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SUPPLEMENTARY MATERIAL

Analysis of the well-mixed bacteria-phage community

We supplement the main text by supporting additional analysis for the well-mixed state of a simple

two-state system, which we then use to draw basic conclusions for a well-mixed CRISPR system with a

varying level of immunity.

Imagine first a system consisting of susceptible (S), resistant (R) and infected (I) bacteria (Fig. S1a,

inset). The bacterial reproduction rate is taken as the elementary time-unit and we refer to all other

timescales relative to it. Bacteria are allowed to transition from S → R (R → S) at a rate r � 1

(r′ � 1). Other relevant quantities are: (i) the phage reproduction rate w - where 1/w is the time

between subsequent phage generations; (ii) the cost c of acquiring the defense system. We simply take

the bacterial reproduction time to increase to 1 + c resulting in a growth rate v(c) ≡ 1/(1 + c). The

time-dependent number of susceptible bacteria S is given by

∂S
∂t

= nbS(1− S −R− I)− wnaSI + (1− v(c))nbSR− rnbS + v(c)r′nbR (S1)

where nb is the number of nearest neighbors the bacteria have access to and it will depend on the

specific properties of the medium. na is the number of neighboring sites phages have access to after

they are ejected from an infected host. This quantity in reality is determined by the effective volume

that phage descendants are able to explore before being degraded. It increases with larger diffusion and

smaller decay rate. The upper bound for na is the burst size (∼ 100 [1, 2], depending on eco-system

and phage type) while the theoretical lower bound for sustaining the population will be at least 1. The

first term on the r.h.s. of Eq. S1 describes the growth of the S population where the space occupied by
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other bacteria is not available for spreading. The second term is the interaction term between bacteria

S and phage and the third term describes the competition between R and S. Note that we allow S to

grow into space previously occupied by R at a rate 1− v(c) = c/(1 + c), hence gradually displacing the

slower bacteria. The last two terms in Eq. S1 describe the sink and source of S-bacteria due to occasional

mutations.

The time-dependence of the phage-resistantR-population is analogous except that the phage-interaction

term now is diminished by an additional factor 1− δ, with δ characterizing the bacterial immunity:

∂R
∂t

= v(c)nbR(1−R− S − I)− wna(1− δ)RI + (v(c)− 1)nbRS − r′v(c)nbR+ rnbS (S2)

The phage can prey both on the susceptible (S) and the resistant (R) bacteria, but at different rates.

The growth of the infected bacteria is

∂I
∂t

= wnaI(S + (1− δ)R)− wI (S3)

Perfect Immunity – Focusing on sustainable ecologies, we are interested in the steady-state solutions

of the above equations. Since r and r′ are generally much smaller than the typical bacterial reproduction

rate (mutation is not a significant way to grow a population) we can neglect them in the solution to the

well-mixed system. In the steady-state, the solution for perfectly immune R-bacteria (δ = 1) becomes:

S =
1

na
, (S4)

R = − 1

nav(c)
+

na

nb

w

1− v(c) + na

nb
w

(S5)

and

I =
v − 1

v − 1− na

nb
w

, (S6)

as shown as solid lines in Fig. S1a. Consequently, the susceptible bacteria population is constant and in

particular independent of the cost c. Hence, unprotected bacteria are always available and constitute a

substantial fraction of the total population. Also, the phage-infected population I remains finite for all

positive values of the cost. Hence, phage can survive even if bacterial defense comes at essentially no

cost. Only exactly zero cost would allow the bacteria to make the phage go extinct.
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In the limit c → 0, the fraction of resistant bacteria is maximal (R → 1 − 1/na) but the susceptible

bacteria remain constant (S → 1/na). Increasing c then leads to a monotonic decrease ofR and monotonic

increase of I until R finally vanishes at c0 = (na − 1)na

nb
w/(1 + na

nb
w).

Imperfect Immunity – Real immune systems, e.g. the CRISPR mechanism, are more likely to be

somewhat incomplete. Such imperfect immunity can be characterized by a probability δ < 1 of survival

for the R-population (sink term on r.h.s. of Eq. S2). Eq. S3 then yields:

S + (1− δ)R = 1/na . (S7)

Hence, the population of S-bacteria is now in fact reduced as compared to δ = 1. The steady-state

solutions of S, R, and I now become somewhat more complicated. Therefore, we only plot their cost

dependence (Fig. S1a and b). Generally, the total bacteria population decreases with decreasing δ, while

R increases at small cost but decreases at larger cost. The value of c0 where R vanishes moves to smaller

cost as δ decreases. In contrast, S decreases at small cost but saturates to 1/na at c = c0. Hence, S is

now no longer constant. In general, decreasing δ leads to a reduced coexistence regime with respect to

cost of resistance c. In the limit of δ → 0 coexistence vanishes entirely (Fig. S1b). This means that sub-

populations with very similar phage-defense chances generally cannot coexist while those with differing

properties generally can.

Compare this discussion also with previous work [3], where similar conclusions were reached, however

within a somewhat different model. Noticeably, for cost below a certain threshold (' 0.2 c0 in Fig. S1b)

it in fact pays off for the resistant bacteria to expose itself by lowering its immunity partially as it

in this way uses an increased phage population to eliminate its susceptible competitor, a well-known

effect previously termed apparent competition [4]. As a consequence of this indirect competition between

two bacterial strains the coexistence range narrows with lowering δ, and in fact vanishes with δ → 0

(Fig. S1b). At small values of cost, the more resistant species entirely dominates while at slightly larger

cost the susceptible species takes over.
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Sustainable co-existance of susceptible and resistance bacteria with smoothly

varying resistance

To give a simple argument for the existence of a stable steady state solution for a well-mixed CRISPR

system with np phage species, we assume the two extreme sub-populations (complete resistance and

complete sensitivity) given by the above discussion. We then show that these two extremes essentially

constitute absorbing states for a given bacterium with variable nres, i.e. in the vicinity of both extremes

there will be a gradient in the bacterium’s growth rate restoring its resistancy to the respective absorbing

state.

Defining c now as the cost of a bacterium carrying a single spacer, the average growth rate g(nres)

for a given bacterium as a function of the number of its spacers nres is

g(nres) = −I
(
1− nres

np

)
+ S · vS +R · vR +

1− I − S −R
1 + nresc

(S8)

with the relative velocities

vS ≡ − nresc

1 + nresc
(S9)

and

vR ≡ (np − nres)c

(1 + nresc)(1 + npc)
. (S10)

For the range of coexisting S and R shown in Fig. S1b, g(nres) is a smooth, non-positive convex function

(Fig. S2) which vanishes only at zero and np and exhibits a minimum between these two points.

By defining the derivative of g(nres) with respect to nres, one yields the differential growth rate

g′(nres) ≡
∂g(nres)

∂nres
=

c2(nres(2 + c · nres)− np)

(1 + c · nres)2(1 + 2c · np)
. (S11)

In the one-sided limits nres → 0 and nres → np at nres = 0 and nres = np, respectively, we yield

lim
nres→0

g′(nres) = − c2np

1 + 2c · np
(S12)

and

lim
nres→np

g′(nres) =
c2np

1 + 3c · np + 2c2n2
p

. (S13)
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For finite positive cost c and numbers of phage species np, limnres→0 g
′(nres) is always negative while

limnres→np g
′(nres) is always positive. nres is hence always drawn to the extreme ends of the distribution

(compare Fig. 2, main article).

That said, note that in real communities the limit nres → np is essentially impossible to reach if

bacteria of initially empty CRISPR-arrays were exposed to a large number of phage species. This would

require migration of spacer-sequences against the restoring force from nres = 0 to nres = np and this

process would have to be completed before new phage species are produced by mutations. In a well-mixed

lab system - where cultures could be initialized with empty CRISPR-arrays and very few phages, the

polarized situation, as described above, could in principle be reproduced by adiabatically adding new

phages and allowing the system to adjust to each insertion. Concludingly, real well-mixed systems will

only exhibit an exponentially decaying distribution of spacer lengths near nres = 0.

Spatial Modeling

In the following we provide several extensions of the spatial modeling provided in the main text: We

explore (i) the transient behavior of phage and spacer diversity, (ii) phage-side fitness costs as associated

with variations in their virulence, (iii) temporal fluctuations in populations densities.

(i) Time-dependent population dynamics

In Fig. S3 we present transient behavior of the bacteria-phage community. We contrast the spatial and the

well-mixed case and initialize the system with bacteria that have an empty CRISPR-array (no spacers).

We then introduce a single phage species which is allowed to spread on the bacteria. The bacteria can

acquire CRISPR spacers at a rate r when attacked by the phage, allowing them to subsequently become

immune. Also, a phage can mutate at a given rate rph by which it becomes a new species, i.e. any spacers

present in the bacterial CRISPR system do not allow defense against this new phage species. In Fig. S3 we

show the mean number of spacers carried by the bacteria, nres, and the number of distinct phage species

in the system, np. The figure shows the time-dependence of these quantities in units of system updates.

A system update means that on average each site has been updated once. The number of distinct phage

species initially increases but eventually saturates to a value between 40 and 50, both for the spatial and

the well-mixed system. However, the bacterial reaction to the growing np is rather different in the two

cases: While the spatially-structured bacteria acquire more and more spacers and finally also saturate (in
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the figure between 3 and 4 spacers) the well-mixed bacteria only acquire more spacers until np reaches

15 and then decay to a value close to zero. This is explained by the payoff of incorporating a spacer:

In a well-mixed system the payoff essentially is proportional to 1/np, as the probability of encountering

the same phage species again scales reciprocally with the number of species. On the other hand, in the

spatially structured system the chances are much higher and nearly independent of np, as phages are

constrained to the local environment (by migration).

(ii) Fitness-costs in the phage population

So far we have only addressed fitness variations in the bacterial population, as resulting from the acqui-

sition of CRISPR-spacers. However, also the phage population may be subject to variations in fitness,

as reflected by its infection parameters. As a point in case, we imagine different phage species that are

able to generate different burst sizes, i.e. the number of offspring generated from an event of successful

infection and subsequent burst of the bacterium.

In our model, the default is for a burst to result in phage-offspring spreading to all neighboring

sites (i.e. four sites on a square lattice). We mimic the effect of varying burst size by an infection-

associated probability, pbs, which controls the probability of a particular phage species to spread to a

given neighbor. E.g. when pbs = 1/2, every neighbor only is infected at a probability 1/2 resulting on

average in 2 generated offspring-sites for the given lattice of four nearest-neighbors. When phages mutate

as before, they now are both assigned a new unique index and update the parameter pbs by choosing a

random number from a uniform distribution between 0 and 1. While this sampling will allow all pbs to be

represented equally, different values of pbs will however grant the corresponding phage species different

fitness with large values constituting a competitive advantage due to faster duplication. The uniform

input distribution may hence be expected to result in a distribution skewed towards large pbs in the

evolving system.

However, CRISPR as an adaptive immune system will then be challenged more strongly by the

dominant species, i.e. those with larger values of pbs, which will again deplete this sub-population more

strongly than those species with low values of pbs. In Fig. S4 we present model results comparing again

the spatial and the well-mixed system.

Fig. S4a shows the spatial pattern generated by CRISPR-bacteria interacting with evolving phages

as described above. Again, a rather heterogeneous pattern results w.r.t. variations in CRISPR spacer
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numbers. Considering again the spacer number distribution for the spatial and well-mixed case (Fig. S4b),

qualitatively similar curves to those without fitness variations (Fig. 2, main text) are obtained. Overall,

the analysis of phage-fitness variations shows that in the spatially-structured system a distribution of

spacer numbers np again results, with intermediate values most likely. For the well-mixed system the

extreme state of np = 0 dominates independent of fitness variations.

To quantify how the phage fitness distribution effects the overall phage diversity, we again produce

plots of the transient behavior, in the spirit of Fig. S3. Fig. S4c shows the time-dependence of np for

variable and fixed pbs. Generally, diversity decreases when phages are allowed to lower their burst size by

mutations (indicated by vertical arrows in the figure). This is clear when remembering that mutations

leading to lower burst size are generally unsuccessful and these phages quickly die out. However, phages in

a well-mixed system are punished much more when they lower their burst size, evident from the stronger

reduction of diversity as shown in the plot.

Further, we consider the distribution of phage characteristics: The dashed black curve in Fig. S4d

shows the distribution of pbs for the spatially-structured system, as obtained by counting the number of

corresponding phage species present in the system. The distribution is roughly exponentially increasing

as a function of pbs, reflecting the more rapid spreading of high-pbs phages and their out-competing of

phages with lower values of pbs. We again contrast with the well-mixed model. Generally, the distribution

in the well-mixed system is more sharply increasing towards large pbs. Note also the cross-over of the

two curves, possibly a result of the feedback in the spatially-structured system where low-pbs phages

are locally out-competed by those of larger pbs, an effect acting on longer time scales in the well-mixed

system.

To monitor how the CRISPR system reacts to the varying fitness of the predator, we correspondingly

show the time-dependence of the bacterial immunity (quantified by the mean value of nres, Fig. S4e).

Again, there is no strong difference in the reaction to the phage population. The spatial system yields

intermediate resistance levels - reflecting the locally unchanged diversity - while the well-mixed system

yields values of nres close to zero. Also, we sample all spacers in the bacterial population and collect

the values of pbs corresponding to the encoded phage species (Fig. S4f, solid black curve). Comparing

the slopes of the two black curves in Fig. S4d and f shows that CRISPR in fact reacts most strongly to

rapidly spreading phages (high pbs) but allows weak phages higher infection rates (relatively less spacers

at small pbs).
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(iii) Fluctuations in population density

In the main text we state that for the CRISPR system and sufficiently large system sizes, phage densities

of the individual species become comparable. We justify this by a negative feedback induced by CRISPR,

i.e. the presence of an above average phage density of a given species leads to the production of more

spacers in response to the elevated density. The given phage species will subsequently have a reduced

probability to infect a given bacterium. This effect should lead to a restoring of population densities

towards the mean.

To show that this is in fact the case, we perform several simulations with a fixed number of phage

species np = 20: For both the well-mixed and the spatial model, we shown time series for systems of linear

dimension L = 200 and L = 400 (shown in Fig. S5a,b). In all simulations, none of the phage species go

extinct and their densities fluctuate around a common mean. Initially weak species (low density) quickly

increase and converge to the same mean. Larger system sizes lead to a further reduction of the variations

in population density.

Comparing with a system with de-activated CRISPR (no spacer-acquisition allowed) population den-

sities fluctuate widely and extinctions are common (Fig. S5c,d). The absence of CRISPR means that the

feedback is removed and phage population densities undergo an unrestrained drift, conserving only the

overall population total of the phage population, not that of the individual species.
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