network is interpretable if the network is designed carefully.   

The key components in the design of Bayesian networks include the network structure (nodes and 

edges), and types of conditional probability distributions (CPDs) specifying the relationship of 

each node with its parent nodes.  We designed a Bayesian network for each type of alternative 

splicing events—cassette exons (CASS), tandem cassette exons (TACA), mutually exclusive 

exons (MUTX), alternative 5´ (ALT5) and 3´ (ALT3) splice sites, and alternative polyA usage 

coupled with 5´ (APA5) or 3´ (APA3) splice site choices (table S5).  For each alternative splicing 

event, the model took all observed data, including YCAY clusters and CLIP clusters in the 

alternative exon and flanking introns, Nova-dependent splicing changes and evolutionary 

signatures (with missing data tolerated), to predict the probability of Nova-regulated inclusion 

P(In) or exclusion P(Ex) through direct protein-RNA interactions, or absence of direct regulation 

P(0).  Below we describe the network for cassette exons in detail and specify differences in other 

types of events.   

Network structure.  It is possible to learn network structure from the data, which is however 

limited to relatively simple networks.  We used a pre-defined network structure to model each 

alternative splicing event, according to our prior knowledge that considers relationships between 

variables.  Taking cassette exons as an example (Fig. 1A in the main text), a Nova target was 

defined by the presence of both Nova-dependent splicing and Nova binding in either the 

alternative exon, upstream intron (UI), or downstream intron (DI).  These four variables were 

treated as discrete hidden variables, whose states were inferred from observed evidence, including 

YCAY clusters (which determine Nova binding), CLIP clusters (which are evidence of Nova 

binding) in each region, and exon or exon-junction microarray data, reading-frame preservation, 

conservation of alternative splicing pattern (which are direct measurements or evolutionary 

manifestations of Nova-dependent alternative splicing) (S28).  Based on this network, the joint 

probability of an exon can be decomposed as follows: 
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P(Exon|Network)=P(YCAY clusters, Binding, CLIP evidence, Splicing change, Array evidence, 

Evolutionary signatures, Target|Network) 

=P(Target|Binding, Splicing change) × P(Binding|YCAY cluster)  × P(CLIP evidence|Binding) × 

P(Splicing change| Binding) × P(Array evidence|Splicing change) × P(Evolutionary 

signatures|Splicing change). 

Here Binding={Binding UI, Binding exon, Binding DI}, with each component assumed to be 

conditionally independent. Similar notational simplifications were used for YCAY clusters, CLIP 

evidence, arrays, and evolutionary signatures.  The overall likelihood function is the product of 

the probability of each individual exon, assuming all exons are independent. 

Summarized CLIP and YCAY cluster score.  Since each alternative splicing event frequently 

has multiple CLIP  or YCAY clusters, we tried different ways to obtain a combined measure of 

CLIP clusters and YCAY clusters, respectively.  The following empirical rules observed from 

previously validated Nova target exons should be reflected in the summarization method.  First, 

Nova binding in different positions inside the alternative exon, UI or DI in general affects exon 

exclusion or inclusion consistently, but the strength is dependent on the distance to the splice sites 

(either 5´ or 3´ splice site).  Nova binding close to the splice sites generally has a stronger positive 

or negative effect, but there is no clear cut, as assumed in previous studies (e.g. ref (S9, 11)).  

Second, when a Nova-binding site is too close to the splice site, it generally represses exon 

inclusion even from the downstream intron, presumably by blocking the splice site.  

Based on these considerations, we extended each exon for 30 nt on both sides (and truncated each 

intron for 30 nt on both sides, accordingly). Each YCAY cluster or CLIP cluster was then 

assigned to the extended exon, truncated UI, or DI, respectively, according to the position of the 

cluster center (for YCAY clusters) or peak (for CLIP clusters).  The size of exon extension was 

based on the length of predicted YCAY clusters (median=56 nt, mean=72 nt, for all clusters with 

score≥10; we used approximately the half-size).  The YCAY (CLIP) clusters assigned to each 

region were then weighted according to the distance to the 5´ and 3´ splice sites, respectively, and 

then summed together to get a regional score, with respect to each splice site.  Specifically, we 

used a weighting function 
2 2
ide σ−  for exonic clusters and 

2 2( 30)ide σ− −  for intronic clusters, where 

di is the distance to the splice site, σ is a scaling constant and i is the index of the cluster.  We 

used σ=300, as estimated from our previous RNA map (S5), so that a cluster was down-weighted 
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by ½ when the binding site was ~280 nt away from the splice site.  Finally, the weighted sum 
2 2
id

i
i

s s e σ−=∑  
(for exonic clusters; or 

2 2( 30)id
i

i
s e σ− −∑ for intronic clusters) was calculated 

with respective to 5´ and 3´ splice sites, respectively.  Therefore, each cassette exon was 

measured by six regional YCAY (CLIP) cluster scores denoted as sUI5´ss, sUI3´ss, sE3´ss, sE5´ss, sDI5´ss, 

and sDI3´ss. For Bayesian network analysis, the two scores with respect to splice sites in each 

region (UI, exon, and DI) were further combined, and the maximum was used to represent the 

overall strength of YCAY (CLIP) clusters in each region. 

Conditional probability distributions.  The conditional probability distributions (CPDs) are 

summarized in table S3.  The CPDs of Nova binding in different regions were chosen to be 

sigmoidal logistic functions.  For the summarized CLIP cluster score, we tried different types of 

CPD, such as normal and Poisson distributions, and finally used a negative Binomial distribution 

because of the over-dispersion (“heavy tail”) of the scores.  Splicing array data were 

approximated by normal distributions. For exon-junction arrays, we directly used the ∆I scores 

from ASPIRE2 (Fig. 1E in the main text) (S5), and for exon arrays, we used the log10-transformed 

P-values, with a sign indicating the direction of splicing change (fig. S5 A-C).  Other nodes 

representing discrete variables with discrete parents were modeled by tables.  In particular, the 

“Target” node is deterministic and predicts a direct target by (inferred) presence of Nova binding 

and Nova-dependent splicing change. In summary, the network for cassette exons is represented 

by 17 nodes and 78 parameters. 

Implementation of Bayesian networks.  Our Bayesian networks were implemented based on the 

Bayes Net Toolbox (BNT)  for MATLAB (http://bnt.googlecode.com) (S29).  This package 

allows one to specify the network structure and CPDs.  We implemented negative Binomial 

distribution and Poisson distribution as new types of CPDs not available in the package, while the 

other types of CPDs are included in the package.  For model parameter estimation, we used an 

Expectation Maximization (EM) algorithm included in the package that maximized the joint 

likelihood function, due to the presence of missing values and hidden variables.  

The training of Bayesian network is semi-supervised in nature, because exons without class labels, 

or more generally with missing data, can still contribute to the parameter estimation.  This 

effectively avoided over-fitting, as verified by a 10-fold cross validation procedure (described 

below), although the number of known targets are relatively small.  For cassette exons, the 
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training dataset consisted of 634 exons, including 50 exons with previous RT-PCR validations, 

206 exons with significant Nova-dependent splicing detected in ≥1 microarray datasets and 

consistent changes (in the same direction) in all four datasets, and 378 exons with |∆I|<0.05 exon-

junction array data and no significant changes in any of the exon array datasets. These exons were 

selected to roughly represent three populations of exons (Nova-dependent inclusion, exclusion, or 

no direct effect), and to save time in model training.  During training, class labels were specified 

explicitly only for Nova target exons previously validated by RT-PCR (n=50); for all the 

remaining exons (n=584), labels were inferred by the model.  The EM procedure used to estimate 

model parameters converged quickly after ~20 iterations.  Different starting points generally gave 

the same results, suggesting that a good (local) maximum was obtained.  For prediction, we used 

the junction tree algorithm, which provided exact inferences and a reasonable speed given the 

scale of our network.  Class labels were not specified for all exons at this stage. 

After inference, the model output three probabilities for each exon that represented Nova-

dependent exon inclusion P(In), exclusion P(Ex), or absence of direct effect P(0).  Given these 

probabilities, the estimation of false discovery rate (FDR) is straightforward.  All exons were 

sorted in the ascending order by P(0), giving a ranked list Pi(0), i=1,2,…, N, where N=13,357 is 

the total number of cassette exons. The FDR of the top K predictions is 
1

(0)K
ii

P K
=∑  by 

definition.  

Evaluation of over-fitting by 10-fold cross validation.  The model described above was trained 

using a selected subset of exons including all validated Nova target exons, and thus denoted as 

the “full model”.  One should be cautious about potential model over-fitting for typical machine 

learning methods, especially when the dimension of the parameter space is high compared to the 

sample size.  We expect that the learned Bayesian networks in this study should not suffer from 

over-fitting because both unlabeled and labeled exons contributed to parameter estimation.  As a 

demonstration, we performed an iterative 10-fold cross validation.  Specifically, in each iteration, 

90% exons (including 45/50 validated exons) in the original training set were used to train a new 

Bayesian network, which was then used to test the remaining 10% of exons independent from 

those used to train the model (among all other exons, to calculate FDR).  The prediction scores of 

50 previously validated exons by 10-fold cross validation models trained on independent datasets 

were compared to those predicted by the the full Bayesian network model, from which a high 
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correlation was observed (r2=0.97, fig. S6). Similar results were obtained from prediction scores 

of 12,723 exons not included in training of any of the models (R2=0.98, average), indicating no 

apparent over-fitting. 

Other types of alternative splicing events.  For other types of alternative splicing events, the 

networks were designed with the same or very similar structures as that of cassette exons (fig. S7). 

The slight difference in network structures was due to difference in regions important for 

alternative splicing regulation.  For instance, for alternative 5´ (or 3´) splice sites, we considered 

Nova binding, YCAY clusters, and CLIP clusters in alternative and constitutive parts of the 

alternative exon, and the downstream (or upstream) intron.  For alternative polyadenylation 

coupled with splice site choices (APA5 and APA3), the regions to consider Nova binding and its 

evidence were adjusted accordingly, and reading-frame preservation did not apply.  For mutually 

exclusive exons, tandom cassette exons, and APA3 exons that involve multiple non-overlapping 

alternative exons, each alternative exon was modeled and predicted separately.  In addition, we 

used the parameters learned from cassette exons to other types of events, when possible, because 

cassette exons had the largest sample size and presumably gave the most precise estimates.  To be 

more specific, the CPDs of nodes representing Nova binding, CLIP data and splicing array data 

learned from cassette exons were directly used and fixed during training.  

 

Estimating the accuracy, specificity and sensitivity of the Bayesian networks 

We first estimated the accuracy of Nova targets predicted by the Bayesian networks. For this 

purpose, we compared the predicted targets with AEDB (S30), a collection of manually curated 

alternative exons with functional characterizations in the literature but blind to our prediction.  

Specifically, we extracted the exon sequences in the database 

(ftp://ftp.ebi.ac.uk/pub/databases/astd/aedb/aedb-sequence_data.txt), which were aligned to the 

genome (mm9) by BLAT (S31), to match exons in our database.  As a result, we obtained 31 

exons, including 9 exons that were validated to be Nova targets in our previous studies (S5, 6, 9, 

15, 32, 33).  The remaining 22 exons were novel predictions, most of which had nothing known 

about splicing regulation despite the functional importance (table S6).  We tested these 22 exons 

by comparing E18.5 WT and Nova1/2 dKO mouse brains using semi-quantitative RT-PCR (fig. 

S9; also see below). The FDRs of the 31 exons vary in a wide range, with a median rank of 288 
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(out of 588 predicted events in total). Therefore, these exons represent an unbiased subset of 

predicted Nova target exons in terms of confidence scores.  

The validation above suggested an accuracy (validation rate) of 90.3% (28/31).  By extrapolating 

this accuracy to the complete list of predictions, we estimated the number of false positive (FP) 

predictions to be around 57 (588×9.7%).  Therefore, we can estimate the specificity of prediction 

by TN/(TN+FP)=1-FP/(TN+FP), where TN is the number of true negative predictions (non-target 

exons).  Since TN was difficult to estimate, we used a lower bound to get a conserved estimate of 

the specificity.  Our Bayesian network analysis included ~40,000 alternative splicing events.  

Using a conservative estimate of TN=20,000, we obtained a lower bound of the specificity to be 

99.7%. 

Lastly, we estimated the sensitivity of prediction using Nova targets validated in previous studies.  

We used either all types of alternative exons (58/77=75.3%), or the most prevalent type of 

alternative exon (i.e., cassette exons, 39/50=78%, based on the full model or 10-fold cross 

validation). 

 

Searching for Nova-regulated exons not annotated in the mouse genome 

We also searched additional Nova targets in novel exons not annotated in the mouse genome and 

thus not included in our Bayesian network analysis.  This search was guided by Affymetrix exon 

array data and CLIP/YCAY clusters, as summarized in fig. S8.  

Affymetrix Exon Array ST 1.0 was designed to include predicted exons.  We assigned each probe 

set to annotated exons and introns according to our database described above. We then focused on 

“intronic” probe sets and identified 42 probe sets with robust changes in ≥2 datasets (fig. S8A). 

Manual examination of these probe sets identified 14 novel exons, including 11 cases with no or 

incomplete mRNA/EST evidence in the mouse genome, and 3 cases for which exon annotation 

was missing in our exon database (table S4).  A majority of these novel exons were observed in 

human or rat, in mRNA-Seq data (S17), or predicted bioinformatically (S3, 4), suggesting that 

they are bona fide exons.  Most of these exons also have CLIP and/or YCAY clusters at positions 

consistent with the direction of Nova-dependent splicing change (table S4). 
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Alternatively, we started from 1,805 CLIP clusters with peak height ≥ 10 and overlapping YCAY 

clusters with a score ≥10 (FDR <12%, estimated from control YAAY clusters).  Among these, 

966 clusters were relatively far from known exons (≥400 nt) and had a bi-modal distribution of 

the sequence conservation level.  The majority (66%) had an average 30-way vertebrate 

phastCons score ≤0.2 (S34) , whereas a smaller subset (34%) had phastCons scores > 0.2 (fig. 

S8B).  We focused on 50 of 966 clusters within 400 nt from predicted exons (describe above), 

and with a phastCons score ≥ 0.2, because these are most likely to be functional Nova binding 

sites to regulate the nearby exons.  We further excluded 9 clusters near predicted terminal exons 

and 2 clusters in genes embedded in the intronic regions of other genes, yielding 39 clusters. 

These 39 clusters corresponded to 38 unique exons, including 18 exons also found in human, 18 

exons predicted by NSCAN and 3 exons predicted by exoniphy. Two thirds of the exons have a 

size that is multiple of three, and their alternative splicing is thus expected to preserve the reading 

frame.  This is consistent with the observations from well annotated Nova targets. 

In total, these two approaches identified 49 novel targets, and one additional exon (Grik2) 

validated in previous studies. Nine exons were tested by RT-PCR using P10 WT and Nova2 KO 

brains (fig. S10; also see below).  

 

Nova target prediction using only CLIP clusters, YCAY clusters, or microarrays, or 

by other machine learning methods 

Among the 698 Nova target events in the final network, only 189 (27.1%) events have robust 

Nova-dependent splicing changes detected in ≥ 2 microarray datasets, while 304 events (43.6%) 

have no significant change in any microarray dataset.  To further evaluate the performance of 

CLIP clusters, bioinformatic YCAY clusters, or microarrays alone for Nova target prediction, we 

focused on cassette exons.  We first built reduced Bayesian networks that used only CLIP clusters 

or YCAY clusters alone (fig. S11 A and B), and predicted the same number of Nova target 

cassette exons as we did using the full Bayesian network model (i.e., top 363 events).  The top 

363 candidates predicted from each dataset included 44-46% target cassette exons predicted by 

the full Bayesian network model (16-fold enrichment as expected by chance, P<10-162, Fisher’s 

exact test; fig. S11C), and 29/59 (49%) exons validated previously (S5, 6, 9, 15, 32, 33) or in this 

study (Fig. 1G in the main text and fig. S11E), indicating that each dataset made important and 
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comparable contributions for Nova target prediction despite the lower predictive power.  In 

addition, predictions based on CLIP clusters and bioinformatic YCAY clusters are also largely 

complementary to each other, with 119 (33%) common events predicted independently by both 

methods (12-fold enrichment, P<10-99, Fisher’s exact test), and 244 events (67%) predicted by 

only one method but not the other.  As an additional comparison, 29-31% of the top 363 events 

predicted by CLIP or YCAY clusters alone have significant Nova-dependent splicing observed in 

≥1 microarray datasets (8-fold enrichment, P<10-66, Fisher’s exact test; fig. S11D).  As expected, 

in both cases more stringent predictions with higher CLIP or YCAY cluster scores gave a larger 

overlap with the microarray data, confirming the effectiveness of the scoring methods used for 

CLIP and YCAY clusters.  Similarly, compared to exons with splicing changes detected only in 

one microarray dataset, those with robust splicing changes detected in ≥2 microarray datasets 

gave a larger overlap with the top 363 predictions using CLIP clusters (53.3% vs. 14.6%, 

P=4.2×10-15, Fisher’s exact test) or YCAY clusters (46.7% vs. 14.8%, P=5×10-11, Fisher’s exact 

test) alone, suggesting that robust detection of splicing changes in multiple microarray datasets 

also contribute to more reliable predictions of bona fide and direct Nova targets.  Exons with 

splicing changes observed in a single microarray dataset are nevertheless very informative, as the 

overlap expected by chance is much lower (2.7%, P<10-28, Fisher’s exact test). While the 

correlation between CLIP clusters, YCAY clusters and microarray datasets clearly demonstrated 

their importance for Nova target predictions, these observations again suggest much limited sets 

of Nova target exons that can be confidently predicted by analysis of individual datasets and the 

benefit of data integration. 

To demonstrate the effectiveness of our integrative approach using Bayesian networks for 

accurate Nova target prediction, we then made a direct comparison with two other widely used 

machine learning algorithms, i.e., naïve Bayes and logistic regression (S35), implemented in the 

software R (S36).  Binary classification models were built using each method to predict cassette 

exons with Nova-dependent inclusion or exclusion (in a 10-fold cross validation procedure to 

avoid over-fitting), taking microarray data, CLIP cluster scores and YCAY cluster scores, in the 

same format provided to the Bayesian network (except that missing values in microarray data 

were replaced by zeros for logistic regression because it does not allow missing data).  

Predictions were ranked according to the confidence scores.  Among the top 363 target exons 

predicted by each of these two methods, 51.7-54.5% exons were also predicted by Bayesian 

network, suggesting a substantial discrepancy of these methods compared to the Bayesian 
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network integrating similar sets of data (fig. S11C).  At the same stringency (i.e. top 363 targets), 

both methods predicted 36/59 targets validated previously or in this study, giving a sensitivity of 

61%, as compared to 75-78% (39/50 target cassette exons, or 58/77 target events overall) by 

Bayesian networks (Fig. 1G in the main text).  In addition, Bayesian networks also outperformed 

in predicting “weaker” targets beyond the stringent threshold we use.  Logistic regression 

appeared to perform better than naïve Bayes in predicting the very top candidates (i.e., rank<350), 

but less well in candidates with moderate or relatively low ranks, as judged from the overlap with 

Baysian network predictions and the validated targets. 

Although accurate estimation of the validation rate for each compared method requires 

experimental testing of an unbiased set of candidate targets, as we did for predictions by Bayesian 

networks, we derived approximate estimates (fig. S11E).  To illustrate the method, here we use 

Naïve Bayes as an example.  From the overall validation rate (90%) and sensitivity (75%) of the 

Bayesian networks, we estimate that 363*0.9=327 bona fide Nova target cassette exons were 

predicted by the Bayesian network analysis, and that Nova has 327/0.75=436 bona fide target 

cassette exons in total.  Therefore, ~109 Nova targets are likely missed by Bayesian network 

analysis.  According to the sensitivity of naïve Bayes (61%), ~109×0.61=66 of these 109 target 

exons will be predicted by this method. Similarly, among the 198 exons predicted by both naïve 

Bayes and Bayesian networks, ~198×0.9=178 are bona fide targets.  Thus, the validation rate of 

naïve Bayes in the top 363 predictions is estimated to be ~67% (244/363).  A similar or lower 

validation rate can be estimated for predictions by logistic regression, or using only microarray 

data, CLIP clusters, or YCAY clusters.  Taken together, our Bayesian network approach is very 

effective in data integration and gave much more favorable results in terms of accuracy and 

sensitivity than the other methods we tested.   

 

Analysis of combinatorial regulation 

We focused on Nova target cassette exons for detailed analysis of combinatorial splicing 

regulation.  From a total of 363 exons, a non-redundant set of 325 exons was defined (dataset S3). 

For example, if two cassette exons overlapped and were spliced to the same flanking exons, only 

the one with the most supporting transcripts was kept.  An average-linkage hierarchical clustering 

(S37) was performed for these non-redundant exons using the six regional YCAY scores sUI5´ss, 



17 
 

sUI3´ss, sE3´ss, sE5´ss, sDI5´ss, and sDI3´ss described above.  These scores reflected the strength of Nova 

binding in upstream intron, exon, or downstream intron, and Nova regulation through either 5´ or 

3´ splice site. Seven clusters with distinct combinatorial binding patterns were identified (Fig. 2A, 

clusters I-VII).  To generate sequence conservation profiles, 30-way vertebrate phastCons scores 

(S12) were extracted for the 30 nt sequences from 5´ and 3´ splice site of the cassette exon, and 

for the 200 nt sequences near 5´ or 3´ splice site of the upstream and downstream introns, 

respectively.  The average conservation level was calculated. As a control for this analysis, we 

used all cassette exons in the mouse genome (Fig. 2B). 

To search for specific cofactors regulating Nova targets, we used 49 hexamer motifs enriched in 

or near brain- or cerebellum-specific alternative exons (S38). For this analysis, we examined 200 

non-redundant target cassette exons activated by Nova and 125 exons repressed by Nova, 

separately. For each hexamer, its relative frequency in Nova target exons in comparison to all 

cassette exons was calculated in two ways for each exonic or intronic region and used to generate 

2D scatter plots shown in fig. S12. The x-axis shows the relative frequency using the observed 

frequency in all cassette exons as the denominator. In contrast, the y-axis shows the relative 

frequency using the frequency expected from the base composition of all cassette exons as the 

denominator. As expected, the two measures generally correlate well. A more stringent filtering 

can be achieved by requiring the relative frequency estimated by both methods above certain 

thresholds (e.g. 1.5 fold). 

Putative Fox targets were predicted based on the conserved UGCAUG motif specifically 

recognized by Fox proteins, as described previously (S11).  Since the original analysis was 

performed in human, the exons were mapped to the mouse genome by the program liftOver 

obtained from UCSC Genome Browser (S2). 

To test Nova and Fox combinatorial regulation in 293T cells, we selected a subset of Nova target 

exons, in addition to Gabrg2 exon9, that were also putative Fox targets. The human orthologs of 

these exons were identified and further filtered to remove exons without detectable expression in 

293T cells. This was done using a published Affymetrix gene expression microarray dataset 

(intensity >100 in untreated 293T cells; GSE2451 (S39)).  Finally, 18 exons which passed this 

filtering were used for RT-PCR analysis (described below); two exons lacking bands of expected 

sizes were excluded. 
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Among the 17 tested exons (including Gabrg2), seven exons responded to both Nova and Fox, 

one exon responded to Nova only, and two exons responded to Fox only. The splicing outcomes 

of these exons and the position of Nova and Fox binding sites are summarized in Fig. 3 in the 

main text and fig. S13.  The relatively moderate validation rate is likely due to our specific 

experimental settings and the biological difference between cell culture systems and brain.  First, 

we performed moderate overexpression of Nova and Fox (0.5 µg individually and 0.25+0.25 µg 

in combination) optimized to best demonstrate the synergistic regulation of Gabrg2 exon 9 by 

Nova and Fox, by avoiding saturation.  It is clear from our previous experiments that a more 

dramatic effect can be achieved by a higher expression level of Nova/Fox (e.g. 2µg in 

transfection, ref. (S33) and data not shown).  Some exons appeared to be less sensitive to 

moderate Nova/Fox expression, although they are bona fide targets.  Second, the cell culture 

system did not completely recapitulate the physiological cellular environment in the brain, and 

some additional factors required for combinatorial regulation might not be expressed in 293T 

cells used for this study.  Supporting either of these two interpretations, we found that among the 

6 exons that were validated Nova targets in the brain, only two showed Nova-dependent splicing 

in 293T cells (roughly comparable to the overall validation rate of Nova regulation, i.e. 8/17, in 

293T cells).  Lastly, some bioinformatically predicted Fox targets might be false positives.  

 

Gene ontology (GO) and pathway analysis 

GO analysis was performed using the online tool DAVID (S40) (table S7).  This tool can also be 

used to analyze KEGG pathways (table S8) and keywords extracted from protein databases (PIR 

and Uniprot) (Fig. 4 in the main text).  A total of 13,054 genes with detectable expression in at 

least one of the three exon array datasets (average log2 intensity ≥7 in WT samples) were used as 

background genes for comparison with Nova target genes. 

 

Kinases and phosphatases 

Genes encoding kinases and phosphatases were obtained from the database PhsphoregDB (S41).  

Among the 684 genes in the database, 662 genes with Entrez Gene IDs were used for this study.  
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The enrichment of kinases and phosphatases in Nova targets were tested against all genes 

expressed in the brain, as described above.  

 

Phosphorylation sites 

We downloaded 16,123 mouse protein sequences and their annotations from the 

Uniprot/Swissprot protein database (http://www.uniprot.org)(S42).  Sequences without Entrez 

gene annotations were excluded.  Among the remaining 15,944 sequences, 13,881 were  aligned 

to the mouse genome by exonerate (S43), using the protein2genome mode (coverage>0.5, 

identity>0.9).  We then extracted the coordinates (relative to protein sequences) and annotation of 

21,499 experimentally determined phosphorylation sites from the database, among which 18,749 

sites were successfully mapped back to the mouse genome.  In particular, these included a subset 

of 1,710 sites that were experimentally determined to be phosphorylated in the mouse brain in 

vivo, based on five published large-scale mass spectrometry studies (S44-48).  

With the genomic coordinates of each phosphorylation site, we can calculate the number and 

frequency of phosporylation sites encoded by each exon.  To compare the frequency of 

phosphorylation sites among different groups of exons, i.e., constitutive exons, overall alternative 

exons, brain-specific alternative exons that are not Nova targets, and Nova target exons, we took 

into consideration the fact that the current protein database is likely incomplete, at least at the 

exon level.  Therefore, exons in our database were matched with exons defined by protein 

sequences; only exons with matched protein sequences were used to calculate the frequency of 

phosphorylation sites per amino acid (Fig. 4B in the main text and fig. S14).  

 

Nova target genes implicated in genetic diseases 

To search for Nova target genes implicated in human disease genes (table S9), we used two 

databases, OMIM (S49) and HGMD (S50). Autism susceptibility genes were obtained from 

Simons Foundation Autism Research Initiative (SFARI) gene database (https://sfari.org/sfari-

gene) (S51).   Mouse homologs of these genes were identified using the Homologene database 

(http://www.ncbi.nlm.nih.gov/homologene).  The enrichment of disease genes in Nova targets 
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were compared with all genes expressed in the brain, the same set of background genes for GO 

term analysis, as described above.  

 

Biochemical assays  

Transfection.  1x106 HEK293T cells were plated onto 6 cm dishes in 3ml 10% DMEM the day 

before transfection.  Prior to transfection, culture media was replaced with 3ml antibiotic-free 

10% DMEM.  Transfection mixes containing 150ul opti-mem, 6ul lipofectamine 2000TM 

(Invitrogen) and DNA (2.25 μg total) were prepared according to manufacturer’s instructions and 

added to the culture dishes.  24H post transfection cells were scrapped in ice-cold PBS and spun 

down (1.500 r.p.m. 5min).  One half was resuspended in 1ml Trizol for RNA extraction and the 

other half was resuspended in 150 μl lysis buffer (Hepes pH7.4, 150 mM KCl, 5 mM MgCl2, 0.5 

mM DTT, 1% NP-40) for protein analysis.  Wild type and mutant GABAA receptor minigenes 

were generated in a previous study (S33).   

Immunoblot.  1μg/μl protein samples were prepared with laemmeli loading dye and 15 μl were 

loaded into 8% SDS-PAGE Novex Tris-Glycine gels (Invitrogen).  After protein transfer onto 

PVDF Hybond (Millipore) 0.4um membranes, the following antibodies were used to immunoblot 

Nova1, Flag-Fox2 and γ-tubulin, respectively: rabbit anti-Nova1 serum, mouse HRP-conjugated 

anti-Flag (A8592 Sigma) and mouse anti-γ-tubulin (T6557 Sigma). 

RT-PCR.  Radio-labeled semi quantitative RT-PCR was performed as described previously (S32, 

33, 52), using primers located in flanking exons of the alternative spliced region (or in the 

alternative exon in some cases) to amplify specific isoforms.  Bayesian network predicted target 

exons were tested using three pairs of E18.5 WT and Nova dKO brains.  Novel exons predicted 

from Affymetrix Exon Arrays and CLIP/YCAY clusters were tested using three pairs of P10 WT 

and Nova2 KO cortex.  Targets under the potential regulation by Nova and Fox were tested in 

293T cells, as described above.  Biological replicates were evaluated to generate the results in Fig. 

3B in the main text.  Four replicates (two biological replicates, each with two technical replicates 

from independent RT-PCR analyses) were used to generate the results presented in Fig. 3C in the 

main text and fig. S13.  For each candidate, different cycle numbers were tested to ensure linear 

amplification of PCR products.  Radiolabeled 32P-dCTP was added to the PCR reactions for the 
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last two cycles, except for Gabrg2, in which case the forward primer was radio labeled.  RT-PCR 

primer sequences used in this study are listed below. 

A. Primers for Bayesian network predicted exons: 

Dcc_F TCTCATTATGTAATCTCCTTAAAAGC
Dcc_R TCACAGCCTCATGGGTAAGAG 
Dclk1_F ATGAGCATCAGCTGTCAGTAGC 
Dclk1_R GGAAAACCTGCCTCTCCTTATC 
Epb4.1l2_F GATTGGTGTTGTGGACCAAAG 
Epb4.1l2_R1 GGATCTAAGACCGAATCCAATG 
Epb4.1l2_R2 TTATCCCCGTCTACTCTCAAGG 
Gnas_F AAAAGCACCATTGTGAAGCAG 
Gnas_R TCAGGTTGTTTTTGATGTCCTG 
Magi1_F GTGCTCCCTGAGTACCTACCTG 
Magi1_R TTTTCTCCAGAGGAAGATGTCC 
Kcnma1_F ATGACGTCACAGATCCCAAAAG 
Kcnma1_R AGTTCCTCATGCCCCCATTAC 
Ktn1_F GCATTTGGAAATGGAGCTAGAG 
Ktn1_R CCTTCTTTCTCTCCGTTTGTTC 
Numb_F AGAGCATCAGCTCCTTGTGTTC 
Numb_R CAGAAGACTGACCCCACTCAG 
Pak3_F CATACGATTCATGTGGGTTTTG 
Pak3_R GACCGTTTCTTTGGAGTCGTAG 
Ikzf1_F GAGGACCTGTCCACTACCTCTG 
Ikzf1_R ATAGTTGCAAAGATGGCATTTG 
Npr2_F AAGCTGATGCTGGAGAAGGAG 
Npr2_R TGTTTGATGGCAACAACATTTC 
Cyb5r4_F CTGCCTCCAAGTACTCACCTTC 
Cyb5r4_R GACTGGACATGTGAGACAAAGC 
Epb4.1_F AAGGAAGCTGTGAAGGTTGAAG 
Epb4.1_R TTGATGTTAAGAGTCCGGAAGG 
Smtn_F TTCCCTGAGGCTTTTGACTATG 
Smtn_R CACATAGGTGAAGACGCACTTG 
Bin1_F CCCTGAGAAAGGGAACAAGAG 
Bin1_R ATTCACAGTTGCGGAGAAGG 
Mpzl1_F AACATTCGAAGCGGGATTATAC 
Mpzl1_R TATGGACATTTTCTGCACAAGC 
Cacna1c_F2 AGTGATCCCTGGAATGTTTTTG 
Cacna1c_F3 GATATAGCAATCACCGAGGTACAC 
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Cacna1c_R AGGACTTGATGAAGGTCCACAG 
Snap25_F2 AACAACTCGATCGTGTCGAAG 
Snap25_F3 TGACGGACCTAGGAAAATTCTG 
Snap25_R CATCTGCTCCCGTTCATCC 
Tpm2_F1 ATGAAGGATGAGGAAAAGATGG 
Tpm2_R1 CTGAGGCTATCAGCGACTTGAG 
Tpm2_R2 TTTTCAGCTCCTCCTCTAGGTC 
Itsn1_F ACTGGTGGAAAGGAGAAGTCAG 
Itsn1_R1 AGACATTTCGATCACATGCAAC 
Itsn1_R2 CTGCAAGTCGTTCACGTAGTTC 
Tpm1_F GCTGAGTTTGCAGAGAGATCAG 
Tpm1_R2 TTATTTTACACTGGGCGAATTG 
Hs6st2_F GCTCTTCTCCAGGTTCTCCAC 
Hs6st2_R CCATTCACTCAAGTACCGTGAC 
Nav2_F GAAGACTCCTTGATGCCTTTTG 
Nav2_R GGAATTGGTAGCAGTGTCCTG 

 

B. Primers for novel exons regulated by Nova: 

Sfrs9-F GGACCTCGAGGACTTGTTCTAC 
Sfrs9-R GGAAATCTGACCGTCTTGTAGG 
Apc-F ATCTGTCCTGCTGTGTGTGTTC 
Apc-R GCAACATCTCCAAAGGTCAAG 
Mical3-F GTCCCTGTGGAAATCTGTCTTC 
Mical3-R TCCTCCTCTGTGTAGGTTCTGG 
Map3K9-F AGCTCAGTTGTTCCAAAAGAGG 
Map3K9-R TATCTCCATAAGGCTGGTGAAC 
Larch1-F ATACGAGAGAACTCCCCTTCAG 
Larch1-R CAGCTCCTTCTCCTCTCTCATC 
Myo9a-F ACATCAGTAGCCTGGAATTTGC 
Myo9a-R GTCAGTACTTTTTCCTCCTGCTG
Nrxn3-F TCACCCTTTCCTTTAAGACCTG 
Nrxn3-R GAGTGTAGCCCGTTGTGGTTAG 
Ank3-F AAGAGACATAAACTGGCCAACC 
Ank3-R ACTGATGTTCCTTCCAGGTCTC 
Myh10-F AGTGGCTGATGAAGAACATGG 
Myh10-R CTTCTCGTGATTTGGAATGATG 
Mapk9-F TGAGTGACAGTAAAAGCGATGG 
Mapk9-R GTTTGGTTCTGAAAAGGACGAC 
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C. Primers for exons to test for Nova and Fox combinatorial regulation in human 293T cells: 

pGABA_F AGAGCATCAGCTCCTTGTGTTC 
pGABA_R CAGAAGACTGACCCCACTCAG 
 
hAlcam_F TTAACTTGCACAGCAGAAAACC 
hAlcam_R TGTACAGCCAGTAGACGACACC 
hCamk2g_F TATTGAACAAGAAGTCGGATGG 
hCamk2g_R CTCATCTTCTGTGGTGGTGTTG 
hEfna5_F CGGAAGAAGGTCCTGTCTAAAG 
hEfna5_R GAACAGTAGGATTGCCAAAAGG 
hNumb_F ACAGATCACCAATGCCTTCAG 
hNumb_R GGACGCTCTTAGACACCTCTTC 
hPpp3cb_F TTCTGAGTATTTGCTCTGATGATG 
hPpp3cb_R GAGAAGACTCTTGCCATCTTGC 
hSpna2_F AGAATCTCCTGGAGGAGCAAG 
hSpna2_R ACTTCTTCTGGAGCACCTCAAC 
hFam49b_F GAAGGACAAGGACAGAATCACC 
hFam49b_R CCAGCTCCTCTGTATGACTGC 
hHisppd1_F AGATGAAGTTGATCGAGCTGTG 
hHisppd1_R TGCTTCTGTTCCACAAGAGTTC 
hSipa1l2_F GTTCTCCGATGGGTCCTTATC 
hSipa1l2_R CATATCTGTCAGGGTGCAGAAG 
hSyne2_F CTCACGAAGAGGACGAGGAG 
hSyne2_R TTCCATTTGCTTGTAGTGATGC 
hCadm1_F AAGCTCACTCGGATTATATGCTG 
hCadm1_R CAGAATGATGAGCAAGCACAG 
hSmarce1_F ACCATCTTATGCCCCACCTC 
hSmarce1_R CATCAGCGGCTTATCTGGTG 
hPbrm1_F CAACACCCAGACTACTCTTTCG 
hPbrm1_R CCACTCCTTGGTTCATCACAC 
hAtp2b1_F GCCAAATCTTGTGGTTTAGAGG 
hAtp2b1_R ATTCCGGTTTTTCTAACCCTTC 
hArhgef12_F CCGAGAGTCACCAACAGATAAG 
hArhgef12_R ACGAAGACTGGATTGTCTCCAC 
h5730419I09Rik_F TAATTCCCCATCCAAAGAAATG 
h5730419I09Rik_R AACGCTGATTGAGTCTGTTGTC 
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Figure S1. Distribution of HITS-CLIP tags.
(A) The distribution of 4,401,528 unique CLIP tags over the genome is shown. Coding sequences 
(CDS) , 5´ and 3’ untranslated (UTRs) were defined according to RefSeq and UCSC Known Gene ( ) ( ) g q
transcripts. Genes were also extended for 10 kb on both sides to distinguish tags in extended 
regions and those in deep intergenic regions. (B) A composite map of tag density in exons and 
introns with constitutive or alternative splicing. For constitutively spliced regions, 90,770 exons, and 
58,357 introns ≥2kb in length derived from RefSeq transcripts are shown. For alternatively spliced 
regions, the map was derived from 3,651 introns ≥2kb in length upstream of cassette exons, and 
3,826 introns ≥2kb in length downstream of cassette exons.
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Figure S2. Identification and characterization of CLIP clusters.Figure S2. Identification and characterization of CLIP clusters.
(A) Schematic representation of the two-state HMM to define CLIP clusters. The transition probabilities 
between CLIP-positive regions (clusters) and CLIP-negative (background) regions indicated at the edges 
were estimated from the average length of initial CLIP clusters and background sequences.  (B) Emission 
probability distribution of tag coverage for CLIP-positive and -negative regions. (C and D) Breakdown (C) 
and biological complexity (BC) (D) of CLIP clusters. CLIP clusters are defined by different thresholds of peak 
height (PH). (E) YCAY frequency around CLIP clusters, as estimated from 1,938 non-repetitive CLIP 
clusters with a size ≤200 nt and PH≥30 tags. The frequency of control motifs (YAAY and YACY), as well as 
YCAY i h ffl d ( / 200 t) i l l tt d f i (F) Th b bilit fYCAY in shuffled sequences (+/- 200 nt) , is also plotted for comparison.  (F) The average probability of 
single-strandedness for each tetranucleotide around CLIP clusters as in (E). The gray curve +/- 200 nt
around the CLIP tag peak is the probability calculated using permuted sequences in the region. The inset 
shows a zoom-in view +/- 200 nt around the CLIP tag peak, with error bars representing two standard errors.
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Figure S3. Evaluation of ab initio YCAY cluster prediction.
YCAY clusters were predicted in half of the dataset using the HMM trained on the other 
independent half-size dataset, and vice versa. Specificity and sensitivity were estimated from 
the overlap of predicted YCAY clusters with the footprint region (+/-50 nt) of CLIP clusters or 
random genic sequences of the same size, to obtain the receiving operating characteristic 
(ROC) curve (solid blue). The diagonal shows the performance of random guess derived from 
theoretical estimation (gray line) or from permutation experiments in which the labels of CLIP 
footprint and background regions were shuffled (dotted curve).
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Figure S5. Conditional probability distributions (CPDs) of the Bayesian network to predict 
Nova target cassette exons.
The CPDs not included in Fig. 1 of the main text are shown.  (A-C) CPDs of the three exon array 
datasets. For each panel, P-values are log10 transformed with a sign representing the direction of the 
splicing change, so that the distribution is approximately normal. The distributions for three 
populations of exons with Nova-dependent inclusion, exclusion and exons without Nova-dependent 
splicing (No effect) are shown in red blue and gray respectively (A) P10 WT versus Nova2 KOsplicing (No effect) are shown in red, blue and gray, respectively. (A) P10 WT versus Nova2 KO 
forebrains. (B) E18.5 WT versus Nova1/2 double KO (dKO) whole brains. (C) E18.5 WT versus 
Nova1/2 dKO spinal cord.  (D) Reading-frame preservation and conservation of alternative splicing in 
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splicing (No effect). 
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Figure S6. Evaluating over-fitting of the Bayesian network to predict Nova target cassette exons.
Fifty previously validated target exons independent of this study were used for this evaluation. X-axis 
shows the FDR of each exon predicted by the full model, which was trained using  the complete training 
dataset (including all validated exons). Y-axis shows the FDR of each validated exon predicted in 10-fold 
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Figure S7. CPDs of Bayesian networks for other types of alternative splicing events. 
(A) Tandem cassette exons (TACA); (B) Mutually exclusive exons (MUTX); (C) Alternative 5´ splice 
sites (ALT5); (D) Alternative 3´ splice sites (ALT3); (E) Alternative polyA sites coupled with 5´ splice 
site choices (APA5); (F) Alternative polyA sites coupled with 3´ splice site choices (APA3).  For each 
panel, regions where Nova binding was considered in the model are indicated in the schematic 
diagram (U: upstream intron, E: exon, D: downstream intron, C: constitutive region, A: alternative 
region) Only CPDs learned for each specific type of alternative splicing are shown Reading-frameregion). Only CPDs learned for each specific type of alternative splicing are shown. Reading frame 
preservation does not apply to APA5 and APA3. 
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Figure S11. Prediction of Nova target exons using different datasets or methods
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(A,B) Design of the reduced Bayesian network (BN) model used to predict Nova target cassette 
exons using only CLIP clusters (A) or YCAY clusters (B), respectively.  (C) The overlap of 363 Nova 
target cassette exons predicted by the integrative Bayesian network with target cassette exons
predicted by other machine learning methods (i.e. naïve Bayes and logistic regression, which 
combine microarray data, CLIP clusters, and YCAY clusters), or predictions from microarrays, CLIP 
clusters or YCAY clusters (motif) alone.  For microarray-only predictions, one exon array dataset 
(E18.5 WT versus Nova dKO brains) was used to simplify exon ranking.  The perfect overlap and that 
expected by chance are also shown for comparison.  The dotted line indicates the overlap when 363 p y p p
targets were predicted by each method.  (D) Similar to (C) but the overlap between 483 cassette 
exons with Nova-dependent splicing in ≥ 1 microarray datasets and target cassette exons predicted 
using only CLIP clusters or  YCAY clusters (motif) is shown.  (E) Summary of sensitivity and 
validation rate of each method when 363 targets were predicted. 
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Figure S12. Enrichment of additional splicing-regulatory motifs in Nova-regulated exons.
The hexamer motifs were derived from brain-specific exons previously by the Burge lab (S38). 
The scatter plots in the top and bottom panels represent cassette exons with Nova-regulated 
inclusion and exclusion, respectively.  X-axis compares the frequency of each motif in Nova , p y p q y
target cassette exons and flanking intronic sequences (200 nt from 5´ or 3´ splice site) with 
background frequency observed in corresponding regions of all cassette exons. Y-axis compares 
the frequency of each motif in Nova target exons and flanking intronic sequences with the 
background frequency in corresponding regions of all cassette exons expected from the base 
composition. The relative frequency is shown in log2 scale. An arbitrary threshold corresponding 
to 1.5 fold change is indicated.  Motifs of several known splicing factors are highlighted. 
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panel.  Nova and Fox binding in downstream introns activate exon inclusion (red) through an additive 
or synergistic action (top panel), whereas Nova and Fox binding in upstream introns or exons repress 
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text are shown on the right  (see Fig. 3 legend in the main text for more details).
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Supporting tables 
 

Table S1. Summary of Nova CLIP experiments. 

Dataset Sample Age Antigen Biological 
replicates 

No. reads Unique 
reads

1 Cortex* P10 Nova1, 
Nova2  

3 412,686 168,593

2 Cortex  P10 Nova2 1 1,831,677 411,336

3 Whole brain  P16 Nova1, 
Nova2 

3 14,134,444 1,546,198

4 Cortex  
(+pilocarpine)  

adult Nova2 3 14,214,607 583,549

5 Cortex 
(+sham)  

adult Nova2 3 15,458,694 697,825

6 Hippocampus 
(+pilocarpine)  

adult Nova2 3 16,711,534 292,948

7 Hippocampus 
(+sham)   

adult Nova2 3 16,540,852 271,552

8 Cortex 
(nuclear) 

P10 Nova2 1 1,927,248 429,527

   Total 20 81,231,742 4,401,528

* Sequenced by 454 (data from ref. (S5)). 
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Table S2. Summary of microarray datasets. 

Data 
set 

Comparison Tissue Age Replicates 
per group 

Array 

1 WT vs. Nova2 KO cortex P10 4 Exon-junction Array 

2 WT vs. Nova2 KO forebrain P10 4 Exon Array 

3 WT vs. dKO brain E18.5 4 Exon Array 

4 WT vs. dKO spinal cord E18.5 4 Exon Array 
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Table S3. Summary of nodes in the Bayesian network for cassette exons. 

Node 
ID 

Node Name Possible values Parent Node CPD No. 
parameters 

1 YCAY cluster UI Continuous [0,+∞) N/A Root 0 
2 YCAY cluster exon Continuous [0,+∞) N/A Root 0 
3 YCAY cluster DI Continuous [0,+∞) N/A Root 0 
4 Binding UI 0=No binding 

1=Binding 
YCAY cluster 
UI 

Logistic 2 

5 Binding exon 0=No binding 
1=Binding 

YCAY cluster 
exon 

Logistic 2 

6 Binding DI 0=No binding 
1=Binding 

YCAY cluster 
DI 

Logistic 2 

7 CLIP UI Discrete 
[0,+∞) 

Binding UI Negative 
binomial 

2×2=4 

8 CLIP exon Discrete 
[0,+∞) 

Binding exon Negative 
binomial 

2×2=4 

9 CLIP DI Discrete 
[0,+∞) 

Binding DI Negative 
binomial 

2×2=4 

10 Splicing change -1=Exclusion 
0=No effect 
1=Inclusion 

Binding UI 
Binding exon 
Binding DI 

Tabular (2×2×2)×3=24 

11 Junction array 
dataset 

Continuous 
[-1,1] 

Splicing change Normal 2×3=6 

12 Exon array  
dataset 1 

Continuous 
[-∞,+∞] 

Splicing change Normal 2×3=6 

13 Exon array  
dataset 2 

Continuous 
[-∞,+∞] 

Splicing change Normal 2×3=6 

14 Exon array  
dataset 3 

Continuous 
[-∞,+∞] 

Splicing change Normal 2×3=6 

15 Reading frame 0=Frame-shift 
1=Frame-preserving 

Splicing change Tabular 3×2=6 

16 AS conservation 0=Non-conserved 
1=Conserved 

Splicing change Tabular 3×2=6 

17 Target -1=Exclusion 
0=No effect 
1=Inclusion 

Binding UI 
Binding exon 
Binding DI 
Splicing change 

Deterministic* 
 

0 

    Total No. of 
parameters: 

 

78 

UI and DI represent upstream and downstream introns, respectively. 

* Deterministic CPD for the node “Target”: 

if Splicing change=0 
0

or Binding=0 (Target | Binding,Splicing change)

Splicing change other wise

P
⎧
⎪= ⎨
⎪
⎩

∑  
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Table S4. Novel exons regulated by Nova. 

Symbol Exon/Intron 
coordinates 
(mm9) 

Strand Reading 
frame 

preservation 

CLIP YCAY Region* Method

Grik2 
(known) 

chr10:48823320-
48823454 

- 1 13 33.50 Intron Exon Array, 
CLIP/ 
YCAY clusters 

Slc4a3 chr1:75543974-
75544518(?) 

+ ? 35 30.30 Exon Exon Array 

Agrn chr4:155551931-
155552115(?) 

- ? 10 7.10 UI 5´SS Exon Array 

Sfrs9 chr5:115,778,355
-115,778,758(?) 

+ ? 18  DI 3´SS Exon Array 

Apc chr18:34460916-
34460969 

+ 1 71 8.40 UI 3´SS Exon Array 

Mical3 chr6:120903652-
120903702 

- 1 17 4.40 UI 3´SS 
/Exon 

Exon Array 

Hrb chr1:82877322-
82877393 

+ 1 18 14.50 UI 3´SS  
of UE 

Exon Array 

Epb4.1l2 chr10:25210516-
25212115(?) 

+ NA 31 19.07 Exon Exon Array 

Sorbs1 chr19:40373953-
40374143 

- 1 10 34.20 Exon ALT Exon Array 

Centg3 chr5:23985941-
23986166 

+ 0 79 5.62 DI 5´SS Exon Array 

Ccdc136 chr6:29371991-
29372097 

+ 0 23 7.34 UI 3´SS Exon Array 

Wnk1 chr6:119879844-
119879885 

- 1 6 8.37 DI 5´SS Exon Array 

Rlbp1l1 chr4:9196499(?)-
9196881 

+ 0 1 33.50 Exon ALT Exon Array 

Map3k9 chr12:82828318-
82828386 

- 0 3 8.33 UI 3´SS Exon Array 

Cadm3 chr1:175285131-
175285358 

- 1 21 46.87 Exon CLIP/YCAY 
clusters 

Stxbp1 chr2:32645519-
32645597 

- 0 44 30.59 UI 3´SS CLIP/YCAY 
clusters 

Lrch1 chr14:75192934-
75193038 

- 1 13 27.76 UI 3´SS CLIP/YCAY 
clusters 

Ppfia2 chr10:106272233
-106272319 

+ 1 15 26.08 UI 3´SS CLIP/YCAY 
clusters 

Mtap2 chr1:66457148-
66457393 

+ 1 145 25.88 UI 3´SS CLIP/YCAY 
clusters 

Myo9 chr9:59760344-
59760397 

+ 1 73 21.21 Exon CLIP/YCAY 
clusters 

Matr3 chr18:35732678-
35732734 

+ 1 25 20.50 DI 5´SS CLIP/YCAY 
clusters 

Ank3 chr10:69448837-
69456510 

+ 1 75 20.36 Exon CLIP/YCAY 
clusters 

Pbx1 chr1:170287875-
170288065 

- 0 14 19.16 Exon CLIP/YCAY 
clusters 

Map2k5 chr9:63077898-
63078011 

- 1 14 19.02 Exon CLIP/YCAY 
clusters 

Cabin1 chr10:75172193-
75172328 

- 0 59 18.60 UI 3´SS CLIP/YCAY 
clusters 

Slc23a2 chr2:131926100-
131926323 

- 0 11 18.05 UI 3´SS CLIP/YCAY 
clusters 
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Nrxn3 chr12:90430225-
90430237 

+ 0 41 17.34 Exon CLIP/YCAY 
clusters 

Stim1 chr7:109581711-
109581747 

+ 0 16 17.13 UI 3´SS CLIP/YCAY 
clusters 

5730419I0
9Rik 

chr6:143017081-
143017266 

- 1 106 16.30 Exon CLIP/YCAY 
clusters 

Prdm2 chr4:142735293-
142735349 

- 1 24 15.25 Exon CLIP/YCAY 
clusters 

Ptprd chr4:75746351-
75746656 

- 1 28 15.03 UI 3´SS CLIP/YCAY 
clusters 

Foxp1 chr6:98890989-
98891158 

- 0 56 14.98 DI 5´SS CLIP/YCAY 
clusters 

Wnk1 chr6:119882687-
119882779 

- 1 13 14.70 DI 5´SS CLIP/YCAY 
clusters 

Ryr2 chr13:11708828-
11708845 

- 1 27 14.62 Exon CLIP/YCAY 
clusters 

Gtl2 chr12:110805800
-110805806 

+ 0 620 14.23 Exon CLIP/YCAY 
clusters 

Sorbs1 chr19:40384071-
40384823 

- 1 28 13.92 Exon CLIP/YCAY 
clusters 

Rims2 chr15:39386611-
39386643 

+ 1 11 13.39 Exon CLIP/YCAY 
clusters 

Slc25a36 chr9:96989910-
96990012 

- 0 11 13.20 Exon CLIP/YCAY 
clusters 

Memo1 chr17:74619828-
74619981 

- 0 21 12.74 Exon CLIP/YCAY 
clusters 

C230096C
10Rik, Ubr 

chr4:138958424-
138958583 

+ 0 10 12.71 Exon CLIP/YCAY 
clusters 

Sbf2 chr7:117484804-
117484878 

- 1 10 12.60 DI 5´SS CLIP/YCAY 
clusters 

Aof2 chr4:136119353-
136119364 

- 1 12 12.60 DI 5´SS CLIP/YCAY 
clusters 

Nrxn3 chr12:90429597-
90429620 

+ 1 34 12.39 UI 3´SS CLIP/YCAY 
clusters 

Ank3 chr10:69419416-
69419514 

+ 1 10 12.28 DI 5´SS CLIP/YCAY 
clusters 

Slc4a10 chr2:62077683-
62077744 

+ 0 49 12.03 Exon CLIP/YCAY 
clusters 

Clip1 chr5:124063077-
124065344 

- 1 10 11.39 UI 3´SS CLIP/YCAY 
clusters 

Fnbp1 chr2:30903725-
30903808 

- 1 16 10.75 Exon CLIP/YCAY 
clusters 

Ppp1r12a chr10:107686012
-107686125 

+ 1 52 10.69 Exon CLIP/YCAY 
clusters 

Mtap2 chr1:66454160-
66454396 

+ 1 40 10.54 Exon CLIP/YCAY 
clusters 

Tanc2 chr11:105620236
-105620346 

+ 1 14 10.20 UI 3´SS CLIP/YCAY 
clusters 

 

* UI: upstream intron; DI: downstream intron; Exon ALT: exonic region between the two 
alternative splice sites; UE: upstream exon; SS: splice site (5´ or 3´ as indicated). 

 

 



48 
 

Table S5. Summary of Nova-regulated alternative splicing events. 
 
AS 
type AS diagram No. AS 

events  

Bayesian network predictions: 

CASS  
 

363  

TACA  141  

MUTX  37  

ALT5  9  

ALT3  9  

APA5  13  

APA3  16  

 Bayesian network total 588 

Others:   

 Validated 29 

 Robust splicing change 27 

 Novel exons 49 

 Total 698  
 
In each diagram, alternatively spliced exons are shown in blue and constitutive exons 
are shown in black.  CASS: cassette exons; TACA: tandem cassette exons; MUTX: 
mutually exclusive exons; ALT5 and ALT3: alternative 5´ and 3´ splice sites; APA5 and 
APA3: alternative polyA usage coupled with 5´ or 3´ splice site choices. 



49 
 

Table S6. Nova target exons with functional characterizations in the literature. 

Gene symbol† Coordinates (mm9) In/Ex‡ Phospho-
rylation ¶ 

Description Ref. 

Agrn 

(known) 

chr4:155,541,391-
155,542,929 

In indirect Exon Z is critical for aggregation of postsynaptic proteins at neuromuscular junction (NMJ), which requires 
the receptor-tyrosine kinase MuSK. The conserved tripeptide asparagineglutamate-isoleucine in the exon is 
necessary and sufficient for full MuSK phosphorylation activity. 

(S53-55) 

Ank3 

(known) 

chr10:69,461,615-
69,468,404 

Ex  Alternative 3´ splice sites change a region of 588 nt (insert C), encoding Ser/Thr-rich amino acids in the 
regulatory domain. This insert has the highest expression in skin and reduced level in kidney, brain and 
testis. 

(S56, 57) 

Atp2b1 

(known) 

chr10:98,481,349-
98,485,478 

 

In indirect This exon (154 nt, near 3´ end) overlaps with the calmodulin-binding domain and thus might modulate 
calmodulin binding by alternative splicing. Inclusion of the exon also shifts the site of cAMP-dependent 
phosphorylation and likely alters the regulatory behavior of the isoform. Cryptic donor sites inside the exon 
also produce additional isoforms. 

(S58) 

Atp2b2 

(known) 

chr6:113,745,490-
113,756,289 

 

Ex  The three tandem cassette exons, located in the intracellular loop separating membrane-spanning 
segments 2 and 3, can be inserted in different combinations that vary in different tissues. Different isoforms 
differ in ATPase activity. 

(S59-62) 

Bin1  

(validated) 

chr18:32,584,474-
32,591,747 

 

In  Bin1 encodes a tumor suppressor. Exons12A-D are brain-specific. Exon 12A is not included in normal 
nonneruronal tissues, but is included in tumor cell lines. Aberrant inclusion of the exon in melanoma cells 
abolishes Bin1 to inhibit malignant transformation by c-Myc or adenovirus E1A and to induce programmed 
cell death.  The isoform IIb that lacks exon 12C (24 nt) and D (108 nt) affects the interaction with clathrin, 
which is potentially important for synaptic vesicle endocytosis. 

(S63-65) 

Cacna1c 

(validated) 

chr6:118,580,417-
118,602,076 

In  The two mutually exclusive exons overlap with critical transmembrane segments of the Ca2+ channels, with 
differential expression in CNS. Both isoforms are equally expressed in newborn and fetal rat heart and only 
a single isoform (the 3´ exon) is predominant in adult rat heart. 

(S66-68) 

Camk2b* chr11:5,879,676-
5,882,575 

Ex kinase The isoforms differ in the autonomy generated by Ca2+ oscillations. (S69) 

Cyb5r4 

(validated) 

chr9:86,950,600-
86,953,910 

 

In  Exon 12 codes for the flavin-adenine dinucleotide binding domain of cb5/cb5r and the protein lacking this 
exon may function in a dominant negative fashion in limiting the amount of damage caused by the 
production of reactive oxygen species by cb5/cb5r. 

(S70) 

Dcc 

(validated) 

chr18:71,538,309-
71,543,877 

In  Dcc is a receptor for netrin-1.  It is implicated as a tumor suppressor, with frequent allelic losses in 
colorectal cancer.  Alternative splicing of the exon is thought to introduce a hinge in the extraceullular 
domain.  

(S71) 

Dclk1 

(known) 

chr3:55,320,795-
55,337,673 

In indirect; 
kinase 

Inclusion of exon 19 causes a frameshift of exon 20 and results in a truncated protein in the C terminus, 
which has reduced autophosphorylation activity. This exon is also regulated during development, with more 
inclusion in adult brain.  

(S72, 73) 
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Dlg1* chr16:31,853,929-
31,856,577 

In 

 

 This exon (insert I4), one of the four alternatively spliced exons in the region, is specifically included in brain 
and liver. Alternative splicing in this region is involved in the localization of Dlg1 to cell-cell contact although 
the specific role of the insert I4 was not assessed.  

(S74) 

Epb4.1 

(validated) 

chr4:131,513,558-
131,523,890 

 

In direct Three consecutive alternative exons in this region overlapping with the spectrin-actin binding (SAB) domain 
show complex tissue-specific splicing patterns and may mediate red cell membrane mechanical stability 
and deformability. In rat brain, the predominant isoform includes all the three exons, and is required for 
fodrin-actin-4.1R ternary complex formation, which might be essential for the shape and membrane integrity 
of neural cells. Phosphorylation of a tyrosine on one of the exons by EGFR reduced the ability of protein 4.1 
to promote the assembly of the complex. 

(S75-77) 

Epb4.1l2 

(validated) 

chr10:25,208,757-
25,222,193 

In direct The four consecutive alternative exons are paralogous to the alternatively spliced region of Epb4.1 (4.1R) 
encoding the spectrin-actin binding (SAB) domain, which can induce fodrin-actin complex formation. An 
additional isoform uses a novel 3´UTR, resulting in a truncated product without the SAB domain.  

(S76, 78) 

Epb4.1l3 

(known) 

chr17:69,611,466-
69,624,235 

In direct The three consecutive alternative exons are paralogous to the alternatively spliced region of Epb4.1 (4.1R) 
encoding the spectrin-actin binding (SAB) domain. However, the encoded proteins cannot induce fodrin-
actin complex formation. 

(S76, 78) 

Fnbp1* chr2:30,895,925-
30,909,738 

In direct The fully included isoform (RapostlinL) is predominantly expressed in brain whereas isoforms with complete 
or partial exclusion of the exon (RapostlinM and RapostlinS) are ubiquitous. The insert region is important 
for neurite branching. 

(S79) 

Gabrg2 

(known) 

chr11:41,725,284-
41,729,991 

In direct Inclusion of exon 9 adds an additional eight amino acids to an intracellular loop of the protein, and 
generates a site which can be phosphorylated by PKC. Mice engineered to only express the short form of 
the GABAARγ2 subunit lacking the exon display a higher level of anxiety and increased sensitivity to 
benzodiazapines than control. 

(S80) 

Glra2* (known) chrX:161,719,755-
161,762,566 

In  The switch of the two exons are under strong regulation in developing neurons. (S52, 81) 

Gnas chr2:174,159,713-
174,167,208 

- probably 
direct 

This region includes potential phosphorylation sites for protein kinase A. (S82) 

Grik1* chr16:87,896,142-
87,914,649 

In direct The exon encodes an ER retention signal, which controls receptor trafficking in both heterologous cells and 
neurons. The ER retention motif consists of a critical arginine (Arg-896) and surrounding amino acids, 
which, if disrupted, promote ER exit and surface expression of the receptors, as well as alter their 
physiological properties. The Arg-896-mediated ER retention is regulated by a mutation that mimics 
phosphorylation of Thr-898, but not by PDZ interactions. 

(S83) 

Grin1 

(known) 

chr2:25,165,895-
25,169,124 

Ex indirect The exon encodes amino acids in the extracellular N-terminal domain. Use of the exon lowers the affinity of 
NR1 receptors to NMDA and increases potentiation by protein kinase C. The splicing of the exon is also 
regulated developmentally, with the lowest inclusion at embryonic day E19. It reaches peak expression at 
P14 in hippocampus and cerebellum. 

(S84-86) 

 

Grin1*  
(known) 

 

chr2:25,146,705-
25,151,457 

In direct Alternative splicing of exon 21 deletes the original stop codon and causes a switch of the 3´ ends, which is 
activity-dependent. This switch will change the recruitment of nascent NMDARs to ER exit sites mediated 
through the divaline motif encoded in the 3´ end of the transcript.  

(S87-89) 
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Hs6st2 

(validated) 

chrX:48,742,897-
49,033,585 

In  The two exons are specifically included in brain, which inserts 40 amino acids and results in a long isoform 
that differs from the shorter isoform in preferences for sulphation sites in HS substrates.  

(S90) 

Ikzf1 

(validated) 

chr11:11,607,788-
11,654,177 

 

In  This gene encodes a B- and T-cell transcription factor implicated in leukemia. Alternative splicing of exons 
3-6 in this region generates isoforms with deletion in zinc finger domains, which dramatically affects DNA-
binding specificity of the protein and plays a dominant negative role in the lymphoid pathway. The dominant 
negative isoform IK6 is also expressed in pituitary tumors with a predominant cytoplasmic localization which 
can reverse the effect of the DNA-binding nuclear form IK1 on the FGFR4 promoter. 

(S91-93) 

Itsn1 

(validated) 

chr16:91,869,192-
91,888,915 

 

Ex  This gene encodes a protein involved in clathrin-mediated encocytosis. Alternative splicing of the region 
generates a short isoform and a long isoform with different domain architectures. The ratio of the two forms 
is developmentally regulated, with the short form ubiquitously expressed and the long form mainly in 
neurons. The long form functions as a guanine nucleotide exchange factor for Cdc42 and modulates actin 
cytoskeleton.  

(S94, 95) 

Kcnma1 

(validated) 

chr14:24,205,482-
24,255,248 

 

Ex direct BK channel subunits are derived from a single gene with extensive alternative splicing. This exon is 
included in the STREX variant, and phosphorylation of a PKA consensus site encoded by the exon 
mediates the inhibition of the channel, whereas a downstream conserved C-terminal PKA consensus motif 
mediates activation. 

(S96) 

Ktn1 chr14:48,344,852-
48,351,148 

-  Change a coil-coiled region with multiple heptad repeats. 

 

(S97) 

Magi1 

(validated) 

chr6:93,651,284-
93,658,214 

In phospha-
tase 

The exon encodes the alpha segment between PDZ2 and PDZ3, which is included prevalently in brain. (S98) 

Map4k4 
(known) 

chr1:40,067,402-
40,071,068 

Ex kinase Map4k4 is overexpressed in many tumor cell lines. The exon (M7) encodes a serine-rich sequence. (S99) 

Mpzl1 

(validated) 

chr1:167,522,373-
167,534,873 

 

Ex direct The PZR1b variant lacking this exon does not have the immunoreceptor tyrosine-based inhibitory motifs 
and the ability to recruit tyrosine phosphatase SH2. In human HT-1080 cells, it also shows a dominant 
negative effect by blocking ConA induced tyrosine phophorylation of full length PZR and recruitment of 
tyrosine phosphatase SHP-2. 

(S100) 

Nav2 

(validated) 

chr7:56,806,967-
56,812,440 

In direct Exons 16 and 17; Nav2 is a homolog of the C. elegans unc-53 and a member of neuron navigators involved 
in axon guidance. Nav2 hypomophic mice show sensory defects.  

(S101, 102) 

Nova1* 

(known) 

chr12:47,801,467-
47,821,843 

Ex direct This exon is autoregulated by Nova1 through a negative feedback loop. The exon encodes 24 amino acids 
between KH1 and KH2 domains, and can be phosphorylated in vivo, by kinases including GSK3. 

(S32) 
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Npr2 

(validated) 

chr4:43,655,119-
43,657,368 

Ex direct Exon 9 overlaps three out of six putative phosphorylation sites (Ser 523, Ser 526, Thr 529) and the putative 
ATP-binding motif. The region encoded by exon 9 is indispensable in C-type natriuretic peptide (CNP) 
induced activation of GC-B (Guanyl cyclase-B), although this region is not critical for either basal GC 
activity or CNP binding. Because of the dominant negative phenotype of the isoform lacking exon 9 
(forming complexes with isoform containing exon 9) it is possible that CNP/GC-B signalling can be 
regulated by relative levels of various isoforms, adjusting the magnitude of a CNP signal in brain. 
Mutagenesis and comigration studies in 293 cells using synthetic phosphopeptides identified 
phosporylation in five residues (Ser-513, Thr-516, Ser-518, Ser-523, and Ser-526) within the kinase 
homology domain. Elimination of all of the phosphorylation sites resulted in a completely dephosphorylated 
receptor whose CNP-dependent cyclase activity was decreased by >90%, indicating that phosphorylation 
of the kinase homology domain is a critical event in the regulation of NPR-B.   

(S103, 104) 
(S104). 

Numb 

(validated) 

chr12:85,136,389-
85,140,607 

Ex  This exon overlaps with a proline rich region (PRR). Inclusion of the exon keeps low throughout early rat 
neuronal development, peaks at E10 and decreases thereafter. In P19 cells, Inclusion of the exon promotes 
cell proliferation whereas skipping of the exon promotes differentiation during mammalian neurogenesis. 
Only the exon-skipped isoform mediates neuronal cell fate choice in Drosophila.  

(S105) 

Pak3 

(validated) 

chrX:140,144,191-
140,149,832 

 

In kinase p21-activated kinases (PAK) are involved in the control of cyotoskeleton dynamics and cell cycle 
progression. Inclusion of the exon overlapping with the autoinhibitory domain generates a variant termed 
PAK3b that displays a high kinase activity in starved cells that is not further stimulated by active GTPases. 
The 15-amino-acid insertion by the inclusion of the exon within the autoinhibitory domain impedes the 
ability of PAK3b to bind to the GTPases Rac and Cdc42 and changes its specificity toward the GTPases.  

(S106) 

Sh2b1* 
(known) 

chr7:133,610,508-
133,612,155 

Ex indirect? Alternative splicing of exons 7-9 introduces frame-shifts in four isoforms with distinct C-terminal domains. 
All variants are phosphorylated on tyrosine specifically in response to IGF-1 and PDGF stimulation. cDNA 
expression of the four variants caused variant-dependent levels of stimulation of IGF-I and PDGF-induced 
mitogenesis. 

(S107) 

Smtn chr11:3,417,530-
3,421,971 

-  The exon overlaps with smoothlin CH-domain.  (S108) 

Snap25 

(validated) 

 

chr2:136,589,309-
136,599,756 

Ex  SNAP25 is a SNARE protein contributing to the formation of the exocytotic fusion complex in neurons. 
Mutually exclusive splicing of the two exons is regulated during brain development and modifies the 
organization and sequence context of the central Cys quartet. These exons provide sites for fatty acid 
acetylation. Developmental switch of the two exons is essential for postnatal viability.  Rescue experiments 
using specific isoforms in SNAP25 knockout mice suggested that the two isoforms differ in their ability to 
stabilize synaptic vesicles in the primed state.  

(S109-111) 

Sorbs1* chr19:40,373,953-
40,386,353 

Ex indirect Exon 31 is between the second and the third SH3 domains. Yeast two-hybrid experiments suggest that 
inclusion of this exon together with exon 32a (extended version of exon 32 by alternative 3´ splice sites) is 
important for Sorbs1 to function as an A-kinase anchoring protein (AKAP) that serves as scaffolds for 
multimolecular protein complexes containing PKA, and targets PKA to the insulin receptor, lipid rafts, actin 
stress fibers, or focal adhesions. 

(S112) 

Stau2* chr1:16,221,084-
16,336,092 

Ex  Stau2 is mainly expressed in the brain and involved in mRNA transport in neurons. Alternative 3´UTR 
usages generate distinct isforms Stau2 (62/59) vs. Stau2 (52) that alters the dsRBD5.  

(S113) 
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Tpm1 

(validated) 

chr9:66875782-
66878905 

Ex  The cassette exon is near the 3´ end of the striated muscle form. The exon encodes amino acids that are 
likely to specify the troponin T site A binding domain. 

(S114) 

Tpm2 

(validated) 

 

chr4:43531274-
43532169 

Ex  Exons 6 and 7 are mutually exclusive. Exon 7 is specifically included in muscle, due at least in part to the 
repression of PTB. PTB interacts with critical cis-regulatory sequences upstream of exon 7 and blocks the 
usage of the exon in non-muscle cells. The predicted YCAY cluster is in a region that is important for 
repression of exon 7 as demonstrated by mutagenesis. 

(S115, 116) 

Tpm3* 

(known) 

chr3:89,891,596-
89,893,781 

Ex  Mutually exclusive splicing generates two isoform Tm5NM-1 and Tm5NM-2. Tm5NM-2 is sorted specifically 
to the Golgi complex, whereas Tm5NM-1, which differs by a single alternatively spliced internal exon, is 
incorporated into stress fibers. 

(S117) 

 

† Exons without asterisk were obtained from AEDB (S30).  Additional exons reported in the literature identified by manual searches are 
indicated by an asterisk. Previously validated Nova target exons are labeled as “known” in the first column, whereas exons validated in 
this study are labeled as “validated”. 

‡ In: Nova-dependent exon inclusion; Ex: Nova-dependent exon exclusion 

¶ direct: there are phosphorylation sites encoded by the alternative exon so that alternative splicing can directly affect the availability of the 
phosphorylation sites; indirect: there are no known phosphorylation sites encoded by the alternative exon, but alternative splicing affects 
the regulation of phosphorylation indirectly according to the literature. Kinase or phosphatase indicates whether the gene encodes a 
kinase or phosphatase, respectively. 
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Table S7. Gene ontology analysis of Nova target genes. 

GO Term 
Gene 
count % P-Value 

Fold 
Enrichment 

Benjamini
FDR 

Biological process 

GO:0016043~cellular component organization 93 26.05 4.02E-12 2.02 6.93E-09 

GO:0007399~nervous system development 53 14.85 1.01E-09 2.48 8.72E-07 

GO:0032989~cellular component morphogenesis 31 8.68 2.32E-09 3.56 1.33E-06 

GO:0030030~cell projection organization 30 8.40 3.55E-09 3.60 1.53E-06 

GO:0007268~synaptic transmission 22 6.16 8.39E-09 4.64 2.90E-06 
GO:0048667~cell morphogenesis involved in 
neuron differentiation 22 6.16 1.18E-08 4.55 3.40E-06 

GO:0051179~localization 104 29.13 1.63E-08 1.66 4.03E-06 

GO:0000902~cell morphogenesis 28 7.84 1.64E-08 3.57 3.53E-06 

GO:0019226~transmission of nerve impulse 24 6.72 2.47E-08 4.01 4.73E-06 

GO:0007154~cell communication 34 9.52 4.41E-08 2.93 7.60E-06 

Cellular component 

GO:0045202~synapse 38 10.64 1.64E-15 4.85 5.00E-13 

GO:0044459~plasma membrane part 82 22.97 2.06E-15 2.51 3.16E-13 

GO:0042995~cell projection 47 13.17 3.24E-14 3.62 3.24E-12 

GO:0030054~cell junction 42 11.76 3.53E-14 4.00 2.65E-12 

GO:0005856~cytoskeleton 61 17.09 6.36E-12 2.60 3.81E-10 

GO:0005886~plasma membrane 104 29.13 6.82E-11 1.84 3.41E-09 

GO:0042734~presynaptic membrane 11 3.08 1.07E-09 14.80 4.61E-08 

GO:0016323~basolateral plasma membrane 19 5.32 3.11E-09 5.83 1.17E-07 

GO:0044456~synapse part 23 6.44 5.65E-09 4.55 1.88E-07 

GO:0043005~neuron projection 25 7.00 8.93E-09 4.09 2.68E-07 

Molecular function 

GO:0005515~protein binding 198 55.46 9.43E-15 1.49 4.50E-12 

GO:0008092~cytoskeletal protein binding 35 9.80 2.57E-10 3.51 6.14E-08 

GO:0003779~actin binding 23 6.44 9.83E-07 3.40 1.56E-04 

GO:0030695~GTPase regulator activity 26 7.28 1.17E-06 3.06 1.39E-04 
GO:0060589~nucleoside-triphosphatase regulator 
activity 26 7.28 1.61E-06 3.01 1.54E-04 

GO:0005488~binding 270 75.63 2.82E-05 1.10 0.002242 

GO:0005516~calmodulin binding 13 3.64 2.91E-05 4.48 0.001983 

GO:0005083~small GTPase regulator activity 17 4.76 6.58E-05 3.25 0.003916 

GO:0030234~enzyme regulator activity 31 8.68 2.04E-04 2.07 0.010742 

GO:0008017~microtubule binding 9 2.52 2.04E-04 5.47 0.009681 
 

The top 10 terms in each of the three gene ontology (GO) term categories are shown.  
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Table S8. KEGG pathways enriched in Nova target genes. 
 
 

KEGG pathway 
Gene 
count 

Fold 
Enrichment 

Benjamini
FDR Genes 

mmu04020 
Calcium signaling pathway 

17 3.5 0.001 Atp2b1, Atp2b2, Cacna1c, Cacna1d, Cacna1b, 
Cacna1g, Camk2a, Camk2g, Camk2b, Grin1, 
Gnas, Plcb4, Ppp3cb, Ppp3cc, Ryr2, Slc8a1, Erbb4 

mmu04720 
Long-term potentiation 

10 5.3 0.003 Cacna1c, Camk2a, Camk2g, Camk2b, Gria2, 
Grin1, Plcb4, Ppp1r12a, Ppp3cb, Ppp3cc 

mmu04514 
Cell adhesion molecules 
(CAMs) 

12 4.1 0.003 Alcam, Cadm1, Cadm3, Mpzl1, Neo1, Nrxn3, 
Nfasc, Nfasc, Ptprf, Ptprm, Nlgn1, Nrcam,Nrxn1 

mmu04520 
Adherens junction 

10 4.4 0.006 Actn4, Baiap2, Ctnna2, Ctnnd1, Pard3, Smad2, 
Smad4, Ptprf, Ptprm,Sorbs1 

mmu04360 
Axon guidance 

13 3.3 0.006 Ablim1, Cxcl12, Dcc, Epha5, Efna5, Ablim2, Ntng1, 
Pak3, Ppp3cb, Ppp3cc, Arhgef12, Robo2, Unc5c 

mmu04912 
GnRH signaling pathway 

10 3.6 0.017 Cacna1c, Cacna1d, Camk2a, Camk2g, Camk2b, 
Gnas, Mapk8, Mapk9, Map2k4, Plcb4 

mmu04310 
Wnt signaling pathway 

12 2.8 0.032 Apc, Camk2a, Camk2g, Camk2b, Smad2, Smad4, 
Mapk8, Mapk9, Plcb4, Porcn, Ppp3cb, Ppp3cc 

mmu04930 
Type II diabetes mellitus 

6 5.2 0.048 Cacna1c, Cacna1d, Cacna1b, Cacna1g, Mapk8, 
Mapk9 

mmu04260 
Cardiac muscle contraction 

7 4.2 0.049 Tpm2, Cacna1d, Cacna1c, Tpm1, Ryr2, Slc8a1, 
Tpm3 

mmu04012 
ErbB signaling pathway 

8 3.3 0.074 Camk2a, Camk2g, Camk2b, Mapk8, Mapk9, 
Map2k4, Pak3, Erbb4 

mmu04530 
Tight junction 

9 2.7 0.01 Actn4, Cask, Ctnna2, Pard3, Epb4.1, Epb4.1l1, 
Epb4.1l2, Epb4.1l3, Magi1 
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Table S9. Nova target genes implicated in genetic diseases. 

Symbol Disease Source 
Neuronal 

Phenotype 
Fox 

targets* 

Actn4 Glomerulosclerosis, focal and segmental HGMD,
OMIM 

 E 

Aff3 Mesomelic dysplasia HGMD  G 

Ank1 Spherocytosis HGMD,
OMIM 

 G 

Ank2 Cardiac arrhythmia / Long QT syndrome / Long QT syndrome ? HGMD,
OMIM 

 G 

Ap1s2 Mental retardation HGMD,
OMIM 

Y  

Apc Adenomatous polyposis coli / Adenomatous polyposis coli ? / Adenomatous polyposis coli and CHRPE / Adenomatous polyposis coli, 
association with ? / Adenomatous polyposis coli, attenuated / APC with desmoid tumour / Colorectal adenoma / Colorectal cancer / 
Colorectal cancer, predisposition to, association / Desmoid tumours / Hepatoblastoma / Juvenile polyposis coli / Multiple adenomas / 
Thyroid cancer 

HGMD,
OMIM 

  

Arhgap26 JUVENILE MYELOMONOCYTIC LEUKEMIA; JMML OMIM   

Arhgef12 Increased insulin sensitivity, association with HGMD,
OMIM 

 E 

Arhgef6 Mental retardation, X-linked HGMD,
OMIM 

Y E 

Arhgef9 Hyperekplexia and epilepsy HGMD,
OMIM 

Y  

Arl13b Joubert syndrome HGMD,
OMIM 

Y  

Atp2b2 Deafness, autosomal recessive 12, modifier of HGMD,
OMIM 

Y E 

Auts2 Autism / Mental retardation HGMD Y G 

Bin1 Myopathy, centronuclear, autosomal recessive HGMD,
OMIM 

  

Cabin1 Neurofibromatosis 2 / Schwannomatosis HGMD Y  

Cacna1c Brugada syndrome (shorter-than-normal QT interval) / Timothy syndrome HGMD,
OMIM 

Y E 

Cacna1g Myoclonic epilepsy, juvenile HGMD Y G 
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Cadm1 Autism spectrum disorder HGMD Y E 

Camta1 Impaired episodic memory performance, assoc. with HGMD Y  

Cask Mental retardation, X-linked ? / Microcephaly, mental retard., brainstem & cerebellar hypoplasia HGMD,
OMIM 

Y G 

Cdh23 Hearing loss, non-syndromic / Non-syndromic autosomal recessive deafness / Usher syndrome 1 / Usher syndrome 1d HGMD,
OMIM 

Y  

Chl1 Mental retardation / Schizophrenia, association with HGMD Y  

Cxcl12 HIV 1, resistance to, association with HGMD,
OMIM 

  

Dcc Colorectal cancer, risk, assoc. with ? HGMD   

Ddr1 Schizophrenia, association with HGMD Y  

Dlg3 Mental retardation HGMD Y E 

Dst Oesophageal atresia and psychomotor retardation HGMD Y G 

Ensa Reduced insulin secretion, association with HGMD   

Epb4.1 Elliptocytosis HGMD,
OMIM 

 E 

Epha5 Mental retardation HGMD Y G 

Erbb4 Breast and colorectal cancer, association with / Increased promoter activity, association with HGMD  E 

Ercc2 Basal cell carcinoma, reduced risk, association with / Increased response to UV, association with / Lung adenocarcinoma, increased 
risk, association with / Reduced risk oligodendroglioma development, assoc. / Trichothiodystrophy / Xeroderma pigmentosum 

HGMD,
OMIM 

  

Fam126a Hypomyelination & congenital cataract / Hypomyelination & congenital cataract ? HGMD,
OMIM 

Y E 

Flnb Atelosteogenesis / Boomerang dysplasia / Larsen syndrome, autosomal dominant / Spondylocarpotarsal syndrome HGMD,
OMIM 

Y  

Gabrg2 Epilepsy, childhood absence with febrile seizures / Febrile seizures / Generalized epilepsy with febrile seizures plus HGMD,
OMIM 

Y E 

Gad1 Cerebral palsy, spastic, symmetric, autosomal recessive / Schizophrenia, familial, association with HGMD,
OMIM 

Y  

Gdi1 Mental retardation, non-specific, X-linked HGMD,
OMIM 

Y G 

Gnas Albright hereditary osteodystrophy / Albright hereditary osteodystrophy & pseudohypopar / Albright hereditary osteodystrophy, assoc. 
with ? / Essential hypertension, association with / Growth retardation, facial dysmorphism, hypotonia / McCune-Albright syndrome / 
Progressive osseous heteroplasia / Pseudohypoparathyroidism 1a / Pseudohypoparathyroidism 1a, with testotoxicosis / 
Pseudohypoparathyroidism 1b / Psychiatric disorder, risk, assoc. with ? / Reduced expression, association with / Trauma-related 

HGMD,
OMIM 
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bleeding, association with 

Gphn Hyperekplexia / Molybdenum cofactor deficiency HGMD,
OMIM 

Y G 

Grik1 Juvenile absence epilepsy, association with ? / Lung cancer, susceptibility to, association with HGMD Y G 

Grik2 Mental retardation HGMD,
OMIM 

Y G 

Gtf2i WILLIAMS-BEUREN SYNDROME; WBS OMIM Y  

Gyk Glycerol kinase deficiency HGMD,
OMIM 

  

Hk1 Haemolytic anaemia HGMD,
OMIM 

  

Idh3b Retinitis pigmentosa HGMD Y  

Inpp4a Atopic asthma, reduced risk, association with HGMD  G 

Itgb4 Epidermolysis bullosa / Epidermolysis bullosa simplex / Epidermolysis bullosa with pyloric atresia / Epidermolysis bullosa, junctional / 
Epidermolysis bullosa, without pyloric atresia 

HGMD,
OMIM 

  

Kcnma1 Generalized epilepsy and paroxysmal dyskinesia HGMD,
OMIM 

Y E 

Kcnq2 Epilepsy, benign neonatal / Epilepsy, rolandic & benign neonatal convulsions / Epilepsy, rolandic without neonatal seizures / Infantile 
seizures / Peripheral nerve hyperexcitability 

HGMD,
OMIM 

Y E 

Kel Kell blood group variation / Kell blood group variation ? / Null allele HGMD   

Kif21a CFEOM1 & Marcus Gunn jaw-winking syndrome / Congenital fibrosis of the extraocular muscles 1 HGMD,
OMIM 

 G 

Lcorl STATURE QUANTITATIVE TRAIT LOCUS 13; STQTL13 OMIM   

Lrch1 Knee osteoarthritis, association with HGMD   

Magi2 Infantile spasms / Infantile spasms in Williams-Beuren syndrome / Myoclonic epilepsy  / Seizures HGMD Y  

Nav2 Colorectal cancer, increased risk, assoc. with HGMD  G 

Nedd4l Altered splicing, association with / Epilepsy, photosensitive generalised / Epilepsy, photosensitive generalised ? / Impaired ENaC 
regulation, association with 

HGMD Y  

Npr2 Acromesomelic dysplasia, Maroteaux type / Short stature HGMD,
OMIM 

  

Nptn Increased transcriptional activity, association with / Schizophrenia, reduced risk, association with ? HGMD Y  

Nrxn1 Autism spectrum disorder / Autism spectrum disorder ? / Mental retardation, autism, vertebral malformations / Schizophrenia HGMD,
OMIM 

Y G 
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Nrxn3 Alcohol dependence, association with HGMD Y G 

Ntng1 Rett syndrome HGMD Y  

Pak3 Mental retardation syndrome, X-linked / Mental retardation with neuropsychiatric features HGMD,
OMIM 

Y  

Pde8b Adrenal hyperplasia HGMD   

Pnpla6 Motor neuron disease HGMD,
OMIM 

Y  

Porcn Focal dermal hypoplasia HGMD,
OMIM 

  

Prdm2 Bone mineral density, association with HGMD   

Ptprf Obesity, reduced risk, association with HGMD Y G 

Ptprz1 HELICOBACTER PYLORI INFECTION, SUSCEPTIBILITY TO OMIM   

Rims1 Cone-rod dystrophy HGMD,
OMIM 

Y G 

Robo2 Urinary tract anomalies / Vesicoureteral reflux HGMD,
OMIM 

 G 

Ryr2 Arrhythmogenic right ventricular cardiomyopathy, assoc. with / Arrhythmogenic right ventricular dysplasia type 2 / Catecholaminergic 
polymorphic ventricular tachycardia / Ventricular tachycardia, polymorphic 

HGMD,
OMIM 

  

Sbf2 Charcot-Marie-Tooth disease 4b2 HGMD,
OMIM 

  

Slc1a2 Progressing stroke, incr. risk, association with HGMD Y E 

Slc4a10 Autism HGMD Y G 

Smad2 Congenital heart defects ? HGMD  G 

Smad4 Haemorrhagic telangiectasia / Juvenile polyposis and haemorrhagic telangiectasia / Juvenile polyposis coli / Juvenile polyposis 
syndrome 

HGMD,
OMIM 

  

Sorbs1 Obesity and diabetes, reduced risk, association HGMD  E 

Srr Schizophrenia, association with HGMD Y  

Stim1 IMMUNE DYSFUNCTION WITH T-CELL INACTIVATION DUE TO CALCIUM ENTRY DEFECT OMIM   

Stxbp1 Epileptic encephalopathy, early infantile HGMD,
OMIM 

Y  

Syne2 Increased spine bone mineral density in men, association / Muscular dystrophy, Emery-Dreifuss HGMD  E 

Tpm1 Cardiomyopathy, dilated / Cardiomyopathy, hypertrophic HGMD,
OMIM 

 G 
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Tpm2 Cap disease / Distal arthrogryposis syndrome 1 / Muscle weakness and distal limb deformity / Nemaline myopathy HGMD,
OMIM 

  

Tpm3 Fibre-type disproportion myopathy, congenital / Nemaline myopathy / Nemaline myopathy ? HGMD,
OMIM 

  

Trp53bp1 Lung cancer, susceptibility to, association with HGMD   

Ttn Cardiomyopathy, dilated / Cardiomyopathy, hypertrophic / Myopathy / Tibial muscular dystrophy / Titin deficiency HGMD,
OMIM 

 G 

Whsc1 WOLF-HIRSCHHORN SYNDROME; WHS OMIM Y  

Wnk1 Ambulatory blood pressure variation, association with / Blood pressure, assoc. with ? / Colorectal cancer, increased risk, assoc. with / 
Neuropathy, hereditary sensory, type II / Protein kinase deficiency / Pseudohypoaldosteronism 2 

HGMD,
OMIM 

Y G 

 

 

* G indicates a gene putatively regulated by both Nova and Fox, but not necessarily on the same exon; E represents a gene with at least 
one exon under predicted combinatorial regulation by Nova and Fox. 
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