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Figure S1 The DIC image contrast arises from the change in the optical path length between the 
object and the surrounding medium. A polystyrene bead looks like a lipid droplet in cytosol 
when immersed in an index liquid that matches the index difference; it appears larger and has a 
different contrast when imaged in buffer. Further, a lipid droplet of the same size as a 
polystyrene bead will have the same apparent size in the DIC image. As a control, we imaged 

silica beads (Polysciences) with a mean size of 0.45 m immersed in water and compared the 

images to those of 0.45 m polystyrene beads (Polysciences) in an index matching liquid 
(aqueous dilution of Cargille index matching liquid). As with the case of lipid droplets, silica 
beads and polystyrene beads looked similar when index-matched but produced very different 
DIC images w hen imaged in water (data not shown). The apparent sizes in pixels of both as 
measured from the cross section was the same, and the difference was smaller than the spread in 
size of beads of the same material (data not shown). 
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Figure S2: Opposite polarity motors are attached to a single cargo. A trace showing fast 
direction switching after the minus-end motors detach from the microtubule due to the trap force 
at ~5.5 s. The plus end motors then pull the lipid droplet in the trap and detach multiple times. 

                                       

Figure S3: Sample preparation and embryo organization. (A) Drosophila embryos were placed 
in a glass channel and covered by a glass slide for imaging. The area flanking the channel 
contains nuclei surrounded by the microtubules along which the lipid droplets are transported as 
schematized in (B). The microtubules (red filaments) are arranged with their minus ends close to 
the embryo periphery and their plus ends extending inwards. See inset in figure 1A for a high 
magnification image of the embryo showing lipid droplets. 
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Supplemental Methods  

 

Real-time particle tracking allowing repeated stall force measurement  

For repeated stall force measurements on the same cargo, determining its position as it moves in 
the field of view is necessary. Since the embryo is thick and full of scattering structures and 
organelles, the precise and fast quadrant photodiode position detection method could not be used 
as it utilizes the trap beam emerging from the other side of the sample for position determination 
(1). Moreover, this method is typically useful to track the position in a maximal range of a few 
hundreds of nanometers, beyond which it fails. However, cargoes can move more than 10 
micrometers along microtubules.  

We developed a correlation-based single particle tracking algorithm that can follow the position 
of the cargo in real-time. Using correlation-based methods the position of the cargo can be 
determined with a few nanometers of accuracy (2). This made possible multiple stall-force 
measurements on the same cargo as it moved along its trajectory. 

The position of a lipid droplet intended for stall force measurement was tracked in real-time from 
its DIC video image using a code developed in LabView (National Instruments). The code uses 
the open CV library (Open Computer Vision version beta 3 available through 
http://sourceforge.net/projects/opencvlibrary/), as described in more detail in (2), but was 
optimized for real-time performance (run at 30 frames/s but capable of  up to 50 frames/sec).  

 

Sample preparation 

Drosophila embryos at the onset of cellularization are dechorionated using fine tweezers and 
placed at the center of a glass channel surrounded by Halocarbon oil 27 and covered by a cover 
slide for imaging and optical trapping (Figure S3).  Lipid droplets imaged at the edges of the 
embryos overflowing the channel were well contrasted, and lipid droplets within a few 
micrometers from the surface were trapped. Embryos continued to develop normally for hours 
after preparation. The wild type Drosophila strain used was YW unless otherwise indicated. 

 

Estimate of the uncertainty in stall force measurements 

Given the detailed calibration procedure, an estimate of the uncertainty in the stall force 
measurements requires considering the different steps involved in the calibration; we estimate an 
uncertainty of 25% in the individual force measurements as follows. The uncertainty in the lipid 
droplet size is estimated at 5%. This is mainly due to the finite pixel size as well as the spread in 
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the data in Figure 1B. This droplet size is used in Figure 1C to get the corresponding stiffness of 
the trap. Error bars for stiffness in Figure 1C are of the order of 10%. When combined with the 
uncertainty in the droplet-size determination, this leads to a maximal uncertainty of the order of 
15% around 550 nm; the spread of the data around 550 nm leads to a similar estimate of the 
uncertainty. The stall force is determined by multiplying the stiffness by the measured stall 
distance from the center of the trap. The latter is subject to noise visible in traces similar to those 
in Figure 2. An upper bound for this noise is 20%. Combined with the uncertainty in stiffness 
determination, this leads to an uncertainty in the stall forces reported of the order of 25%. 

 

Determining peak positions in multiple motor force histograms 

Determining the peak positions in histograms of stall forces is important to infer biological 
significance. Given the complexity of the in vivo environment, statistics in single molecule 
measurements could be limited which warrants rigorous statistical analysis to assess the 
confidence of any conclusions drawn from the histogram. We performed the following tests to 
determine the best bin size and identify the peak positions for the stall force histogram shown in 
figure 3 in the main text. 

To determine the optimal bin size we used the procedure described in (3). Briefly, the optimum 

bin size, , is that which minimizes the cost function I -the Mean Integrated Square Error - given 
by: 
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where Am is the average of the data in the mth bin. Using this procedure we arrived at the optimal 
bin size of 0.7 used in figure 3 in the main text. However, it is worth noting that the position of 
the peaks does not change appreciably (within our uncertainty) for different bin sizes as 
summarized in the table below.  

 

Bin size 
(pN) 

Position of 1st peak 
(pN) 

Position of 2nd peak 
(pN) 

Position of 3rd peak 
(pN) 

0.53 2.6 5.4 8.7 
0.6 2.6 5.5 8.6 
0.7 2.6 5.3 8.5 
0.8 2.5 5.4 8.3 
0.9 2.8 5.6 8.6 
1 2.4 5.0 8.1 

1.4 2.6 5.5 8.7 
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Obviously, as one goes to large bin sizes the number of bins becomes smaller and fitting the 
histogram to three Gaussians becomes meaningless. While the analysis above confirms the 
robustness of the peak position, it does not rule out the possibility that the measured distribution 
arises from a single peak (e.g. from one motor exerting a larger force, comparable to that 
measured in vitro). To test this possibility we fitted the relatively smooth histogram of bin size 

1.4 pN with a Gaussian distribution. Using 2 statistics, we find that we can rule out the null 
hypothesis that the histogram stems from a Gaussian distribution (p-value = 0.01- 0.04, 
depending on the number of bins used in the fit).  

We used a clustering algorithm to further test whether the data segregate into groups with no 
imposed functional distribution. As described in (4,5), the optimal clustering found by the 
algorithm is a tradeoff between a cost function and the quality of the clustering. The quality will 
obviously be best when each data point is in its own cluster, yet the cost will be high. The cost 
versus quality relation for the data resulting in figure 3B in the main text is shown below (figure 
S3), where the number of clusters is labeled for the first few points. 

 

Figure S3: The cost versus clustering quality curve used to find the optimal 
number of distinct clusters in the data comprising the stall force histogram in 
Figure 3 in the main text. 

The graph shows that the optimal cluster size is four, as going from four clusters to five, six, 
seven, etc. does not add to the quality of the clustering, but adds cost. However upon examining 
the four clusters predicted by the algorithm, we find that two of them have means that are 
indistinguishable given our uncertainty (see table below). Thus, the optimal cluster size is really 
three. The data that fall in these three clusters (see table below) have averages that agree with the 
peak positions obtained by fitting the histogram in figure 3 in the main text. 
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 Average of 
cluster #1 (pN) 

Average of 
cluster #2 (pN) 

Average of 
cluster #3 (pN) 

Average of 
cluster #4 (pN) 

4 clusters 3.1 5.1 6.0 8.5 
3 clusters 3.1 5.6 8.5  
 

Finally, the position of the peaks in the histogram is found to agree (within uncertainty) for two 
additional sets of measurements using different fly strains, a wild type strain(6) and a mutant in a 
non-motor protein (Weaver et al., submitted). This analysis confirms that the three peaks in 
figure 3B indeed represent lipid droplets hauled by one, two and three motors.  
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