Structural and biochemical consequences of disease-causing mutations in the ankyrin repeat domain of the human TRPV4 channel

Hitoshi Inada, Erik Procko, Marcos Sotomayor, and Rachelle Gaudet

Supporting Information

Table S1. TRPV-ARD structures used in this study							
Protein	Species	Structure (# mol/a.u.)	ATP binding	References			
TRPV1	Rat	2PNN (1), 2NYJ (1)	+	Lishko <i>et al.</i> , 2007 (ATP-bound forms)			
TRPV2	Rat	2ETA (2), 2ETB (1), 2ETC (2)		Jin et al., 2006			
	Human	2F37 (2)	_	McCleverty et al., 2006			
TRPV4	Human	Form I 4DX1 (2) without ATP Form II 4DX2 (2) with 5 mM ATP	+	This study			
	Chicken	3JXI (4), 3JXI (2)	+	Landouré <i>et al.,</i> 2010 (ATP-free forms)			
TRPV6	Mouse	2RFA (1)	_	Phelps et al., 2008			

Table S2. Structural similarity between TRPV4-ARD and other TRPV-ARDs

TRPV	TRPV1		TRPV2	TRPV6		TRPV4	
Species	Rat	Rat		Human	Mouse	Chicken	
PDB	2PNN	2ETB	2ETB 2ETC ^a		2RFA	3JXI ^a 3JXJ ^a	
RMSD ^b							
Finger 2 ^c	1.596 / 0.279	1.527 / 0.245	1.251 / 1.081	1.577 / 0.227	1.538 / 0.259	0.183 / 1.599	0.213 / 1.617
Finger 3 ^d	4.588 / 1.762	5.168 / 2.444	3.652 / 3.941	5.266 / 1.949	5.135 / 1.972	3.587 / 4.732	2.934 / 4.393
Core ^e	1.593 / 1.653	1.378 / 1.457	1.451 / 1.573	1.463 / 1.541	1.865 / 1.736	0.691 / 0.737	0.637 / 0.676
^a Only the chains with complete loops were used in the analysis. ^b RMSD to human TRPV4-ARD (ATP-free, form I / ATP-bound,							
form II). ^c Residues 229-240 in hTRPV4. ^d Residues 261-287 in hTRPV4. ^e Residues 152-176, 194-228, 241-260, 288-307, 324-							
356, 373-394	356, 373-394 in hTRPV4.						

Label	$t_{sim}\left(ns ight)$	Type [†]	Ensemble	SMD atoms	Speed
					(nm/ns)
	1.1 [‡]	EQ	NpT	<u> </u>	-
TRPV1-ARD- ATP	1.6	SMD	NVE	L111-Cα/H358-Cα	20
	8.3	SMD	NpT	L111-Cα/H358-Cα	2
	1.1 [‡]	EQ	NpT	-	-
TRPV1-ARD-Apo	1.6	SMD	NVE	L111-Cα/H358-Cα	20
	8.3	SMD	NpT	L111-Cα/H358-Cα	2

 Table S3. Molecular dynamics simulations of rat TRPV1-ARD

[†] EQ denotes equilibrium simulations and SMD denotes constant velocity steered molecular dynamics.

[‡] These simulations consisted of 1,000 steps of minimization, 100 ps of dynamics with the backbone of the protein restrained ($k = 1 \text{ kcal/mol/Å}^2$), and the remaining time as free dynamics in the NpT ensemble (Langevin damping set to 1 ps⁻¹).

		Mean		Std Dev		
Protein	Ν	T _m	±	(°C)	p-Value	
WT	8	37.93	±	0.08	1	
E183K	3	33.78	±	0.06	<.0001	*
K197R	3	35.3	±	0.1	<.0001	*
L199F	3	32.9	±	0.1	<.0001	*
R232C	3	38.1	±	0.1	0.8415	
R269C	3	38.6	±	0.2	<.0001	*
R269H	3	36.8	±	0.3	<.0001	*
E278K	3	37.3	±	0.2	<.0001	*
R315W	3	36.2	±	0.2	<.0001	*
R316C	3	34.7	±	0.3	<.0001	*
I331F	3	35.5	±	0.2	<.0001	*
I331T	3	37.97	±	0.07	1	
D333G	3	36.4	±	0.2	<.0001	*
V342F	3	35.4	±	0.3	<.0001	*

Table S4. T _m	of wildtype	and mutant	TRPV4-ARD	proteins
--------------------------	-------------	------------	-----------	----------

Figure S1. ATP binding effect on protein folding/flexibility in hTRPV4-ARD. A, hTRPV4-ARD contains four cysteines (Cys194, Cys250, Cys294, and Cys353; spheres). Bound ATP is shown as yellow sticks. Cys194 corresponds to Cys157 in TRPV1, which is required for activation by chemical modification with allicin, a garlic extract compound.¹ B. Time course for modification of hTRPV4-ARD cysteines by PEG-maleimide (mPEG). Reactions containing hTRPV4-ARD (8.5 µM) in 150 mM NaCl, 20 mM Tris (pH 7.0), 0.5 mM mPEG-5 kDa (Creative PEGWorks) and 10 mM nucleotide as indicated, were incubated at room temperature, stopped by addition of DTT to 110 mM, and analyzed by Coomassie-stained 12% SDS-PAGE. hTRPV4-ARD modification at cysteine residues resulted in electrophoretic mobility shifts on a Coomassie-stained SDS-gel. Unmodified protein is reduced and modified proteins (single, double, triple, and quadruple) are increased in a time-dependent manner. Shown is a representative Coomassie-stained gel from one of three experiments. The statistical significance of the change in unmodified protein with respect to time point 0 was determined by a multiple comparison test using Tukey-Kramer method, with p < 0.05 and p < 0.01 indicated by * and **, respectively. C, Amount of unmodified protein in (B) is quantified as the mean ± standard deviation. D, Same data as in (C) with vertical axis in log scale.

Figure S2. Stability of TRPV1-ARD in equilibrium and SMD simulations. A, Root mean square deviation (RMSD) is shown versus time during equilibrium simulations in the presence (red) and absence (black) of ATP. B and C, Force required to stretch and unfold TRPV1-ARD is shown as a function of the protein's end-to-end distance for simulations performed at 20 (B) and 2 nm/ns (C) with (red) and without (black) bound ATP.

Figure S3. The thermal stability of wildtype and mutant TRPV4-ARD proteins. The molar ellipticity at $\lambda = 222$ nm was measured as the protein solutions were heated by 1 °C/min.

Supplementary References

Salazar, H., Llorente, I., Jara-Oseguera, A., Garcia-Villegas, R., Munari, M., Gordon, S. E., Islas,
 L. D., and Rosenbaum, T. (2008) A single N-terminal cysteine in TRPV1 determines activation
 by pungent compounds from onion and garlic, *Nat Neurosci 11*, 255-261.