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Jorge Hidalgo, Lúıs F. Seoane, Jesús M. Cortés and Miguel A. Muñoz

Departamento de Electromagnetismo y F́ısica de la Materia and Instituto de F́ısica Teórica y
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Power-spectrum evaluation for Model B

To firmly establish the correspondence between the phenomenology described for
Model B in the main text and stochastic amplification we need to write down a set
of effective Langevin equations (analogous to equation 1 in the main text) for the network
averaged variables and, from it, compute power-spectra. This turns out to be a non-trivial
task.

Our starting point is equation (S2-2). Multiplying it by V and integrating over all
possible values of the membrane potential variable
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where boundary conditions have been imposed and τrp has been, for simplicity, neglected.
The self-consistent method used for solving equation (S2-2) together with equation

(S2-4) provides v∗, u∗, f ∗ and P (Vr)
∗, computed via the mean, the slope in θ and the value

in Vr of the steady state solution P (V ). Results are shown in Table S6. Differences with
simulation results (〈v〉up = −61.67 mV, 〈u〉up = 0.2352; 〈v〉down = −68.3 mV, 〈u〉down =
0.997) stem from the relatively small value nr = 6 used in simulations; as explained
above, the Fokker-Planck approach is strictly valid for nr →∞.

In the case of finite networks, P (Vr, t) and f(t) become fluctuating time-dependent
variables. Fig. S6-1 illustrates the result of numerical simulations for network of various
sizes for the firing rate: f(t) is observed to be strongly correlated with v(t); the larger
the average potential the larger the fraction of neurons firing per unit time. The inset
of Fig. S6-1, where f is plotted as a function of v and u, illustrates the existence of two
well-defined branches, one for up-to-down transitions and another for down-to-up, when
f is considered a function of v.

1



Up (pr = 0.5) Down (pr = 0.2)
v∗ (mV) -61.16 -66.54
u∗ 0.2108 0.999996
f ∗ (Hz) 74.88 0.000216
P (Vr)

∗ (V−1) 40.75 150.04

Table S6. Results obtained from the Up and Down steady state distributions shown in
Fig. S2.

For the forthcoming analytical calculations, f can be well approximated by a threshold-
linear (or “split”) function of v plus a noise, and with this we describe its shape in both Up
and Down states. The noise amplitude, as shown in Fig. S6-2 decreases with network-size
as expected on the central limit theorem basis.

As for the probability density of neurons at the resting state, P (Vr, t), it is consider
as a constant of value P (Vr)

∗ for simplicity.
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Figure S6-1. Main: Firing rate f as a function of the mean membrane potential v for
various finite-size networks in the model of Millman et al. for (red) the Up-and-Down
state pr = 0.3 and N = 103, (blue) Down-state pr = 0.2 and N = 103 , and (green
N = 103, magenta 104, and yellow N = 105) Up-state pr = 0.5. By increasing the
system size the cloud of points converges to the steady state fixed point. The
approximate linear fit is: fup(v) = (12.86± 0.05 Hz/mV)v+ (850± 3)Hz for the Up-state
and f(v) = 0 for the Down-state. Even in the case of Up-and-Down states, f(v) can be
well approximated by a bi-valuated function with two branches: one for transitions
Down-to-Up and other for Up-to-Down. Inset: f as a function of both v and u
illustrating the origin of the two branches above.

Having an analytical approximation for f(v) it is now possible to perform a lineal
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Figure S6-2. Typical deviation of fluctuations for different variables as a function of
the system size. Simulations -computed for a persistent Up state– show a decay of
1/
√
N , as expected on the basis of the central limit theorem.

stability analysis. Defining x = v − v∗ and y = u − u∗ as the linear deviations from the
deterministic fixed points, the corresponding Jacobian matrix is specified as follows:
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where G is the derivative of the re-scaling factor of the incoming currents (see S7) which
depends on f(v):
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giving a non-trivial correction.
At the Up-state fixed point this leads to avv = −120.12 Hz, avu = 10.4272 V·Hz,

auv = −1355.44 Hz/V, auu = −47.4422 Hz for the coefficients of the stability matrix, and
hence a minimum at the denominator of P (w) at w0 = 76.1 rad/s =⇒ f0 = 12.11 Hz.
Instead, in the Down-state, the equation for u becomes decoupled from that for v, resulting
in the absence of a non-trivial peak in the spectrum (complex ω0), even for a small but
non zero firing rate.
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