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SUMMARY

All cancers carry somatic mutations. The patterns of
mutation in cancer genomes reflect the DNA damage
and repair processes to which cancer cells and their
precursors have been exposed. To explore these
mechanisms further, we generated catalogs of
somatic mutation from 21 breast cancers and
applied mathematical methods to extract mutational
signatures of the underlying processes. Multiple
distinct single- and double-nucleotide substitution
signatures were discernible. Cancers with BRCA1
or BRCA2 mutations exhibited a characteristic
combination of substitution mutation signatures
and a distinctive profile of deletions. Complex rela-
tionships between somatic mutation prevalence
and transcription were detected. A remarkable
phenomenon of localized hypermutation, termed
‘‘kataegis,’’ was observed. Regions of kataegis
differed between cancers but usually colocalized

with somatic rearrangements. Base substitutions in
these regions were almost exclusively of cytosine
at TpC dinucleotides. The mechanisms underlying
most of these mutational signatures are unknown.
However, a role for the APOBEC family of cytidine
deaminases is proposed.

INTRODUCTION

Cancers carry somatic mutations. A small proportion are

‘‘drivers’’ that confer clonal advantage, are causally implicated

in oncogenesis, and have been positively selected during the

evolution of the cancer (Stratton, 2011; Stratton et al., 2009).

Driver mutations occur in the subset of genes known as cancer

genes. Through systematic sequencing of cancer genomes,

considerable advances have recently been made in the identifi-

cation of cancer genes, providing insights into mechanisms of

neoplastic transformation and targets for therapeutic interven-

tion (Stratton, 2011; Stratton et al., 2009). We have relatively

limited understanding, however, of the DNA damage and repair

processes that have been operative during the lifetime of the
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patient and that are responsible for the somatic mutations that

underlie the development of all cancers in the first place.

Historically, analysis of mutation patterns to investigate under-

lying DNA damage and repair processes in human cancers has

predominantly been restricted to reporter cancer genes, notably

TP53. These studies have revealed that mutation patterns can

be related to carcinogen exposures and DNA repair processes.

For example, G>T/C>A transversions predominate in smoking-

associated lung cancer, a pattern compatible with DNA damage

induced by tobacco carcinogens such as benzo[a]pyrene

diolepoxide (Pfeifer et al., 2002). These mutations are enriched

at CpG dinucleotides and exhibit a transcriptional strand bias

reflecting past activity of transcription-coupled nucleotide exci-

sion repair (TCR) on bulky adducts of guanine caused by

tobacco carcinogens (Hainaut and Pfeifer, 2001). Similarly, in

UV-light-associated skin cancers, C>T and CC>TT transitions

are common. These occur at dipyrimidines, reflecting the forma-

tion of pyrimidine dimers following exposure of DNA to UV light

(Pfeifer et al., 2005) and also show transcriptional strand

bias due to the action of TCR on pyrimidine dimers. Further

examples of exogenous exposures leading to distinctive muta-

tional patterns include G>T transversions in aflatoxin B1-associ-

ated hepatocellular carcinomas (Macé et al., 1997) and A>T

transversions in urothelial tumors from patients exposed to aris-

tolochic acid (Nedelko et al., 2009).

Although these studies have been highly informative, they

have limitations. Because they depend upon driver mutations,

effects of selection have been superimposed upon mutational

patterns generated by DNA damage and repair processes.

Moreover, only a single mutation from each cancer sample is

usually incorporated into each data set. Thus, they have been

well placed to report strong exposures and dominant repair

processes operative across most cases of a particular tumor

type. However, where there is heterogeneity of mutational

process in a cancer class, a composite of different processes

will be reported.

The completion of the human genome sequence and the

advent of second-generation sequencing technology have over-

come historic limitations of scale, permitting sequencing of

whole cancer genomes (Berger et al., 2011; Chapman et al.,

2011; Ding et al., 2010; Lee et al., 2010; Ley et al., 2008; Mardis

et al., 2009; Shah et al., 2009; Tao et al., 2011), and generation of

comprehensive catalogs of somatic mutation (Pleasance et al.,

2010a; Pleasance et al., 2010b). Most somatic mutations in

cancers are thought to be ‘‘passenger’’ events that do not

contribute to cancer development. These bystanders bear the

imprints of the DNA damage and repair processes operative

during the development of the cancer, unmodified by selection.

The several hundreds to tens of thousands of somatic mutations

in each cancer, therefore, potentially allow much greater resolu-

tion of mutational patterns and insights into underlying muta-

tional processes.

Recent analyses of comprehensive mutational catalogs from

a malignant melanoma and a lung cancer illustrate the power

of this approach (Pleasance et al., 2010a; Pleasance et al.,

2010b). They revealed the characteristic mutational patterns

of UV light and tobacco carcinogens respectively (see above)

and provided strong evidence for the past activity of TCR. In

addition, G>T mutations in the lung cancer showed a preference

for CpG dinucleotides outside CpG islands, suggesting a role

for methylated cytosine because CpG islands are usually un-

methylated. Conversely, G>C mutations at CpG dinucleotides

were more prevalent within CpG islands suggesting that the

mutagen(s) underlying these mutations preferentially acted on

unmethylated DNA (Pleasance et al., 2010b). In the melanoma,

at least one additional mutational process characterized by

G>T changes and independent of UV light exposure was shown

to have been operative. In both cancers, mutations were more

common in poorly expressed than in highly expressed genes,

both on the transcribed and untranscribed strands. Indeed,

mutations were also found to be more prevalent at the 30 ends
of genes than at the 50 ends (Pleasance et al., 2010a). The

mechanisms underlying these expression-related phenomena

are unknown.

Compared to melanoma and lung cancer, the mutational

processes underlying other cancer types are poorly understood.

Therefore, in this study, we document essentially the full reper-

toire of somatic mutations of 21 breast cancers to investigate

the mutational mechanisms shaping these cancer genomes.

RESULTS

Sequencing of Breast Cancers
We sequenced the complete genomes of 21 primary breast

cancers and matched normal DNAs from the same individuals.

Cancers were typed for estrogen receptors (ER), progesterone

receptors (PR), and HER2, and included nine cases with germ-

line mutations in the breast cancer predisposition genes

BRCA1 (five) and BRCA2 (four) (Table S1A, available online).

Cancer and normal DNAs were sequenced to > 30-fold

coverage and analyzed to identify somatic base substitutions,

insertions, and deletions (indels); rearrangements; and copy

number changes. PD4120a was sequenced to �188-fold depth

to investigate temporal and clonal evolution (Nik-Zainal et al.,

2012). Using orthogonal sequencing technologies we estimated

the specificity of substitution-calling to be �92.1% (Table S1A).

All substitutions were therefore included in the analyses. For

indels and rearrangements only confirmed variants were

included (Table S1B). From 17 of the 21 casesmRNA expression

data were also obtained.

The Catalogue of Somatic Mutations from 21 Breast
Cancer Genomes
A total of 183,916 somatically acquired base substitutions were

identified (see Table S1B for hyperlinks). In protein coding

regions, there were 1,372 missense, 117 nonsense, 2 stop-

lost, 37 essential splice-site, and 521 silent mutations. Of the

2,869 indels identified, 2,233 were deletions, 544 insertions

and 92 complex. There were 21 coding indels, of which 15

were predicted to result in a translational frameshift and six

were in-frame. In addition, 1,192 structural variants (rearrange-

ments), 16 homozygous deletions, and 14 regions of increased

copy number (amplifications) were identified (Table S1C).

Likely driver substitutions and indels in cancer genes

were found in TP53, GATA3, PIK3CA, MAP2K4, SMAD4,

MLL2, MLL3, and NCOR1 (Table S1C). Amplification was
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observed over cancer genes previously implicated in breast

cancer development including ERBB2, CCND1, MYC, MDM2,

ZNF217, and ZNF703 and a homozygous deletion involving

MAP2K4 was identified. All tumors derived from BRCA1 or

BRCA2 germline mutation carriers showed loss of wild-type

haplotypes at 17q21 or 13q12, respectively, as expected of

recessive cancer genes (Table S1B).

Extracting Mutation Signatures from Catalogues
of Somatic Mutation
The set of somatic mutations in a cancer genome is the aggre-

gate outcome of one or more mutational processes. Each

process leaves a mutation signature on the cancer genome

defined by the mechanisms of DNA damage and repair that

constitute it. The final catalog of mutations is determined by

the strength and duration of exposure to each mutational

process. We set out to extract the mutation signatures charac-

terizing the mutational processes operative in the 21 breast

cancers studied.

There was substantial variation between the cancers in the

numbers and relative contributions of each of the six classes of

base substitution (C>A, C>G, C>T, T>A, T>C, and T>G) (Fig-

ure 1A). To provide greater depth of insight into the operative

mutational processes, we incorporated the sequence context

in which mutations occurred, by considering the bases immedi-

ately 50 and 30 to each mutated base. Because there are six

classes of base substitution and 16 possible sequence contexts

for each mutated base there are 96 possible mutated trinucleo-

tides. We have represented the fraction of mutations at each of

the 96 mutated trinucleotides as a heat map for each cancer

and normalized it according to the prevalence of each trinucleo-

tide in the genome. The display therefore highlights mutational

signatures generated by processes that favor particular classes

of mutation and/or particular sequence contexts in which muta-

tions occur (Figure 1C).

Visual inspection of the 21 heatmaps provided evidence for

multiple independent mutational signatures and indicated that,

in most cancers, more than one process had been operative.

For example, overrepresentation compared to chance of C>T

substitutions at XpCpG triplets (C is the mutated base and X is

any base) was observed in all cancers, albeit to different extents.

The elevated C>T mutation rate at XpCpG trinucleotides is a

well-recognized mutational mechanism probably due to deami-

nation to thymine of methylated cytosines, which are usually at

XpCpGs (Waters and Swann, 2000). The role of methylated cyto-

sine is supported in our data by the higher frequency of C>T tran-

sitions at XpCpG triplets outside CpG islands (where most

XpCpGs are methylated) than inside (where most are unmethy-

lated) (OR 9.95; 95% CI 7.17–13.8; p < 0.0001). Subtler features

of this mutational signature were also apparent, notably the

influence of the base 50 to the mutated cytosine on the C>T

mutation rate (for example, see PD3905a). Although the

normalized heatmap representation emphasizes the ubiquitous

elevation of the C>T mutation rate at XpCpG trinucleotides, the

absolute number of these mutations is relatively modest

because of the general depletion of XpCpGs from the human

genome due to the activity of the same, or a similar, mutational

process in the germline over evolutionary time.

There was also an overrepresentation of C>T, C>G and C>A

mutations at TpCpX trinucleotides in many breast cancers

and very pronounced in some (notably, PD4199a and P4120a).

In addition to the high proportion of T immediately 50 to the

mutated cytosine, the base immediately 30 to the mutated C

also appears to influence this mutational signature with greater

overrepresentation of TpCpA, TpCpT and TpCpG than of

TpCpC. We have previously reported this signature in breast

and other cancers (Greenman et al., 2007; Stephens et al.,

2005, 2012).

Application of Mathematical Approaches to Extract
Mutation Signatures
Although major features of some mutational signatures can be

discerned by visual inspection, a formal mathematical approach

is required to extract subtler elements and weaker signatures

and to assess the contribution of each mutational process to

the mutation set in each cancer. We employed a nonnegative

matrix factorization (NMF) and model selection approach (Berry

et al., 2007) to extract mutational signatures from the 21 cases.

NMF extracts interpretable features from complex multidimen-

sional data (Berry et al., 2007; Lee and Seung, 1999). For

example, application to images of faces yields familiar compo-

nents such as eyes, nose, and mouth (Lee and Seung, 1999).

Our desire to extract biologically meaningful mutational signa-

tures, as well as the intrinsic nonnegativity of the mutation spec-

trum data, renders NMF an appropriate choice for factorizing the

data from the 21 cases.

Evaluation of NMF decompositions (Berry et al., 2007)

(Extended Experimental Procedures and Figures S1A–S1C)

suggested that a best estimate of five biologically distinct muta-

tional signatures were present in the 21 cancers (named A–E,

Figure 2A). Each signature was characterized by a different

profile of the 96 potential trinucleotidemutations and contributed

to a different extent to each of the 21 cancers. Different combi-

nations of the five signatures account for the variation in the 21

mutational catalogs (Figure 1D).

Signature A was characterized by C>T mutations at XpCpG

trinucleotides but included other mutation classes making

smaller contributions (Figure 2A). Signature B was composed

predominantly of C>T, C>G and C>A mutations at TpCpX trinu-

cleotides. The dominant features of these two mutational signa-

tures were previously noted by scrutiny of the heatmaps (see

above). However, for each process NMF provided greater insight

into the relative contributions of all mutation classes.

NMF provided evidence for three additional mutational

processes. Signature C and Signature D both exhibited a rela-

tively even distribution of mutations across the 96 trinucleotides.

However, there were subtle differences. Signature Cwasmoder-

ately enriched for C>T, C>G and, to a lesser extent, C>A muta-

tions at XpCpG trinucleotides, whereas Signature D was not

(Figures 2A and S1D). In hindsight, an enrichment of C>G and

C>A mutations at XpCpG trinucleotides can be discerned in

some cancers in the heatmap (Figure 1C). Moreover, the

strength of this enrichment does not appear to be well correlated

with enrichment of C>T mutations at XpCpG trinucleotides,

suggesting that they are due to different processes, providing

the rationale for NMF to separate Signature C from Signature A

Cell 149, 979–993, May 25, 2012 ª2012 Elsevier Inc. 981
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Figure 1. Somatic Mutation Profiles of 21 Breast Cancers, Related to Table S1

Breast cancers grouped according to subtype on the far left.

(A) Base substitution mutation spectra. *Ultra-deep sequenced PD4120a has an alternative scale on the x axis (0 to 45,000).

(B) Mutation spectra of double substitutions from all 21 samples.
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(compare, for example, PD4006a and PD3945a in Figure 1C). In

Signature E the dominant feature was C>G mutations at TpCpX

trinucleotides. Signature E is therefore similar to Signature B, but

lacks the C>T mutations at TpCpX trinucleotides characteristic

of Signature B.

NMF will extract mutational patterns due to sequencing arti-

facts. We noted a signature characterized by T>G mutations at

GpTpX trinucleotides. This was not, however, reproduced in

somatic mutations verified by using another sequencing tech-

nology and transpired to be due to aberrant sequence phasing

at Ts following runs of Gs in the genome.

NMF can estimate the contribution of each mutational signa-

ture to the mutational catalog of each breast cancer. The results

indicate that multiple mutational processes contribute to most

cancers, although in some cases one process has been

dominant (Figure 1D). No correlation was found between the

presence of a particular somatically mutated gene and any of

these processes. We then performed unsupervised hierarchical

clustering by using the relative contributions of each of the five

signatures to each of the 21 mutational catalogs as features.

Interestingly, all nine breast cancers with BRCA1 or BRCA2

mutations clustered together (Figure 2B). This was predomi-

nantly due to a relatively substantial contribution by Signature

D and a relative deficiency of Signature A in these cancers.

Mutational Processes Generating Double-Nucleotide
Substitutions
By performing Monte Carlo simulations we showed that the

number of double-nucleotide substitutions (for example,

CpC>ApT) in each of the 21 cancer genomes was 75–11,000

fold higher than expected if single-nucleotide substitutions had

been randomly distributed (p < 0.001) (Table S1D). Thus,

a mutational process generating double-nucleotide substitu-

tions seems to be ubiquitous. Overall, the patterns of double-

nucleotide substitutions reflected those of single-nucleotide

substitutions in each cancer. However, in most cases there

was substantial enrichment of C>A substitutions as components

of double-nucleotide substitutions (Figure 1B) with the conse-

quent emergence of CpC>ApA as the most common class of

double-nucleotide substitution (Table S1E). Double-nucleotide

substitutions were distributed throughout the cancer genomes

without obvious evidence of further clustering.

Regional Hypermutation,Kataegis, Is Common in Breast
Cancer
We investigated the possibility of regional clustering of sub-

stitution mutations by constructing ‘‘rainfall plots’’ in which the

intermutation distance, the distance between each somatic

substitution, and the substitution immediately before it has

been plotted for eachmutation (Figures 3A–3C and S2). Mutation

clusteringwas commonly observed in the 21 breast cancers. The

mutational patterns within these clusters are outlined below by

using two cases as examples.

The largest regional cluster of mutations was found in a

breast cancer with a germline mutation in BRCA1, PD4107a,

which showed a markedly elevated mutation prevalence over a

14Mb region on chromosome 6 (Figure 3A). Themutationswithin

this cluster exhibited several remarkable features. First, there

was evidence of further clustering within the 14 Mb region (the

‘‘macrocluster’’), with heavily mutated stretches of genome of a

few hundred base pairs (‘‘microclusters’’) sometimes separated

by tens of kilobases without mutations (Figure 4A). Second,

substitutionswithin the regionwere characterized by adistinctive

mutational spectrum and sequence context (Figure 3D). Most

were C>T transitions at TpCpX trinucleotides. Third, examination

of individual sequence reads, which derive from individual DNA

molecules, showed that most mutations within microclusters

occurred in cis with respect to each other, i.e., were on the

same parental chromosome (Figure 4A). Fourth, mutations

were generally of the same type for long genomic distances

and then could switch to a different class. For example, in

PD4107a mutations were almost exclusively C>T (on the plus

chromosomal strand) for several megabases and then switched

to G>A (Figure 4B). This suggests that groups of mutations may

be generated on just one of the two DNA strands, perhaps simul-

taneously or in a processivemanner over a short time span. Fifth,

the cluster of mutations on chromosome 6 colocalizes with

a cluster of somatic genomic rearrangements (Figure 4A). Within

the hypermutated 14 Mb region, there were 17 genomic rear-

rangements but only seven in the remaining 157 Mb of chromo-

some 6. Most of these rearrangements were between different

locations within the chromosome 6 14 Mb region. Despite the

clear positional correlation between rearrangements and hyper-

mutation, at higher resolution mutation microclusters were

usually separated from the nearest rearrangement by many kilo-

bases. Finally, in PD4107a a much smaller mutation cluster with

similar mutational characteristics and associated with genomic

rearrangements was observed on chromosome 12.

An ER-positive breast cancer, PD4103a, also exhibited local-

ized hypermutation, but the pattern of mutation clustering

differed slightly from that in PD4107a (Figure 3B). There were

multiple mutation clusters involving chromosomes 3, 4, 8, 10,

11, 12, 20, and 21 each of which spanned shorter distances

than the major cluster in PD4107a. The clustered substitutions

in PD4103a included C>T transitions at TpCpX dinucleotides,

similar to PD4107a, but in addition a greater proportion of C>G

mutations at TpCpX trinucleotides. In other respects, notably

the mutations being in cis and showing a processive pattern,

there were many similarities (Figures 5A–5B). Mutation clusters

in PD4103a were also closely associated with somatic genomic

rearrangements that were all linked together by a web of inter-

chromosomal rearrangements (Figure 5C).

We have termed the presence of regional mutation clusters

kataegis (from Greek for shower or thunderstorm). Rainfall

plots revealed varying extents of kataegis in 13/21breast cancers

(PD4199a, PD4192a, PD4198a, PD4248a, PD4109a, PD4116a,

(C) Genomic heatmap constructed from counts of each mutation-type at each mutation context corrected for the frequency of each trinucleotide in the reference

genome. Log-transformed values of these ratios have been plotted in the heatmap. The 50 base to eachmutated base is shown on the vertical axis and 30 base on
the horizontal axis. Heatmap scale at the bottom.

(D) Proportion of the total substitutions contributed by each of the five mutational signatures, as identified by NMF analysis, for all 21 cancer genomes.
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PD3904a, PD3945a, PD4005a, PD4006a, PD4103a, PD4120a,

and PD4107a, see Figure S2), encompassing all subclasses of

the disease. In each case, the features were similar to those out-

lined forPD4107aandPD4103a. In some instances, kataegiswas

associated with rearrangements that had features of chromo-

thripsis (Stephens et al., 2011) (Figure 4D), but it also colocalized

with other rearrangement architectures. Previously published

mutation catalogs from a malignant melanoma and small cell

lung cancer did not show kataegis (Pleasance et al., 2010a,

2010b) (data not shown).

The pattern of C>T and C>G mutations at TpCpX trinucleo-

tides in kataegis is similar to that of mutational Signature B,

and to a lesser extent, Signature E (Figure 2A). Yet, in many

cancers with kataegis, Signatures B and E make only a small

A

B

Figure 2. Five Mutational Signatures Extracted by NMF in 21 Breast Cancers, Related to Figure S1

(A) Fraction of contribution of each mutation-type at each context for the five mutational signatures identified by NMF analysis. The major components

contributing to each signature are highlighted with arrows.

(B) Cluster dendrogram generated by unsupervised hierarchical clustering based on contributions of the five mutational signatures identified by NMF to the 21

breast cancer genomes.
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Figure 3. Kataegis, Regional Hypermutation of Base Substitutions, Related to Figure S2

(A) Rainfall plot of PD4107a. Mutations are ordered on the x axis from the first variant on the short arm of chromosome 1 to the last variant on the long arm of

chromosome X and are colored according to mutation-type. The distance between each mutation and the one prior to it (the intermutation distance) is plotted on

the vertical axis on a log scale. Most mutations in this genome have an intermutation distance of �105 bp to �106 bp. Mutations in a region of hypermutation

present as a cluster of lower intermutation distances.

(B) Rainfall plot for PD4103a demonstrating kataegis occurring at multiple loci through the genome.

(C) Rainfall plot for PD4085a, showing no kataegis.

(D) Plots of flanking sequence of all C>X mutations and C>X mutations within the regions of kataegis in PD4107a. Mutated base is at position 0 with ten bases of

flanking sequence provided, demonstrating a strong preference for T at the �1 position.
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Figure 4. Rainfall Plot for Chromosome 6 of PD4107a

(A) The x axis shows the genomic coordinates of the mutations. Rearrangements are presented as brown triangles (rearrs is an abbreviation for rearrangements).

The region of kataegis is highlighted at increasing resolution to demonstrate microclusters within the macrocluster. The processive nature of C>T mutations at

TpC context occurring in cis is seen in the lowest panel (G-browse image).

(B) Alternating processivity of kataegis in PD4107a. Long regions of C>T mutations are interspersed with regions of G>A mutations.

(C) Kataegis occurs with a variety of rearrangement architectures. Thick top line shows the copy number segments for the region of chromosome 6 of PD4107a.

Point mutations are shown in lower panel as black points. x axis reflecting genomic position and y axis represents variant allele fraction. The proportions of reads

derived from contaminating normal cells are depicted in gray and the fraction coming from each of the copies of that segment in the tumor cells are depicted by

the multiple bars from green to yellow to pink to white. Early mutations will be found relatively higher up these bars, whereas late ones will be seen down the

bottom of the variant allele fraction. Grey vertical lines represent rearrangements. Interconnecting lines indicate intrachromosomal rearrangements. On

a macroscopic scale, this demonstrates how kataegis can be associated with chromothripsis (within region 130–135 Mb) as well as other rearrangement

architectures.
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contribution to the genome-wide mutation catalog. Conversely,

Signature B dominates PD4199a (Figures 1A, 1C, and 1D)

despite relatively limited kataegis (Figure S2). Therefore,

intriguingly, a globally distributed and a localized form of the

mutational processes underlying these signatures may exist,

and the two forms may operate independently of each other.

The Relationship between Substitution Mutations
and Transcription
We next examined the relationship between transcription and

prevalence of somatic substitutions. First, we searched for

differences in the prevalence of mutations on the transcribed

and untranscribed strands (transcriptional strand bias) of protein

coding genes. A moderate degree of strand bias was detectable

for C>A/G>T transitions across the 21 breast cancer genomes

(p = 1.75 3 10�15) and is present in almost all cases (Figure 6A).

This bias was characterized by fewer G>T mutations on tran-
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Figure 5. Processivity and Complex Coloc-

alization of Rearrangement Architecture

with Kataegis in PD4103a

(A) Stretches of C>T alternate with stretches of

G>A on chromosome 4 in PD4103a.

(B) Alternating C>G and G>C mutation on the

same chromosome in PD4103a.

(C) The complex web of rearrangements involving

8 chromosomes in PD4103a colocalizing with ka-

taegis.

scribed than untranscribed strands. A

strand bias was also observed for T>G/

A>C mutations (p = 1.5 3 10�4) with

fewer T>G mutations on transcribed

than untranscribed strands. No evidence

of a transcriptional strand bias was

observed for C>G/G>C, C>T/G>A, T>A/

A>T or T>C/A>G mutations.

The best-recognized cause of tran-

scriptional strand bias is TCR that

removes nucleotides with bulky adducts

from the transcribed strands of genes.

Assuming that TCR is responsible for

the observed strand biases, the presence

of fewer G>T mutations on transcribed

than untranscribed strands would sug-

gest that bulky adduct damage to guanine

may be the cause of the observed muta-

tions. Similarly, the presence of fewer

T>G mutations on transcribed compared

to untranscribed strands would suggest

that there may have been bulky adduct

damage to thymine. The nature of these

ubiquitous mutagenic exposures in

breast cancer, which may conceivably

be of exogenous or endogenous origins,

is unknown. However, the hypothesis

that TCR is involved is currently un-

substantiated and it may ultimately tran-

spire that other DNA repair, or indeed damage, processes

differentially affect the transcribed and untranscribed strands of

genes.

We next examined the relationship between levels of gene

expression and prevalence of somatic mutation. An inverse

correlation between substitution prevalence and gene expres-

sion was observed for C>A/G>T (p = 2.47 3 10�9), C>T/G>A

(p = 7.5 3 10�3), T>A/A>T (p = 1.09 3 10�6), and T>C/A>G

(p = 1.83 3 10�4) mutations for both transcribed and untran-

scribed strands (Figures 6 and S3A). No correlation was

observed for C>G/G>C or T>G/A>C mutations.

The results indicate that mutational processes characterized

by both transcriptional strand bias and expression-related muta-

tion prevalence are operative in breast cancer, similar to our

previous observations in melanoma and lung cancer. However,

T>G/A>C mutations exhibited a transcriptional strand bias

but not expression-related mutation prevalence. Conversely,

Cell 149, 979–993, May 25, 2012 ª2012 Elsevier Inc. 987



C>T/G>A, T>A/A>T, and T>C/A>G mutations showed expres-

sion-related mutational prevalence but no transcriptional strand

bias (Figure 6B and Figure S3A) suggesting that these two

features are independent.

Finally, we examined the relationship between distance from

the transcriptional start site (TSS) and mutation prevalence

in protein coding genes. There was evidence of increasing muta-

tion prevalence at increasing distance from the transcription

start site (Figure 6C), suggesting that the suppressive influences

of transcription upon mutagenesis described above wane as

proximity to the TSS decreases. This effect appears to be partic-

ularly pronounced in the first 1 kb from the TSS (Figure 6D). The

result confirms the observation previously made on UV light

induced C>T mutations in a melanoma.
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Figure 6. Relationship between Mutation

Prevalence and Transcription and/or

Expression, Related to Figure S3

Mutation prevalence is expressed as the number

of mutations per Mb from 0 to 2 per Mb on the

vertical axis. Log 2 expression levels range from 6

to 12 on the horizontal axis. Lines are fitted curves

to the data for A and B.

(A) C>A mutations; and (B) T>A mutations. Breast

cancer samples without expression data are

shown in gray.

(C) Effect of distance from transcription start site

on mutation prevalence. Each dot represents a 1

kb bin at increasing distances from all transcription

start sites (TSS) up to 200 kb. The y axis shows the

percentage of genes in each bin carrying a somatic

mutation. The mutation prevalence increases as

distance increases from the TSS.

(D) This is particularly marked in the first 1 kb after

the TSS. Each dot represents a 100 bp bin.

Microhomology-Mediated
Deletions in BRCA1 and BRCA2

Mutant Cancers
Of the 2,869 validated somatic indels

from the 21 breast cancers, single-base

pair indels were the most common in

each case (Figure 7A). There was sub-

stantial variation in number and pattern

of indel, however, with more and larger

indels observed in BRCA1 and BRCA2

mutant cancers.

The sequences flanking each indel

were interrogated for the presence of

short tandem repeats or short stretches

of identical sequence at the breakpoints

(termed overlapping microhomology)

(Figure 7B). Repeat-mediated indels

were small (1–5 bp), present in all breast

cancers, and comprised both deletions

and insertions. Microhomology-mediated

indels were larger (up to 50bp), mainly

deletions and considerably more

common in cases with BRCA1 or

BRCA2 mutations (p = 2.2 3 10�16).

Overlappingmicrohomology is often considered a signature of

nonhomologous end-joining (NHEJ) DNA double-strand break

(DSB) repair. The segments of microhomology probably mediate

alignment of the two DNA ends that are joined. Because BRCA1

and BRCA2 are involved in homologous recombination (HR)-

based DSB repair, the elevated frequency of microhomology-

mediated indels in BRCA1 or BRCA2 mutant cancers presum-

ably reflects usage of alternative methods of DSB repair in these

cancers (Figure 7C).

DISCUSSION

Catalogues of somatic mutation from 21 breast cancers have

yielded several insights into underlying mutational mechanisms.

988 Cell 149, 979–993, May 25, 2012 ª2012 Elsevier Inc.



Five independent single-nucleotide substitution processes

appear to have been operating, generating the observed varia-

tion in mutation numbers and patterns between cancers. The

processes appear to have been acting in combination, either

contemporaneously or during different phases of evolution of

the cancer clone (Nik-Zainal et al., 2012). Additional subtle

processes may exist, and sharper definition of currently charac-

terized processes may follow refinements of NMF and inclusion

of other mutational features in the models.

Signature A is likely mediated by deamination of 5-methyl-

cytosine at XpCpG trinucleotides leading to C>T transitions.

However, the mechanisms underlying the remainder are

currently unknown. Signature B, characterized by C>T, C>G,

and C>A substitutions at TpCpX trinucleotides, is responsible

for the overwhelming majority of mutations in certain cancer

samples and is present in this dominant form in approximately
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Figure 7. Somatic Mutation Profile of Indels

(A) The x axis shows indel size from 1–10 and all

larger indels between 11-50 bp in size grouped in

a single bin. The y axis shows the number in each

genome from 0–300.

(B) Frequency of indels by indel size. This

demonstrates how repeat-mediated indels are

usually of smaller size. From a Kolmogorov-Smir-

nov (K-S) test, the distribution of indel lengths for

repeats and microhomologies is significantly

different (p < 2.2 3 10�16).

(C) Observed number of bases involved in micro-

homology at junction of indels versus expected

number of bases if microhomology occurred

simply by chance.

10% of ER-positive breast cancers (Ste-

phens et al., 2012). The mutational

patterns in Signatures C, D, and E have

not, to our knowledge, been previously

described.

A remarkable process generating

regional hypermutation, termed kataegis,

is frequently operative in breast cancer.

Regional clusters of mutations in cancer

have occasionally been observed in

experimental models, although not at

the mutation density observed here

(Wang et al., 2007). Mutations within

regions of kataegis bear similarities to

those in Signature B, notably the prepon-

derance of C>T and C>G substitutions at

TpCpX trinucleotides. Furthermore, they

are closely associated with regions of re-

arrangement and occur on the same

chromosome and chromosomal strand

over long genomic distances, suggesting

that they occur simultaneously or in

a processive manner over a short time

span (Chen et al., 2011).

On the basis of similarities to muta-

tional patterns observed in other biolog-

ical contexts or in experimental systems, we propose that the

AID/APOBEC family of proteins may be implicated in kataegis

and/or in the mutational process underlying Signature B.

Although APOBEC1, the founding member of the AID/APOBEC

family, was first identified as an RNA-editing enzyme (Teng

et al., 1993) several members of the AID/APOBEC family

(including APOBEC1 itself) can deaminate cytosine to uracil

within DNA, acting as DNA mutators (Harris et al., 2002). AID

functions in antibody diversification, deaminating cytosine resi-

dues within the immunoglobulin loci in B lymphocytes thereby

triggering somatic hypermutation and class-switch recombina-

tion (reviewed in Longerich et al., 2006). There are seven APO-

BEC3 proteins in humans, with the prototype (APOBEC3G) as

well as several other APOBEC3s acting on lentiviral replication

intermediates constituting an innate pathway of antiretroviral

defense (Hultquist et al., 2011; Sheehy et al., 2002).

Cell 149, 979–993, May 25, 2012 ª2012 Elsevier Inc. 989



Although off-target deamination by AID is likely responsible for

the mutations and translocations seen in many B cell tumors

(reviewed in Nussenzweig and Nussenzweig, 2010), AID is

unlikely to account for the mutational signatures described

here because it exhibits a strong preference for deaminating

C residues flanked by a 50-purine (Pham et al., 2003). In contrast,

the Cs targeted in Signature B and kataegis are preceded by

a 50-T. However, APOBEC1 (when acting on DNA) and the APO-

BEC3 enzymes (apart from APOBEC3G) favor C residues

flanked by a 50-T (Harris et al., 2002; Hultquist et al., 2011).

Furthermore, transgenic overexpression of APOBEC1 is associ-

ated with cancer development (Yamanaka et al., 1995) and

enforced overexpression of APOBEC3A causes genomic

damage and mutation (Landry et al., 2011; Stenglein et al.,

2010; Suspène et al., 2011). Thus APOBEC1 and some APO-

BEC3s are attractive candidates for the mechanisms underlying

kataegis and/or mutation Signature B. Thus far, we have

not observed a clear correlation between overexpression of

a member of the AID/APOBEC family and kataegis or Signature

B, although some key samples lack expression data.

Signature E also exhibits mutations at TpCpX trinucleotides,

but is characterized by a much lower fraction of C>T mutations

than Signature B. It is possible that both result from cytidine to

uracil deamination by an APOBEC family member, but that the

different signatures are sequelae of different repair mechanisms

following the deamination step. C>T transitions may simply

result from DNA replication across uracil. However, if uracil

is excised by uracil-DNA glycosylase (UNG) as part of base

excision repair (BER), an abasic site is generated (Wilson and

Bohr, 2007). The partiality for C>G transversions in Signature E

may reflect preferential insertion of cytosine opposite such

an UNG-mediated abasic site. The propensity to introduce

cytosine opposite an abasic site is characteristic of REV1 trans-

lesion polymerase, which is known to function in BER (Jansen

et al., 2006; Ross and Sale, 2006). Thus, Signature B may

be caused by a combination of replication and BER, whereas

Signature E may be the imprint of the almost exclusive activity

of BER on uracil.

Further studies are required to explore whether and how AID/

APOBEC family members contribute to mutagenesis in cancer. If

they are implicated in kataegis, current understanding of the

mode of action of AID in immunoglubulin gene somatic hypermu-

tation and class switch recombination would suggest that their

primary effect is through deamination of cytidine to uracil, with

substitutions and rearrangements both consequent upon this

initiating event. If so, an important remaining question is how

the activity of the enzymes is targeted to the regions of kataegis.

Furthermore, if the same enzymes from the AID/APOBEC family

are also involved in mutation Signatures B and possibly E, it

remains to be understood how their activities can be unleashed

upon the whole genome without apparent relation to the pres-

ence of rearrangements, as opposed to being regionally targeted

in the vicinity of rearrangements in kataegis.

Other mechanisms and enzymatic activities may, however, be

responsible for kataegis. If so, the question of which constitutes

the primary set of lesions, the rearrangements, or the substitu-

tions observed in kataegis, remains to be addressed. If a

stochastic event in a cell nucleus results in a DNADSB and repair

of this break is associated with accumulation of substitutions in

the vicinity of the consequent rearrangement, this could provide

an explanation for the regional targeting of kataegis. Indeed,

such mechanisms have been reported in yeast (Deem et al.,

2011; Hicks et al., 2010).

In all the breast cancers, double-nucleotide substitutions were

much more common than expected by chance adjacency of

single-nucleotide substitutions, suggesting the existence of

one or more biological processes responsible for their presence.

Currently, the best-characterized double-nucleotide substitu-

tions in human cancer are the CpC>TpT mutations found in

skin tumors, which are generally attributed to the pyrimidine

dimers generated by UV light exposure. In principle, the dinucle-

otide mutations observed in breast cancer could also be due to

exposures with a propensity to damage adjacent DNA bases.

However, other mechanisms are also plausible, for example

error prone polymerases that have a higher risk of misincorpora-

tion at a base adjacent to one that is damaged.

BRCA1 and BRCA2 are implicated in HR-based DNA repair

processes. The distinctive profile of small deletions with rear-

rangement breakpoints showing overlapping microhomology in

BRCA1 and BRCA2 mutant cancers is therefore compatible

with these processes being defective and of NHEJ or other

error-prone mechanisms of DSB repair acting in their place.

Interestingly, the combinations of base substitution signatures

in BRCA1 and BRCA2 mutant cases are also similar. These

similarities in mutational signatures contrast strikingly with

differences in histology and gene expression profiles between

BRCA1 and BRCA2 mutant cancers (Hedenfalk et al., 2001;

Palacios et al., 2008; Perou et al., 2000; Sørlie et al., 2001). Muta-

tional patterns, which are probably more closely related to the

underlying biological defect, therefore appear to report similari-

ties in disease pathogenesis between BRCA1 and BRCA2

mutant cancers better than cellular phenotype. BRCA1 and

BRCA2 cancers are particularly responsive to some DNA

damaging agents and inhibitors of DNA repair, notably PARP

inhibitors (Fong et al., 2009). Because some breast cancers

without mutations in BRCA1 and BRCA2 are reported to

respond to these treatments (Forster et al., 2011) it will be

interesting to explore whether mutational patterns characteristic

of BRCA1 and BRCA2 null cancers are better predictors of

response to these therapies than the presence of mutations in

the two genes.

These 21 genomes have yielded further evidence of complex

relationships between mutagenesis and transcription. A tran-

scriptional strand bias was found for C>A/G>T mutations in

most of the cancers. If TCR is responsible, DNA damage by bulky

adducts may be implicated in breast cancer pathogenesis. In

principle, these could result from exogenous exposures. Indeed,

many carcinogens cause adducts on guanine. Alternatively, an

exposure could be endogenous in origin, for example reactive

oxygen species (Hori et al., 2011) or intermediates of oxidative

estrogen metabolism (Spencer et al., 2012). Both can cause

damage to guanine and, although preferentially repaired by

BER, some lesions can be substrates for TCR (Hanawalt and

Spivak, 2008). If TCR is not involved, then the data suggest

that other uncharacterized forms of transcription coupled DNA

damage or repair exist.
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The relationship between gene expression levels andmutation

prevalence, previously reported in a malignant melanoma and

a small cell lung cancer (Pleasance et al., 2010a; Pleasance

et al., 2010b), has been extended here to primary breast cancers.

The relationship is again inverse in nature, with more somatic

substitutions in poorly expressed genes. The phenom-

enon could, in principle, be due to an increased sensitivity to

DNA damage and/or less efficient repair in poorly expressed

genes. The fact that it applies to the untranscribed strands

of genes and does not correlate with the presence of transcrip-

tional strand bias suggests that these have different underlying

mechanisms. One possibility is that the genome-wide form of

NER is recruited more effectively to highly transcribed genes.

This study has started to untangle and characterize the

mutational processes that contribute to breast cancer. The

data are derived from only 21 genomes and similar analyses of

thousands of cancers by the International Cancer Genome

Consortium (Hudson et al., 2010) will likely yield evidence of

further mutational processes and better definition of those

already known. Nevertheless, the analyses have provided a level

of characterization of mutational processes in cancer that was

previously impossible and illustrate the power of whole cancer

genome sequences, yielding essentially complete catalogs of

somatic mutations, to further understanding of mechanisms of

DNA damage and repair.

EXPERIMENTAL PROCEDURES

Samples and Massively Parallel Sequencing

DNA was extracted from 21 breast cancers and normal tissue from the

same individuals. Short insert 500 bp library construction, flowcell pre-

paration and cluster generation were according to the Illumina no-PCR

library protocol (Kozarewa et al., 2009). 108 base or 100 base paired-end

sequencing were performed on Illumina GAIIx or Hiseq 2000 genome

analyzers respectively, as described in the Illumina Genome Analyzer oper-

ating manual.

Short insert 2*108 bp or 2*100 bp paired-end readswere aligned to the refer-

ence human genome (NCBI37) by using BWA (Li and Durbin, 2009). Genome

sequence data have been deposited at the European Genome-Phenome

Archive (http://www.ebi.ac.uk/ega/ at the EBI) with accession number

EGAD00001000138. SNP6 array data have been deposited with ArrayExpress

Archive (EBI, accession number E-MTAB-1087).

Mutation-Calling

An in-house bespoke algorithm, CaVEMan was used for calling somatic

substitutions. Insertions and deletions in the tumor and normal genomes

were called by using a modified Pindel version 0.2.0 on the NCBI37 genome

build (Ye et al., 2009). Postprocessing filters were developed to improve

the specificity of mutation-calling. Structural variants were called from the

short insert data by using MAQ alignments as previously described (Campbell

et al., 2008; Stephens et al., 2009). Structural variants in association with

copy number segments were sought to improve sensitivity of detection. Tumor

DNA samples were analyzed by Affymetrix SNP6 microarrays (Bignell et al.,

2010). Copy number and allelic ratio profiles were statistically processed

by using the ASCAT algorithm, version 2.0 (Van Loo et al., 2010). Validation

of substitutions and indels was performed by Roche 454 pyrosequencing

or capillary sequencing. Structural variants were confirmed by custom-

designed PCR across the rearrangement breakpoint or by local sequence

assembly. All confirmations were performed in both tumor and normal.

Gene expression data were derived from the Illumina Human HT12 Expression

BeadChip array, and processed as previously described (Pleasance et al.,

2010a). Somatic mutation data are available via hyperlinks in Table S1B and

are also available via COSMIC at http://www.sanger.ac.uk/genetics/CGP/

cosmic/ and have been annotated to Ensembl v58.

Statistical Analysis

Mutational processes were extracted by using nonnegative matrix factoriza-

tion. Monte Carlo simulations were performed to assess how randomly

distributed mutations differed to the primary cancer genomes. A Kolmo-

gorov-Smirnov test was used to compare the distribution of indels mediated

by repeats or microhomology.
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The EuropeanGenome-Phenome Archive accession number for the sequence
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Chen, J.M., Férec, C., and Cooper, D.N. (2011). Transient hypermutability,

chromothripsis and replication-based mechanisms in the generation of

concurrent clustered mutations. Mutat. Res. 750, 52–59.

Deem, A., Keszthelyi, A., Blackgrove, T., Vayl, A., Coffey, B., Mathur, R.,

Chabes, A., and Malkova, A. (2011). Break-induced replication is highly inac-

curate. PLoS Biol. 9, e1000594.

Ding, L., Ellis, M.J., Li, S., Larson, D.E., Chen, K., Wallis, J.W., Harris, C.C.,

McLellan, M.D., Fulton, R.S., Fulton, L.L., et al. (2010). Genome remodelling

in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005.

Fong, P.C., Boss, D.S., Yap, T.A., Tutt, A., Wu, P., Mergui-Roelvink, M.,

Mortimer, P., Swaisland, H., Lau, A., O’Connor, M.J., et al. (2009). Inhibition

of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers.

N. Engl. J. Med. 361, 123–134.

Forster, M.D., Dedes, K.J., Sandhu, S., Frentzas, S., Kristeleit, R., Ashworth,

A., Poole, C.J., Weigelt, B., Kaye, S.B., and Molife, L.R. (2011). Treatment

with olaparib in a patient with PTEN-deficient endometrioid endometrial

cancer. Nature reviews. Clin. Oncol. 8, 302–306.

Greenman, C., Stephens, P., Smith, R., Dalgliesh, G.L., Hunter, C., Bignell, G.,

Davies, H., Teague, J., Butler, A., Stevens, C., et al. (2007). Patterns of somatic

mutation in human cancer genomes. Nature 446, 153–158.

Hainaut, P., and Pfeifer, G.P. (2001). Patterns of p53 G/T transversions in

lung cancers reflect the primary mutagenic signature of DNA-damage by

tobacco smoke. Carcinogenesis 22, 367–374.

Hanawalt, P.C., and Spivak, G. (2008). Transcription-coupled DNA repair: two

decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 9, 958–970.

Harris, R.S., Petersen-Mahrt, S.K., and Neuberger, M.S. (2002). RNA editing

enzyme APOBEC1 and some of its homologs can act as DNA mutators.

Mol. Cell 10, 1247–1253.

Hedenfalk, I., Duggan, D., Chen, Y., Radmacher, M., Bittner, M., Simon, R.,

Meltzer, P., Gusterson, B., Esteller, M., Kallioniemi, O.P., et al. (2001). Gene-

expression profiles in hereditary breast cancer. N. Engl. J. Med. 344, 539–548.

Hicks, W.M., Kim, M., and Haber, J.E. (2010). Increased mutagenesis and

unique mutation signature associated with mitotic gene conversion. Science

329, 82–85.

Hori, M., Suzuki, T., Minakawa, N., Matsuda, A., Harashima, H., and Kamiya,

H. (2011). Mutagenicity of secondary oxidation products of 8-oxo-7,8-

dihydro-20-deoxyguanosine 50-triphosphate (8-hydroxy-20- deoxyguanosine

50-triphosphate). Mutat. Res. 714, 11–16.

Hudson, T.J., Anderson, W., Artez, A., Barker, A.D., Bell, C., Bernabé, R.R.,
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Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

Samples and Massively Parallel Sequencing
DNA was extracted from 21 breast cancers as well as matched normal tissue derived from the same individuals. Samples had previ-

ously been subjected to pathology review and only samples assessed as being composed of > 70% tumor cells, were accepted for

these analyses.

Short insert 500bp library construction, flowcell preparation and cluster generation was performed according to the Illumina

no-PCR library protocol (Kozarewa et al., 2009). 108 base paired-end sequencing or 100 base paired-end sequencingwas performed

on Illumina GAIIx genome analysers or Illumina Hiseq 2000 analysers respectively, as described in the Illumina Genome Analyzer

operating manual.

Short insert 2*108 bp or 2*100 bp paired-end reads were aligned to the reference human genome (NCBI37) by using BWA (Li and

Durbin, 2009). An average of 30-fold sequence coverage was required for both tumor and normal genomes. One breast cancer,

PD4120a, was sequenced to �188-fold coverage (Table S1A).

Mutation-Calling: Substitutions
An in-house bespoke algorithm, CaVEMan (Cancer Variants Through Expectation Maximization) was used for calling somatic substi-

tutions. In brief, CaVEMan is a somatic base substitution caller that utilizes an expectation maximization (EM) algorithm and is

designed for calling variants in new sequencing technology reads. Given the reference base, copy number status and fraction of

aberrant tumor cells present in each cancer sample, CaVEMan generates a probability score for potential genotypes at each genomic

position. A putative ‘somatic’ genotype probability of 95% and above was applied as a cut off. A high specificity was essential for the

nature of downstream analyses applied in this study. As such, further postprocessing filters of potential ‘somatic’ genotypes were

designed to eliminate false positive calls arising from:

genomic features that generate mapping errors e.g., regions of excessively high coverage due to collapsed repeat sequences in

the reference genome (http://genome.ucsc.edu/)

systematic sequencing artifacts e.g., motifs known to cause errors of phasing during the sequencing reaction or sequencing

artifacts arising in at least 5% of at least 2 samples from a panel of normal samples

germline insertions/deletions.

1%–5% of putative somatic substitution variants from each cancer genome were sampled for validation in order to make an

assessment of the specificity of these cancer genomes.

Mutation-Calling: Insertions/Deletions
Insertions and deletions in the tumor and normal genomes were called by using a modified Pindel version 0.2.0 on the NCBI37

genome build (Ye et al., 2009).

Indels were required to be present in 5 reads or more in the tumor and not present in the matched normal sample. Variants were

also screened against a panel of normal samples and were excluded if present in at least 5% of reads in at least 2 samples from this

panel. All indels reported in this study have been validated.

Mutation-Calling: Copy Number
Tumor DNA samples were analyzed by Affymetrix SNP6microarrays (Bignell et al., 2010). Copy number and allelic ratio profiles were

statistically processed by using the ASCAT algorithm, version 2.0 (Van Loo et al., 2010).

Mutation-Calling: Structural Variation
Structural variants were called from discordantly mapping paired-end reads from short insert data by using MAQ alignments as

previously described (Campbell et al., 2008; Stephens et al., 2009). In order to improve sensitivity of detection, additional candidate

structural variants were sought fromwithin the proximity of copy number changes in the following way. All nontelomeric and noncen-

tromeric segmentation breakpoints were obtained from SNP6 data processed via ASCAT (Van Loo et al., 2010). Candidate

rearrangements close to copy number segmentation breakpoints were considered if rearrangements for which both breakpoints

correspond to copy number breakpoints were identified or if one copy number breakpoint could only match one rearrangement.

Rearrangements closer to a copy number breakpoint were preferred over rearrangements further away. When both rearrangement

breakpoints matched a copy number breakpoint, the sum of the distances between the rearrangement and the copy number break-

points was below 400kb, and when for only one rearrangement breakpoint a corresponding copy number breakpoint was found, the

distance between both breakpoints was below 20kb.

Expression Analysis
Gene expression data were derived from the Illumina Human HT12 Expression BeadChip array, run in duplicate, normalized and

processed as previously described (Pleasance et al., 2010).
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Validation of Substitutions and Insertions/Deletions
Validation of putative somatic substitutions was performed via Roche pyrosequencing in 20 tumor-normal pairs and capillary

sequencing in 1 tumor-normal pair (PD3890). All coding substitution variants and a random assortment of noncoding variants

were selected for validation to make up to �400 PCR products per sample. In addition to the variants validated to determine spec-

ificity, validation was also targeted to several hundred substitutions involved in regions of hypermutation and dinucleotides (Table

S1B). Primers were designed to generate 275–425 bp fragments suitable for Roche 454 pyrosequencing. The specificity of the calling

of substitution variants from the Illumina sequence reads, was determined from the proportion of calls confirmed as somatic when

sequenced on this orthogonal platform (Table S1A).

For pyrosequencing data, an average coverage of �657X was achieved for each validated variant. A minimum of 25 reads of

mapping quality of at least 20 and base quality of 25 and above were required to report each variant. To be considered as somatic:

variants were required to be present in at least 5% of the reads in the tumor and not in the normal, or

if present at a low mutation burden of < 5%, required chi-square testing to assist in confirmation of somatic status.

This imposition of relatively strict criteria could potentially generate false negative calls (true somatic variants called as tumor wild-

type) resulting in an underestimation of the specificity of substitution-calling.

Validation of putative indels was achieved by capillary re-sequencing of the tumor and normal pair. Capillary sequencing failed in

�20% variants. Two attempts at PCR validation was attempted for each genome. Indel variants were confirmed as somatic if they

were present in the tumor traces and not present in the traces from the matched normal.

Validation of Somatic Rearrangement
Structural variants were confirmed by custom-designed PCR across the rearrangement breakpoint as previously described (Camp-

bell et al., 2008) or by local reassembly.

For local reassembly, candidate rearrangements in regions of interest had been previously identified as rearrangements in close

proximity to copy number changes. Discordantly mapping read pairs that were likely to span breakpoints, as well as a selection of

nearby properly-paired reads, were grouped for each region of interest. Using the Velvet de novo assembler (Zerbino and Birney,

2008), reads were locally assembled within each of these regions to produce a contiguous consensus sequence of each region.

Nearby properly-paired reads were added to increase coverage and to enlarge the resulting contigs. Heterozygous rearrangements,

represented by reads from the rearranged derivative as well as the corresponding nonrearranged allele, were instantly recognizable

from a particular pattern of five vertices in the de Bruijn graph component of Velvet. Exact coordinates and features of junction

sequence (e.g., microhomology or nontemplated sequence) were derived from this. Assembly of homozygous rearrangements re-

sulted in a single contig corresponding to an isolated vertex in the de Bruijn graph. The exact breakpoints were identified by aligning

to the reference genome as though they were split reads.

Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a mathematical approach that factorizes or decomposes a complex multidimensional data

set in order to identify defining underlying signatures that make up the pooled data set.

In brief, a given matrix A of size N3M can be factorized into two nonnegative matrices,W and H (Lee and Seung, 1999). MatrixW

has a size N 3 k, whereas matrix H has a size k 3 M, where k is the desired rank. In most cases, the two nonnegative matrices are

insufficient to fully decompose the original dataA and a residual matrixU, which can be used to evaluate the approximate reconstruc-

tion error, is required. The NMF equation could be written as

A=W � H+U;

where W and H are selected to optimally factorize or decompose the original matrix A. Usually, such factorization is achieved by

finding the solution for

min
W˛RN3 k

+ H˛Rk3M
+

1

2
kA�W � Hk2F

In this study, we consider matrix A to be the complex, pooled, multidimensional data set that is made up of 96 features (N)

comprising mutation counts of each mutation type (C > A, C > G, C > T, T > A, T > C, T > G) at each 50 and 30 base context from

21 (M) breast cancer cases. Thus, matrix A has a size of 96 3 21. We decompose this data set into two matrices - W with size

96 3 k and H with size k 3 21 where k is the number of signatures that we are trying to model and identify. We perform NMF

and use a model selection approach for k = 2 ,,, 20. An optimal decomposition and value of kwas chosen based on the cophenetic

correlation coefficient (a measure of how faithfully clustering approaches preserve pairwise distances and therefore dendrogram

structures) and the average reconstruction error (Brunet et al., 2004).

NMF was performed by using a modified version of the publicly-available implementation (Brunet et al., 2004) of the multiplicative

updated algorithm (Lee and Seung, 1999) and was repeated 1,000 times for each value of k. The cophenetic correlation coefficient
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indicated reproducibility and stability for k values between 2 and 6 (Figure S2A). The cophenetic correlation fell sharply for k > 6

(less than 0.95, Figure S2A) indicating a lack of robustness when a decomposition exceeded 6 signatures for this data set. Given

a value of k, each sample was reconstructed and compared to the observed data (Figure S2B). Error in reconstruction for each value

of k was plotted (Figure S2C), and a dramatic reduction in the slope of the reconstruction error revealed that the model stabilized at

five mutational signatures. As such, we selected to decompose the pooled mutation data set into five stable mutational signatures. A

typical comparison between the reconstructed and observedmutation profile is given in Figure S2B. The concordance indicated that

five signatures were sufficient to describe the general behavior of mutation profiles of the 21 breast cancer samples.

In theory, whereas NMF is able to highlight truemutational signatures that underliemutational profiles in cancers, it should be noted

that it is also able to identify systematic sequencing artifacts as a mutational signature.

Monte Carlo Simulation of Double Substitutions
In order to assess the degree of enrichment and statistical significance of the occurrence of double-nucleotide substitutions, Monte

Carlo simulationswere performed for each cancer genome. Themutation prevalence of eachmutation type (C >A, C >G, C> T, T >A,

T > C, T > G) was obtained for each chromosome of each cancer genome. For each genome, 1000 simulations were then performed

by generating mutations in silico, at the observedmutation rates. For each simulation, the total number of in silico double substitution

was identified and this number was compared to the observed number of double substitutions in the cancer genome. None of the

simulations yielded a greater number of double-nucleotide substitutions thanwere observed in the cancer genomes, hence p < 0.001

for the observed enrichment of double substitutions for each cancer genome.

Germline Status of Breast Cancer Samples
Verification of germline mutation status was sought in those breast cancers reported as being derived from germline BRCA1 and

BRCA2 mutation carriers. In addition, CaVEMan, Pindel and rearrangement outputs were screened for potential previously uniden-

tified germline BRCA1 and BRCA2 mutation, in all the breast cancers. Germline mutation data are provided in Table S1A.

Relationship of CpG Methylation Status and Somatic Substitutions
In order to assess the relationship between methylation status of CpG dinucleotides and somatic substitutions, the mutation rates of

C > T transitions occurring within CpG islands and outside CpG islands (http://genome.ucsc.edu/) were determined. The samples

were considered in aggregate apart from PD4120a that was excluded because of the nature of the excessive mutation burden

contributed by this sample. The odds ratio of the rate of mutation outside to inside CpG islands was calculated.
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Figure S1. Selection of the Optimal Number of Signatures via the NMF Model Selection Framework, Related to Figure 2

(A) The x axis depicts the number of signatures, whereas the y axis shows the cophenetic coefficient. As an indicator of stable reproducibility, the cophenetic

correlation coefficient is at its highest points at between 2 and 6 processes. Given that there are no further peaks after 6 for this data set, the number of signatures

recognized by the NMF algorithm here is up to six.

(B) The error in reconstruction for each number of potential signatures, k, showed amarked reduction in the slope of the reconstruction error until k = 5, suggesting

that the model was stable at five mutational signatures.

(C) A typical comparison between the reconstructed and original mutation profile demonstrating how well the extracted signatures and their exposures describe

the original data for five signatures.

(D) Signatures A,C and D with contributions from each of the 96 trinucleotides corrected for the frequency of trinucleotides in the genome. This form of repre-

sentation highlights the contrast between Signature A and C, as well as demonstrates the differences between Signatures C and D. Note the absence of C > T

transitions at XpCpG in Signature D.
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Figure S2. Rainfall Plots for 18 Genomes, Related to Figure 3

PD4115a, PD4116a, PD3904a, PD3945a, PD4005a and PD4006a show an excess of mutations of intermutation distance of 1bp, in-keeping with the observed

excess of double substitutions in these genomes. Subtle regions of kataegis are present in many samples (PD4199a, PD4192a, PD4198a, PD4248a, PD4116a,

PD3904a, PD4005a and PD4006a). Intermutation distance (bp) is presented on the vertical axis and mutation number is presented on the horizontal axis.
Cell 149, 979–993, May 25, 2012 ª2012 Elsevier Inc. S5
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Figure S3. Relationship between Mutation Prevalence, Transcription and Gene Expression, Related to Figure 6
Overall effect of transcription and gene expression on mutation prevalence by mutation type. p values of significance are provided for each mutation-type if

a strong effect was seen in either strand bias and/or relationship with expression.Mutation prevalence is expressed as the number ofmutations perMb from 0 to 2

per Mb on the vertical axis. Log 2 expression levels range from 6 to 12 on the horizontal axis. Lines are fitted curves to the data for A and B.
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