
Supporting Information

Finite Difference Formulation

Let
0 0 0 0(, ,)K x y z

be an arbitrary grid point away from the boundary of the cubical  .

As shown in Figure 1 of
1
, there exists a “unit element”

0V of volume
3h which is

centered at
0K such that

0 0 0

1 1 1
| | , | | , | |

2 2 2
x x h y y h z z h      (A1)

for any point (, ,)P x y z inside
0V .

 Integrating eqn. (1) over the volume element
0V yields

0 0 0

2(() ()) () sinh(()) 4 () .
V V V

x x dx x x dx x dx            (A2)

We define the charge
0q assigned to

0K as

0

0 () ,
V

q x dx  (A3)

and assume Debye-Huckel parameter ()x and potential ()x do not change in the

volume element
0V , provided the grid spacing h is small. Thus, the second term on the

left-hand side of eqn. (A2)

0

2 2 3 2 30
0 0 0 0

0

sinh(())
() sinh(()) () sinh(()) () ().

()
V

K
x x dx K K h K h K

K


     


  (A4)

The first term on the left-hand side of eqn. (A2) can be simplified using Green’s Theorem

0 0

0

on 6 faces
 of

(() ()) (() ())

 (() ()) .

V V

V

x x dx x x ds
n

x x ds
n

   

 




   




 



 

 
 (A5)

The surface integrals in eqn. (A5) can be approximated by differences. For example, on

the face of
0 0 0

0 1 1 1
,| | ,| |

2 2 2

|
x x h y y h z z h

V
     

 , we have

0 0

0 00 0 0

0 0 0 0 0 0

0 00 0 0

1 1 0 0
| | | |

2 2

1 11 0
| | | |, ,

2 22

, , , ,

11
| | | |, ,

22

1 1
(() ()) ((, ,) (, ,))

2 2

1
((, ,))

2

y y h z z h

y y h z z hx h y z

x h y z x y z

y y h z zx h y z

x x ds dy x h y z x h y z dz
n x

dy x h y z dz
x

dy dz
h

   

 

 


   

   



  

 
   

 


 






  

 



0 0 0 0 0 0

0 0 0

0 0 0 0 0 0
0 0 0

1

2

, , , , 2

1
, ,

2

1 , , , ,
, ,

2

()

h

x h y z x y z

x h y z

x h y z x y z
x h y z

h
h

h

 


  













 



 (A6)

where the value of  is assumed to be constant over the whole face and approximated by

its value
0 0 0

1
, ,

2
x h y z



at the center of the face, and the partial derivative of  with respect to

x is approximated by the forward difference. Substituting the approximates of the

surface integrals back into eqn. (A5) yields

0

6 6

0

1 1

(() ()) (),i i i

i iV

x x dx h     
 

     (A7)

where , 1,...,6i i  are potentials at six nearest neighboring girds of 0K , and , 1,...,6i i 

are dielecstatic constants at midpoints of
0K and its nearest neighbors.

 Finally, plugging eqn. (A3) – (A7) into eqn. (A2) and rearranging terms result in a

iteration equation

6

0

1
0 6

2

0 0

1

4 /

.

() (sinh()) /

i i

i

i

i

q h

h

  



   














 (A8)

 Approximating the hyperbolic sine function by its Taylor series leads to

6

0
' 1
0 6

2 2 4 2

0 0 0

1

4 /

,

() (1 / 3! / 5!... / (2 1)!)

i i

i

n

i

i

q h

h n

  



    









    




 (A9)

which has been shown in
2
.

Important Quantities and Theoretical Results in Performance Analysis of Parallel

Computing

 A core concept in parallel computing is speedup, which compares the execution of the

parallel program with its serial cousin. Two types of speedup, absolute and relative, will

be defined for completeness of this section but only the absolute speedup will be used

later.

 Let
AT be the wall clock time of the serial implementation and

PT be the wall clock

time of the parallel implementation using P processors. The absolute speedup
APS is

defined to be

 .
A

A
P

P

T
S

T
 (B1)

 The absolute speedup has significant theoretical meaning. However, it is difficult, even

impossible, to be measured in the cases that the serial code is absent. Thus, an alternative,

the relative speedup, is introduced. Let 1T be the wall clock time of the code running on a

single processor, and
PT be the wall clock time of the parallel implementation over

P processors. The relative speedup with respect to one processor is defined as

 1 1 .P

P

T
S

T
 (B2)

 In this work we use absolute speedup for all performance analysis in order to compare

the parallel algorithm directly to the fastest serial one. To simplify notations, the absolute

speedup is denoted as S , PS , or just speedup from now on.

 The speedup is considered to be linear whenever
PS P , and is called super linear

whenever .PS P When neither one of these apply, the speedup is said to be nonlinear.

 Linear speedup is the best we can expect for most parallel algorithms. Super linear

speedup is usually achieved from the improvement of hardware capability. Very few

algorithms are capable of achieving linear, much less super linear speedup, due to the fact

that communication between processors contributes more in the overhead and

significantly slows down the computation. Typically, good parallel algorithms achieve

nearly linear speedup for small number of processors, which flattens out for large number

of processors.

 The efficiency of an algorithm is another primary quantity for performance analysis and

is defined as

 .P
P

S
E

P
 (B3)

Thus, efficiency is speedup per processor. It estimates how well-utilized the processors

are in solving the problem, compared to how much effort is expended in communication

and synchronization. From its definition, it is clear that efficiency always stays between 0

and 1. Linear speedup corresponds to the highest efficiency 1PE  . Efficiency close to 0

indicates that most effort of processors is wasted in communication and synchronization.

 The Amdahl’s law
3
 is one important theoretical result about the performance of

parallel algorithms. It states the speedup PS , given P processors, is

1

,
(1) /

PS
f f P


 

 (B4)

where f denote the sequential fraction of the computation. Simple mathematical

arguments on eqn. (B4) lead to useful insights of the Amdahl’s law. For example, a

perfectly-linear parallelizable algorithm is one in which f tends to 0 , since
0

lim .P
f

S P




Similarly, the maximum speedup is limited by 1f  , since
1

lim .P
P

S
f

 A good example

representing the Amdahl’s law can be found in
4
.

 Readers who are interested in parallel computing are directed to
5
 for other quantities

and theoretical results which are omitted here.

Evidence that the Parallel Implementation is Exact

(a)

(b)

Figure S1. Snap-shots of the output screen of serial (a) and parallelized (b) DelPhi.

One can see that the output potentials and energies are identical, while the execution time

is much shorter for the parallelized DelPhi.

References

1. Klapper, I.; Hagstrom, R.; Fine, R.; Sharp, K.; Honig, B. Proteins: Structure, Function, and
Bioinformatics 1986, 1(1), 47-59.
2. Jayaram, B.; Sharp, K. A.; Honig, B. Biopolymers 1989, 28(5), 975-993.
3. Amdahl, G. M. In Proceedings of the April 18-20, 1967, spring joint computer
conference; ACM: Atlantic City, New Jersey, 1967, p 483-485.
4. Wikipedia. Amdahl's law, http://en.wikipedia.org/wiki/Amdahl%27s_law#cite_note-0,
(accessed April, 2012).

http://en.wikipedia.org/wiki/Amdahl%27s_law#cite_note-0

5. Li, C., A TIME-AND-SPACE PARALLELIZED ALGORITHM FOR THE CABLE EQUATION, Ph.D.
Thesis. University of Tennessee, Knoxville, TN, August 2011.

