Supplementary information

Legends

Supplementary Figure S1. Insertion mutagenesis and suppressors screening.

Supplementary Figure S2. DAS suppressors. A. The das mutants suppress $dst1\Delta$ sensitivity to 6AU and MPA. Serial dilutions of the indicated isogenic mutants after three days of growth on SC-URA plates in the presence of 6AU or MPA at the indicated concentration. All the strains were BY4741 derivatives. B. Effect of 6AU (25 μ g/ml) on the doubling times (d.t.) of the liquid cultures of the wild type and the indicated mutants, as described in the Materials and Methods. Note that unlike the microcolony assay, the proliferation of the wild type in the liquid culture was affected by 6AU.

Supplementary Figure S3. Deletion of *SFP1* suppresses the sensitivity of $dst1\Delta$ to 6AU in a microcolony assay. **A.** Alginate microcapsules containing the representative microcolonies of the experiments described in Figure 1A. **B.** Comparison of the size distributions of the microcolonies developed by the isogenic $dst1\Delta$ and $dst1\Delta sfp1\Delta$ cells incubated in the presence of 25 µg/ml 6AU for 20 h. See Figure 1 for additional details.

Supplementary Figure S4.

Quantification of the Northern blots showing the effect of 6AU (100 μ g/ml, 90 min) on the mRNA levels of *IMD2* in the wild type and the indicated isogenic mutants. A fold induction (+6AU/-6AU) is indicated for each strain.

Supplementary Figure S5. *sch9* Δ suppresses *imd2* Δ sensitivity to MPA. Serial dilutions of the indicated isogenic mutants after 3 days of growth on SC-URA plates in the presence of MPA (2 µg/ml). All the strains were BY4741 derivatives.

Supplementary Figure S6. Mutations affecting the regulators of RP genes suppress $dst1\Delta$ sensitivity to MPA. A. Serial dilutions of the indicated *RAP1* partial deletion mutants (A) or the $tpk2\Delta$ mutant (B) after 3 days of growth on SC-URA plates in the

presence of MPA (10 μ g/ml). The deleted region of each *RAP1* mutant is shown in the diagram below.

Supplementary Figure S7. TFIIS binding to RNA pol I- (A) and RNA pol IIdependent genes (B) can be detected by ChIP. The ChIP experiments were performed utilising anti-HA antibodies and were quantified in relation to the input material. No-tag controls confirm the specificity of the HA-TFIIS signals. The six amplicons for rDNA were located as shown in Figure 2. The results of an untranscribed intergenic region (Chromosome V, coordinates 9716-9863) are also provided. Error bars indicate standard deviation.

Supplementary Figure S8. TFIIS and RNA polymerase II occupancy in response to 6AU. Changes in HA-TFIIS (**A**) and Rpb3 (**B**) binding to *RRPA43* and *RRP12* in response to 6AU (100 μ g/ml). All the values represent the average of three independent experiments at three different amplicons distributed along the genes. Samples were taken from the same extracts to analyse HA-TFIIS and Rpb3 in parallel. ChIP signals were quantified in relation to the input material. The results of an untranscribed intergenic region (Chromosome V, coordinates 9716-9863) are also shown. Error bars indicate standard deviation. **C.** Changes in the TFIIS/RNA polymerase II ratios upon 6AU (100 μ g/ml) addition, as measured by ChIP experiments utilising antibodies against HA-TFIIS and Rpb3. All the values represent the average of three independent experiments at three different amplicons (shown in Figure 3A and B).

Supplementary Figure S9. Changes in RNA polymerase II occupancy upon 6AU addition (100 μ g/ml) to the wild type and the indicated isogenic strains. All the values represent the average of three independent experiments at three different amplicons distributed along the genes. ChIP signals were quantified in relation to the input material. The results of an untranscribed intergenic region (Chromosome V, coordinates 9716-9863) are also shown. Error bars indicate standard deviation.

Supplementary Figure S10. Variation in the levels of the active RNA polymerases sitting on the indicated genes, as measured by transcriptional run-on, caused by

6AU addition (100 μ g/ml) to the wild type and to an isogenic *dst1* Δ strain in both the presence (**A**) and absence of Sfp1 (**B**). All the values represent the average of three independent experiments normalised to the signal given by the same gene at time 0. Error bars indicate standard deviation.

Round	[6AU] µg/ml	Number of transformants	6AU ^r	MPA ^r	Unic insertion	Insertion ligated phenotype
1	25	7600	2	2	2	2
2	10	7641	7	3	2	3
3	20	4382	5	3	3	1

Candidate	Disrupted ORF	BY4741 suppression	Plasmid complementation	Suppressor
1.1	YDR020c	Yes	-	DAS2
1.2	SFP1	Yes	-	DAS4
2.9	SCH9	Yes	-	DAS5
2.20	RPL40A	No	Yes	DAS3
3.8	YJL149w	Yes	-	DAS1

Time (min)

Figure S4

В

В

Fig S10

Table S1. Yeast strains.

Yeast strain	Relevant genotype	Reference
SchY66.9D	MAT α ade2-1 can1-100 ura3-1 leu2-3,112 his3-	This work
	11,15 trp1-1 dst1∆	
SchY66.4B	MAT a ade2-1 can1-100 ura3-1 leu2-3,112 his3-	This work
	11,15 trp1-1 dst1∆	
BY4741	MAT a his3∆1 leu2∆0 met15∆0 ura3∆0	Euroscarf
W303-1A	MAT a ade2-1 can1-100 ura3-1 leu2-3,112 his3-	Thomas et al,
	11,15 trp1-1	1989
MMY40	SchY66.9D rpl40A::mTnlacZLEU2	This work
MMY9.2	BY4741 dst1::kanMX4	This work
MMY9.1	BY4742 dst1::kanMX4	This work
yMT2291	BY4741 sch9∆natR	Jorgensen et al, 2002
FGY48.1B	BY4742 dst1∷kanMX4 sch9∆natR	This work
Y05312	BY4741 sfp1::kanMX4	Euroscarf
Y15312	BY4742 sfp1::kanMX4	Euroscarf
FGY43.1B	BY4741 dst1::kanMX4 sfp1::kanMX4	This work
Y01276	BY4741 das1::kanMX4	Euroscarf
Y03959	BY4741 das2::kanMX4	Euroscarf
MMY27.1	BY4742 dst1::kanMX4 das2::kanMX4	This work
FGY41.41	BY4741 imd2::hphMX4	This work
FGY54.4C	BY4741 imd2::hphMX4 sch9∆natR	This work
FGY60.2A	BY4741 imd2::hphMX4 sfp1::kanMX4	This work
SCR101	MAT a ade2-1 trp1-1 leu2 his3-11 ura3∆1 can1-100	Graham et al,
	GAL1::RAP1	1999
FGY52.13c	GAL1::RAP1 dst1::kanMX4	This work
FGY52.14b	GAL1::RAP1 dst1::kanMX4	This work
Y01089	BY4741 tpk2::kanMX4	Euroscarf
LMY1.3B	BY4741 dst1::kanMX4 tpk2::kanMX4	This work
Y07202	BY4741 trp1::kanMX4	Euroscarf
LMY5.2	Y07202 TRP1::pADH::3HA::DST1	This work
ARG6	BY4741 RPA190·3XHA::HIS3MX6	This work
ARG7	BY4741 RPA190·3XHA::HIS3MX6 dst1::kanMX4	This work

Round	[6AU] µg/ml	Number of transformants	6AU ^r	MPA ^r	Unic insertion	Insertion ligated phenotype
1	25	7600	2	2	2	2
2	10	7641	7	3	2	3
3	20	4382	5	3	3	1

Table S2. Isolation of the das_mutants.

Table S3. Oligonucleotides

Primer	Sequence 5'-3'	Use
3-D/A ₂	GACTCTCCATCTCTTGTCTTCTTG	Northern probe
5' A ₀	GGTCTCTCTGCTGCCGG	Northern probe
5.8S	TTTCGCTGCGTTCTTCATC	Northern probe
5S	GGTCACCCACTACACTACTCGG	Northern probe
A_2/A_3	TGTTACCTCTGGGCCC	Northern probe
C_1/C_2	GAACATTGTTCGCCTAGA	Northern probe
E/C ₂	GGCCAGCAATTTCAAGTTA	Northern probe
PUR5 up	TGGCCGCCATTAGAGACTAC	Northern probe
PUR5 lo	ACGCCACCTTCTAGTTGAGC	Northern probe
ADH1 up	TCCAAAGCCAAAGGCCAACGA	Northern/ Run-on probes
ADH1 lo	TTGGCACCAGCTGGCATACCG	Northern/ Run-on probes
RPS3 up	AAGAGATTCAAGTACGCTCCAGGT	Northern/ Run-on probes
RPS3 lo	AAACCGTCAGCAAATTTCATAGC	Northern/ Run-on probes
RPS8 up	ATTCTCGTCACAAAAGATCC	Northern/ Run-on probes
RPS8 lo	GTCTGGAAGAGATACAAGCG	Northern/ Run-on probes
RPL5 up	ATGGCTTTCCAAAAAGACGC	Run-on probes
RPL5 lo	GATCTTGGCAGCAACACGAG	Run-on probes
RPL25 up	GCTACTGCCGCTAAGAAAGC	Run-on probes
RPL25 lo	TAGCAATGTCCAAAGCATCG	Run-on probes
PHO88 up	TGGTCATGATGCAACTCTCC	Run-on probes
PHO88 lo	TACCGGCTCTTTCAGCTTCT	Run-on probes
HXK2 up	TGCCAAAGGAATTGATGCAA	Run-on probes
HXK2 lo	TGAGGTTTGAGTCCAGCCGTA	Run-on probes
HXT1 up	GGCCATGAATACTCCAGAAGGT	Run-on probes
HXT1 lo	GCGCCTCTCTTGGATACTGG	Run-on probes
RDN5 up	GGTTGCGGCCATATCTACCA	Run-on probes
RDN5 lo	AGATTGCAGCACCTGAGTTT	Run-on probes
NTS2 up	AGTGAGGAACTGGGTTACCCG	Q-PCR
NTS2 lo	TTTCTTTTGCCCTCTCTGTCG	Q-PCR
rDNA 1 up	AATTGAAGTTTTTCTCGGCGA	Q-PCR
rDNA 1 lo	ATGAAGTACCTCCCAACTACTTTTCC	Q-PCR
rDNA 2 up	AACAGTCTCATCGTGGGCA	Q-PCR
rDNA 2 lo	TGAGAGGAGGTTACACTTGAAGAAT	Q-PCR
rDNA 3 up	CAATAGCGTATATTAAAGTTGTTGCAGTT	Q-PCR
rDNA 3 lo	AAAGTCCTGGTTCGCCAAGAG	Q-PCR
rDNA 4 up	AACATTCTGTTTGGTAGTGAG	Q-PCR
rDNA 4 lo	AGTATAAAAAAAGATTAGCCG	Q-PCR
rDNA 5 up	TAACAGCTTATCACCCCGGAA	Q-PCR
rDNA 5 lo	CGGTTATCAGTACGACCTGGC	Q-PCR
REF up	TGTTCCTTTAAGAGGTGATGGTGAT	Q-PCR
REF IO	GTGCGCAGTACTTGTGAAAACC	Q-PCR
ADH1 5' up	GCACGGTGACTGGCCATT	Q-PCR
ADH 5' lo	TCTTCCAGCCCTTAACGTTTTC	Q-PCR
ADH1 C up	TGCTAACTTGATGGCCGGTC	Q-PCR
ADH1 C lo	AGACTCTGTAACCCATAGCCTTGG	Q-PCR
ADH1 3' up	ACGTCGGTAACAGAGCTGACAC	Q-PCR
ADH1 3' lo	TTCTGGCAAGGTAGACAAGCC	Q-PCR
PHO88 5' up	CATGTTGGTCATGATGCAACTCT	Q-PCR
PHO88 5' lo	GTTGGGTCCTCCATGTCAATG	Q-PCR
PHO88 C up	GGTAATGCTATGTCCGGCGA	Q-PCR
PHO88 C lo	TCTGACGGTAGTAACTTGCAGCTT	Q-PCR
PHO88 3' up	CCTCTTCGGTAAGCCTGCAA	Q-PCR
PHO88 3' lo	TGGAGCCTTGAATGGTCTCTTC	Q-PCR
RPL25 5' up	CACGAGAAAATTGAGAGGAAGATAGA	Q-PCR

RPL25 5' lo	CGTGTGGTTTTCGTATCTCATCA	Q-PCR
RPL25 C up	AGCAACGTAATTATCGGGCTCA	Q-PCR
RPL25 C lo	AACTTCCACAGCATCAACGCT	Q-PCR
RPL25 3' up	TGGTTTTCCAAGTTTCCATGAA	Q-PCR
RPL25 3' lo	AACTTCGTATAATTCCTTGACGGC	Q-PCR
RPS3 5' up	TTTTTGAACATTGTTTTGATAACTGAAA	Q-PCR
RPS3 5' lo	AGAGATTAAAGCGACCATTTTTGTAGT	Q-PCR
RPS3 C up	AAGAGATTCAAGTACGCTCCAGGT	Q-PCR
RPS3 C lo	GCGGACAAACCACGGTCT	Q-PCR
RPS3 3' up	GGTTGTGAAGTTGTTGTTTCCG	Q-PCR
RPS3 3' lo	AAACCGTCAGCAAATTTCATAGC	Q-PCR
HXK2 5' up	TGCCAAAGGAATTGATGCAA	Q-PCR
HXK2 5' lo	CAATTCGGAAATGAAGTGCTTG	Q-PCR
HXK2 C up	GGCCATCAACTGTGAATACGG	Q-PCR
HXK2 C lo	GGCCTGGTCTTGGAGATTCTTC	Q-PCR
HXK2 3' up	GTCCGTTTGTGGTATTGCTGC	Q-PCR
HXK2 3' lo	TGAGGTTTGAGTCCAGCCGTA	Q-PCR
HXT1 5' up	GGCCATGAATACTCCAGAAGGT	Q-PCR
HXT1 5' lo	GAAACCACCGAAAGCAACCA	Q-PCR
HXT1 C up	CGTTATTTGGTTGAAGCTGGC	Q-PCR
HXT1 C lo	AAGATGCAGTACCAGCGGCT	Q-PCR
HXT1 3' up	TCATGGGCTGTATGGTTTTCG	Q-PCR
HXT1 3' lo	GCGCCTCTCTTGGATACTGG	Q-PCR
RPS8 5' up	CGTCACAAAAGATCCGCTACC	Q-PCR
RPS8 5' lo	TCTTGGTGTTGGCTGGTTGA	Q-PCR
RPS8 C up	CCAAGAAGACCAGAATTGCTGG	Q-PCR
RPS8 C lo	AGCATCAATTTGGACAATGGC	Q-PCR
RPS8 3' up	GCTGCTTCTGCCAAGATCG	Q-PCR
RPS8 3' lo	CGGATTGACCTGGTCTGGAA	Q-PCR
RPL5 5' up	CCAAAAAGACGCTAAGTCCTCTG	Q-PCR
RPL5 5' lo	CTTGGCCTTGTGTTGGGTG	Q-PCR
RPL5 C up	TGGGTTTGGACGAAACTTACAA	Q-PCR
RPL5 C lo	AGAGCACCGAAAACTCTGGC	Q-PCR
RPL5 3' up	CACTTCTGCTCACGAAGCTATCA	Q-PCR
RPL5 3' lo	GATCTTGGCAGCAACACGAG	Q-PCR