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Figure S1. Comparison of abundance of RNA fragments deriving from rRNAs and
snoRNAs, and snRNA in BCP1. Analysis indicate that the 3’ and 5’ terminal small
RNAs are cloned multiple times, and that rRNA-derived reads are more abundant than
snoRNAs and snRNAs, but less abundant than tRFs.
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Figure S2. Comparison of abundance of 5" and 3’ tRFs of two distinct tRNAs (HEK
293). Consistent with the deep sequencing results (tRF reads), the 3’ tRF intensities are
considerably more than that of the 5’ tRFs in both cases.
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Figure S3. Small terminal 5'/3' RNA fragments of rRNAs and snoRNAs, 3' snRNA
are present in mouse embryonic stem cells. Similar to human terminal RNA
fragments, rRNA-derived fragments are more abundant than snoRNAs, and snRNAs,
but less than that of mouse tRFs (Figure 4A).
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Figure S4. Strand bias of snoRNAs (left) and rRNAs (right) in mouse embryonic
stem cells. X axis represents one individual snoRNA or rRNA.
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Figure S5. Comparison between asymmetric processing of human and mouse
putative tRNA orthologs. Sequencing data of tRFs (reads/million = 10) human 293
cells and mES cells are used for comparison.
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Figure S6. Terminal small RNAs are largely independent of Dicer and Dgcr8
processing. (A) Boxplots based on log2-ratio (WT vs KO) of the RNA reads. Median
(bar) and standard interquartile range (IQR) outliers (whiskers, 1.5x IQR) are
represented along with p-values (paired t-tests). Small RNA classes other than miRNAs
do not manifest an overall dependence on Dicer/DGCRS. (B) List of terminal RNAs that
are down-regulated (>2 fold) upon both Dicer and Drosha KOs at either the 15-19 or
20-30 base long RNA groups.
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Figure S7. ANG can generate 5 tRFs. Total RNA from 293 cells were subject to
cleavage by control buffer, RNase A (10 pg/ml), and ANG (10 pg/ml). ANG enhances

the expression of the endogenous small fragment (~ 20 nts) in a time-dependent
manner.
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Fig S8. In vitro cleavage assay of 5.8S rRNA and U6 snRNA. Total RNA from 293
cells were treated with ANG (10 ug/ml), buffer control, or RNase A for different time
periods and subjected to northern blot using probes against the 5 terminal of 5.8 S
rRNA (upper) or 3’ terminal of U6 snRNA (middle). The same membrane was stripped
and re-probed with a miR-17 probe to ensure equal loading of RNA in all lanes.
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Figure S9. Effect of various mutations on ANG processing of tRFs. tRNA
molecules with mutations (red) that disrupt specific tRNA sub-structures were subject to
cleavage by ANG (0.5 h). Working buffer is used as a control. The disrupted structures
include the acceptor stem (A), the D stem (B), the anti-codon stem (C) the TyC stem
(D), and the entire clover-leaf structure (E). None of these mutations greatly affects tRF
processing by ANG.



