Lipid Loading of Human Vascular Smooth Muscle Cells Induces Changes in Tropoelastin Protein Levels and Physical Structure

Valerie Samouillan,[†] Jany Dandurand,[†] Laura Nasarre,[‡] Lina Badimon,[‡] Colette Lacabanne,[†] and Vicenta Llorente-Cortés[‡]

[†]Physique des Polymères, Institut Carnot, CIRIMAT UMR 5085, Université Paul Sabatier, Tolouse, France; and [‡]Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain

Supporting Material

Fourier Transform Infrared analysis (FTIR)

Fourier transform infrared spectroscopy/attenuated total reflectance (FTIR/ATR) spectra were collected using a Nicolet 5700 FTIR (THERMO FISHER SCIENTIFIC, Waltham, MA) equipped in ATR device equipped with a KBr beam splitter and a MCT/B detector. Spectra were recorded over the region of 4000–450 cm⁻¹ with a spectral resolution of 4 cm⁻¹ and 64 accumulations. The ATR accessory used was a Smart Orbit equipped with a type IIA diamond crystal (refractive index 2.4). A single-beam background spectrum was collected from the clean diamond crystal before each experiment and this background was subtracted from the spectra. Fourier-Self-Deconvolution (FSD) of the infrared spectra that allows resolution of several overlapping bands was performed in the amide I/II region using Omnic software (THERMO FISHER SCIENTIFIC, Waltham, MA). The linear baseline correction was made on the FSD trace, and the decomposition of the amide I/II bands on the FSD trace was then performed with a Gaussian curve fitting procedure.

Thermogravimetric Analysis (TGA)

Analyses were performed in alumina pans, with an initial mass of 7mg, between 25 and 650°C at 10°C/min under N_2 atmosphere using a TGA Q50 (TA INSTRUMENTS, New Castle, DE).

Differential Scanning Calorimetry (DSC)

Analyses were performed using a DSC Pyris calorimeter (PERKIN ELMER, Waltham, MA) The calorimeter was calibrated at low temperatures using Hg and In as standards, resulting in a temperature accuracy of ± 0.1 °C and an enthalpy accuracy of ± 0.2 J/g. Samples, 10 mg in weight, were set into aluminium pans and equilibrated at the initial temperature during 5 minutes before heating at 20°C/min.

Dynamic Dielectric spectrometry (DDS)

The dielectric measurements were performed using a broad-band dielectric spectrometer BDS 4000 system (NOVOCONTROL TECHNOLOGIES GmbH & Co. KG, Hundsangen, Germany). Samples were kept in a special cell usually devoted to biological samples consisting of two stainless steel electrodes surrounded by a Teflon ring. The diameter of the electrodes was 15 mm, and the thickness of the samples was 0.1 mm (powdered sample, gently compressed).

Isothermal measurements of the complex dielectric function $\varepsilon^* = \varepsilon' - i\varepsilon''$ were performed at every fifth degree, with an isothermal stability of $\pm 0.1^{\circ}$ C, from -145 to 100°C in the frequency range 10^{-2} to 3.10^{6} after a first heating at 100°C to dehydrate the sample. The experimental limit for the loss factor (tan $\delta = \varepsilon''/\varepsilon'$) was about 10^{-4} .

TABLES

Band position (cm ⁻¹)			Tentative of assignment		
Supernatant from	Supernatant	from			
control VSMC	agLDL-VSMC				
3446, 3361, 3197	3347, 3361		amide A H-bonded $v(O-H)$ and		
			v(N-H)		
2955, 2922, 2850, 2827	2948, 2821		v(C-H) aliphatic		

1651, 1632	1652, 1633	amide Iv(C=O)			
1591	1588	v(C-C) ring Tyr, Phe			
1548	1548	amide II v(CN), δ (NH)			
1464-1452	1464-1452	$\delta(CH_2, CH_3)$ aliphatic side chains			
1408	1408	v(COO-)			
1224	1235	amide III δ_{plan} (N-H)			
1206	1205	δ(COH)Tyr			
1178	1187	γ (CH ₂) Pro, Tyr			
1039	1039	v(C-C), v(C-O), Phe, Ser			
930	930	$v(C\alpha-C)$ characteristic of α -			
		helices.			
530	530	v(S-S)			

Table S1: FTIR bands assignment of supernatants fractions

Band position (cm ⁻¹)	assignment						
agLDL							
3450-3000	v(O-H) of bound water						
2958, 2927, 2854	asymmetric and symmetric methyl and methylene stretching						
1734	v(C=O) of ester bond						
1645	amide I v(C=O)						
1539	amide II v(CN), δ(NH)						
1464	$\delta(CH_2)$ (scissoring) in acyl chains						
1378	$\delta_{s}(CH_{3})$ (bending), $\delta(CH_{2})$ (wagging)						
1241	P=O stretching						
1063	ester C-O-C symmetric stretching						
969	$N^+(CH_3)_3$ asymmetric stretching from choline group in phospholipids						

Table S2: FTIR bands assignment of agLDL

Supernatan	t	1 st stage (25-150°C)			2 nd stage (150-450°C)		
		Δm (%)	T_{max} (°C)	T _{max} (°C)	Δm (%)	T_{max} (°C)	T_{max} (°C)
From control	ol VSMC	8.2	56	100-130	26.5	301	335
From	agLDL-	6.4	56	126	29.6	292	332
VSMC	-						

Table S3: Thermal parameters of purified supernatants (from control and agLDL loaded VSMC).