
Supporting Information 

Finite Difference Formulation 

Let 
0 0 0 0( , , )K x y z

 
be an arbitrary grid point away from the boundary of the cubical  . 

As shown in Figure 1 of 
1
, there exists a “unit element” 

0V of volume 
3h  which is 

centered at 
0K  such that  
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for any point ( , , )P x y z  inside 
0V .  

   Integrating eqn. (1) over the volume element 
0V  yields 
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We define the charge 
0q assigned to 

0K  as 
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and assume Debye-Huckel parameter ( )x  and potential ( )x  do not change in the 

volume element 
0V , provided the grid spacing h  is small. Thus, the second term on the 

left-hand side of eqn. (A2) 
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The first term on the left-hand side of eqn. (A2) can be simplified using Green’s Theorem  
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The surface integrals in eqn. (A5) can be approximated by differences. For example, on 

the face of 
0 0 0
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 ,  we have 
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where the value of   is assumed to be constant over the whole face and approximated by 

its value 
0 0 0

1
, ,

2
x h y z



at the center of the face, and the partial derivative of   with respect to 

x  is approximated by the forward difference. Substituting the approximates of the 

surface integrals back into eqn. (A5) yields 
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where , 1,...,6i i   are potentials at six nearest neighboring girds of 0K , and , 1,...,6i i    

are dielecstatic constants at midpoints of 
0K  and its nearest neighbors.  

   Finally, plugging eqn. (A3) – (A7) into eqn. (A2) and rearranging terms result in a 

iteration equation 
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   Approximating the hyperbolic sine function by its Taylor series leads to                           
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which has been shown in 
2
.  

Important Quantities and Theoretical Results in Performance Analysis of Parallel 

Computing 

   A core concept in parallel computing is speedup, which compares the execution of the 

parallel program with its serial cousin. Two types of speedup, absolute and relative, will 

be defined for completeness of this section but only the absolute speedup will be used 

later. 

   Let 
AT  be the wall clock time of the serial implementation and 

PT  be the wall clock 

time of the parallel implementation using P processors. The absolute speedup 
APS  is 

defined to be                                                                    
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   The absolute speedup has significant theoretical meaning. However, it is difficult, even 

impossible, to be measured in the cases that the serial code is absent. Thus, an alternative, 

the relative speedup, is introduced. Let 1T  be the wall clock time of the code running on a 

single processor, and 
PT be the wall clock time of the parallel implementation over 

P processors. The relative speedup with respect to one processor is defined as 
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   In this work we use absolute speedup for all performance analysis in order to compare 

the parallel algorithm directly to the fastest serial one. To simplify notations, the absolute 

speedup is denoted as S , PS , or just speedup from now on. 



   The speedup is considered to be linear whenever 
PS P , and is called super linear 

whenever .PS P  When neither one of these apply, the speedup is said to be nonlinear. 

   Linear speedup is the best we can expect for most parallel algorithms. Super linear 

speedup is usually achieved from the improvement of hardware capability. Very few 

algorithms are capable of achieving linear, much less super linear speedup, due to the fact 

that communication between processors contributes more in the overhead and 

significantly slows down the computation. Typically, good parallel algorithms achieve 

nearly linear speedup for small number of processors, which flattens out for large number 

of processors. 

   The efficiency of an algorithm is another primary quantity for performance analysis and 

is defined as 
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Thus, efficiency is speedup per processor. It estimates how well-utilized the processors 

are in solving the problem, compared to how much effort is expended in communication 

and synchronization. From its definition, it is clear that efficiency always stays between 0 

and 1. Linear speedup corresponds to the highest efficiency 1PE  . Efficiency close to 0 

indicates that most effort of processors is wasted in communication and synchronization. 

   The Amdahl’s law 
3
 is one important theoretical result about the performance of 

parallel algorithms. It states the speedup PS , given P  processors, is 
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where f  denote the sequential fraction of the computation. Simple mathematical 

arguments on eqn. (B4) lead to useful insights of the Amdahl’s law. For example, a 

perfectly-linear parallelizable algorithm is one in which f  tends to 0 , since 
0

lim .P
f

S P


  



Similarly,  the maximum speedup is limited by 1f  , since 
1

lim .P
P

S
f

  A good example 

representing the Amdahl’s law can be found in 
4
. 

   Readers who are interested in parallel computing are directed to 
5
  for other quantities 

and theoretical results which are omitted here. 

Evidence that the Parallel Implementation is Exact 

 

(a) 

 

(b) 

Figure S1. Snap-shots of the output screen of serial (a) and parallelized (b) DelPhi. 

One can see that the output potentials and energies are identical, while the execution time 

is much shorter for the parallelized DelPhi. 
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