Online Supplement

An essential role for Δ FosB in the median preoptic nucleus in the sustained hypertensive effects of intermittent hypoxia.

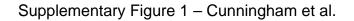
Abbreviated title: MnPO △FosB contributes to IH-induced hypertension

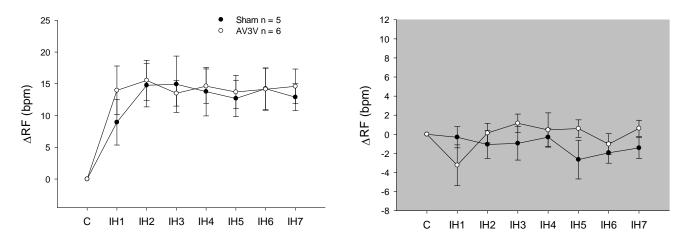
Authors: J. Thomas Cunningham¹, W. David Knight¹, Steven W. Mifflin¹, Eric J. Nestler²

¹Department of Integrative Physiology and the Cardiovascular Research Institute University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107

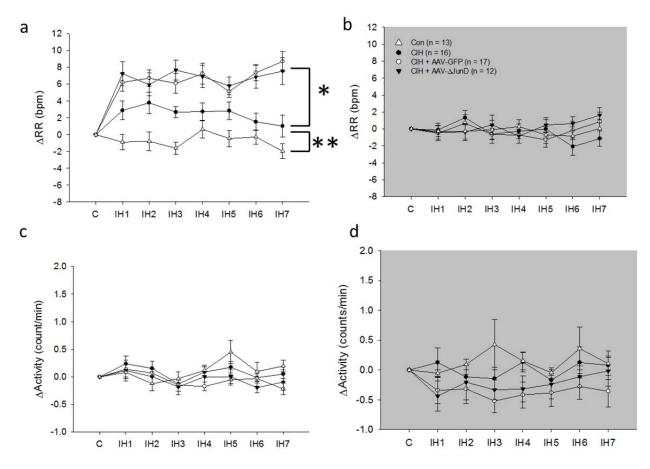
²Departments of Neuroscience, Pharmacology and Systems Therapeutics, Psychiatry, and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029

Corresponding author:


J. Thomas Cunningham Department of Integrative Physiology University of North Texas Health Science Center at Fort Worth 3500 Camp Bowie Blvd Fort Worth, TX 76107 Phone: 817-735-5096 Fax: 817-735-5084 e-mail: Tom.Cunningham@unthsc.edu Supplementary Table 1: Average baseline recordings obtained from 0800-1600 h during the light phase exposure to intermittent hypoxia (IH) and during the dark phase (DK) for each group.


	n		MAP (mmHg)	HR (bpm)	RR (bpm)
Sham	5	IH DK	97 ± 2 102 ± 4	316 ± 13 384 ± 12	87 ± 2 99 ± 2
AV3V	6	IH DK	99 ± 3 104 ± 3	313 + 8 381 ± 9	83 ± 2 97 ± 2

Supplementary Table 2: Average baseline recordings obtained from 0800-1600 h during the light phase exposure to intermittent hypoxia (IH) and during the dark phase (DK) for each group.


	n		MAP (mmHg)	HR (bpm)	RR (bpm)	Act (cpm)
CON	13	IH DK	91 ± 1.3 96 ± 1.2	352 ± 3 405 ± 5	106 ± 1 106 ± 1	1.3 ± 0.2 5.7 ± 0.6
CIH	16	IH DK	93 ± 2.3 98 ± 2.5	340 ± 4 396 ± 6	102 ± 2* 103 ± 1	0.9 ± 0.1 3.4 ± 0.4*
CIH + GFP	17	IH DK	99 ± 1.4* 102 ± 1.0	323 ± 4** 389 ± 4*	99 ± 2* 104 ± 2	1.5 ± 0.2 4.8 ± 0.5
CIH + ∆JunD	12	IH DK	98 ± 1.3* 103 ± 1.3*	324 ± 5* 392 ± 8	92 ± 2* 101 ± 2	1.3 ± 0.2 4.1 ± 0.5

* P < 0.05 from CON. ** P < 0.05 from CIH. One-way ANOVA and Student-Newman-Keuls tests.

Supplementary Figure1: Changes in respiratory frequency during intermittent hypoxia exposure (left) and during the normoxic dark phase (right) in sham lesioned and AV3V lesioned rats. There were no differences between the groups for either time period.

Supplementary Figure 2 – Cunningham et al.

Supplementary Figure 2: (a) During intermittent hypoxia exposure uninjected rats exposed to CIH demonstrated changes in respiratory rate significantly higher than normoxic controls while CIH rats injected with the two viral vectors demonstrated increases in respiratory rate that were greater than the other two group but not different from each other. (b) There were no significant differences among the 4 groups for respiratory rate recorded during normoxia during the dark phase. (c & d) There were no significant differences among groups for activity during intermittent hypoxia exposure or the normoxic dark phase. Data were analyzed by two-way repeated measures ANOVA. ** is different from control. * is different from control and CIH.

Symbol	Fold diff. (N	S) p value	Alias(es)	Symbol	Fold diff. (NS)) p value	Alias(es)
Tnf*	-1.01	0.963	TNF-0, cachectin	Map3k1*	1.28	0.163	MEKK1, MAPKKK1
Grasp*	1.58	0.061	Tamalin	Map2k5	1.23	0.072	MEK5, MAPKK5
Bdnf*	1.10	0.833	neurotrophin	Nras	1.15	0.201	NRAS-1, NS6
Nfkbia	1.25	0.155	IKB-a, MAD-3	Kras	1.09	0.706	KRAS-1, NS3
Creb1	1.01	0.900	CREB	Rac1	1.10	0.430	p21-Rac1
Agtr2*	1.16	0.645	AT2R	Mapk1	1.07	0.424	p42MAPK, ERK-2
Aplnr*	-1.97	0.103	AGTRL1	Mapk3	1.07	0.413	p44MAPK, ERK-1, p44ERK
Agt	-1.04	0.762		Mapk6	1.01	0.906	p97MAPK, ERK-3
Gad1	1.87	0.140	GAD67	Mapk7*	1.23	0.088	ERK-5, BMK-1
Gad2	1.72	0.214	GAD65	Mapk8	1.04	0.842	JNK1, SAPK1, JNK-46
Gria1	1.38	0.235	GluR1, GluR-A	Mapk12	1.15	0.166	ERK6, SAPK3, MAPK-p38 y
Gria2	1.30	0.208	GluR2, GluR-B	Ccl11*	1.07	0.810	SCYA11, eotaxin
Grin1	1.07	0.606	NR1, NMDAR1	Cc122*	1.07	0.810	SCYA22, MDC(1-69)
Grin2b	1.23	0.076	NR2B, NMDAR2B	Cc124*	1.49	0.301	Ckb-6, MPIF2, SCYA24, eotaxin-2
Gpx1	-1.03	0.696	CGPX	Cc17*	1.16	0.587	SCYA7, MCP-3
Gpx4	1.13	0.324	PHGPX	Cxcl10*	1.54	0.565	SCYB10, CRG-2, IP-10
Sod1	-1.01	0.915	IC-SOD	Ccr1*	1.30	0.398	RANTES-R, MIP-1α-R
Sod2	-1.06	0.783	MT-SOD	Ccr3*	-1.09	0.758	MIP-10-RL2
Sod3	1.12	0.515	EC-SOD	Cer5	1.30	0.155	
Prdx1	-1.06	0.746	Tdpx2, NKEFA	Cx3cr1	1.25	0.064	fractalkine receptor
Prdx4	-1.15	0.143	TDPRXA0372	Il1a*	1.79	0.181	IL-10, IL1, IL1F1, hematopoietin-1
Prdx5	1.12	0.526	PRDXPMP20	Il1b*	1.09	0.771	IL-1ß
Ptgs1*	1.20	0.335	COX-1, PH2-1	116*	-1.07	0.809	BSF2, IFN/82
Nox4*	1.62	0.487	RENOX	Lep*	1.07	0.810	OB
Noxa1*	-1.20	0.599	p51NOX	II4*	1.25	0.470	BCGF1, binetrakin, BSF1
Hmox1*	-1.15	0.292	HO1	115*	1.07	0.810	TRF, EDF, BDF1
Hyou1	1.15	0.324	ORP150	I110*	1.07	0.810	CSIF, IL10A
Adm*	-1.18	0.584	ADM	Il13*	1.07	0.810	p600, TCAP
Ece1	1.07	0.428	ECE	Il1r1*	-1.07	0.746	p80, IL-1Rα
Igf2	-1.07	0.753	SOM-A	Il1r2*	1.07	0.810	IL-1Rβ
Igf1r	1.06	0.427	IGFI-R	Tnfrsf1a	-1.15	0.408	p55-R, p60, TNF-R1, CD120a
Igfbp1*	-1.10	0.749	IBP1	Tnfrsf1b*	1.16	0.494	p75, TNF-R2, CD120b
Ppara*	-1.38	0.423	PPAR, NR1C1	ob-r*	-1.62	0.188	FA, OB-R, DB
Vegfa	1.21	0.063	VEGF-a	Il8rb*	1.07	0.810	(cxcr2 in humans)
Bc12	1.21	0.169		Il6st	1.10	0.239	gp130, IL6-Rß, IL6R2
Hif3a*	1.38	0.169	HIF-30, PASD7	Ren*	1.10	0.713	AGTase
Hif1a	1.10	0.206	MOP1	Prkaa1	-2.50	0.207	AMPK-01
Mapk14*	1.28	0.070	рЗ8МАРК, рЗ8-а, СЅВР1	Il6ra*	-1.13	0.562	IL6R1, gp80
Hspa5	1.13	0.200	GRP-78, BiP	Agtr1b*	1.07	0.810	AT1bR, AT2R1B, AT3R
Hif1an	-1.12	0.505	FIH-1	JunD	-1.10	0.499	JunD1, AP-1(inhibitor)

Supplementary Figure 3: Genes with consensus AP-1 regulatory domains that were not affected by CIH. MnPO samples were obtained from normoxic controls and uninjected rats exposed to CIH for 7 days. Data are expressed as fold differences. Samples from individual rats were analyzed separately. n = 5 per group. * indicate genes with an average Ct> 30.