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Model B of Millman et al. and its self-consistent so-

lution

The model studied by Millman et al., Model B, is defined by the following set of
equations for the membrane potential Vi of neuron i and the synaptic utility Uij for each
release site j:
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where ζkij is a uniform random number in [0, 1] and Θ(x) the Heaviside step function. The
first term in the r.h.s. of the first equation describes the leakage, the second is the sum
over external inputs (Poisson distributed at rate fe), and the third represents the internal
currents arriving from (pre-synaptic) neuron i′ to (post-synaptic) neuron i at every release
site j′; there are nr release sites per synapsis; k runs over spikes, occurring at times tksi
for each neuron i.

The Fokker-Planck equation proposed in [1] to describe this model in the limit of
infinitely large system-size is
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(S2-2)

The drift (or deterministic) term in equation (S2-2) includes potential leakage and ex-
ternal plus internal input integration. The diffusion term stems from the Poisson-like
nature assumed for both external and internal spikes (K synapses per neuron; i.e. finite

1



connectivity). f stands for averaged firing rate and Vin = prnrwinτs/C and Ve = weτs/C
are the mean increase in membrane potential from a single internal and external (expo-
nential) input. Indeed, observe that the factor τs in the expressions Vin/e comes from∫∞
ts
e−(t−ts)/τsdt = τs. In order to enhance the accuracy of the quantitative agreement

between theoretical predictions and numerical results, we have improved this estimation
of the global membrane potential increase per spike by taking into account that neurons
are eventually reset and during their refractory period they do not integrate stimuli and
the arriving inputs are interrupted. In this way, (see S7) the average input per spike
becomes

V in/e = Vin/e

[
1− fτs

(
1− e−

1
fτs

)]
, (S2-3)

which represents a significant change with respect to Vin/e above.
Some remarks are in order:

• In the fully connected case K = N , assuming that internal input amplitudes are
rescaled by the average connectivity (i.e. win → win/K) in order to keep the total
signal per spike constant, the internal noise disappears in the infinite size limit.
In other words, the internal contribution to the diffusion term, proportional to Vin
stems from the finite connectivity of each individual neuron in sparse networks.
Similarly, in the absence of external stochasticity, the external contribution to the
diffusion term, proportional to Ve would disappear for a homogeneously distributed
excitation. If the two previous conditions hold, the dynamics becomes purely deter-
ministic.

• Observe that only derivatives with respect to V , and not u, appear in equation
(S2-2); this is because, the synaptic depression variable has been averaged also over
release-sites, hence, in the limit of large nr it is replaced by its mean-field value
which obeys

u̇(t) =
1− u
τR
− prfu. (S2-4)

This replacement is accurate for large values of nr while otherwise it is just an
approximation.

Equation (S2-2) needs to be complemented with the boundary conditions F (Vr, t +

τrp) = F (θ, t) where F (V, t) = (V 2
e fe +Ku2V 2

inf) ∂P (V,t)
∂V

is the flux at a given value of V ,
and P (θ, t) = 0, representing the fact that neurons at threshold are instantly reset to the
resting-potential Vr, and kept inactive for a refractory period τrp [2, 1]. The firing rate,
f , is computed as the outgoing probability flux, i.e. the fraction of neurons overcoming θ
per unit time, f(t) = F (θ, t).

As the dynamics depends on the probability flux f , which on its turn is fixed by the
overall dynamics, the Fokker-Planck equation needs to be solved self-consistently. This
can be done numerically (Euler-implicit method) giving results in agreement with those
in [1]: there are two different stable states for the probability distribution (see figure S2).
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Figure S2. Solutions for the membrane potential distributions described by equation
(S2-2). In the Down-state, membrane potentials are closer to Vr, and the slope in θ gives
a low firing rate f = 0.00022 Hz, while in the Up-state, potentials raise up, giving
f = 74.9 Hz.
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