Table S2. Genomic features with non-significant differences in their distributions between Alu insert containing vs. the other windows (203 windows with integrations)

Genomic feature	Medians of the Integration windows	Medians of the Non- Integration windows	Absolute difference in medians	Z-value	p values of MWW test ^a
Decode female ^b	1.5270	1.3264	0.2006	1.97	0.0472
Decode male ^b	0.6204	0.5974	0.023	1.09	0.2742
L1 target ^c	1189.5	1249	59.5	-0.79	0.0107
Recombination hotspots ^d	9	9	0	-2.73	0.4282

p = 0.0056 is the cut-off of significance after Bonferroni correction.

a: Two-sided hypothesis test.

b: Sites associated with sex-specific recombination in the female/male germline [1].

c: TTTTAA canonical motif characteristic of target primed reverse transcription of retroelements [2,3].

d: computationally predicted hotspots of recombination using linkage disequilibrium among SNPs [4].

Details of the	genomic features	evaluated in	Table 2 and	Table S2:
-----------------------	------------------	--------------	-------------	-----------

2 cours of the Schonic reason of contactor in Table 2 and Table 921								
Category	Predictor	Explanation	Calculation	Reference				
Genome	L1 target	Motif characteristic of target	count per window	[2,3]				
landscape	(TTTTAA)	primed reverse transcription						
	SINE count	All SINE elements in the	count per window	[5]				
	(Alu and Mir)	genome						
	GC content	Reflects local base	fraction of G and C	[5]				
		composition	bases per window					
Recombination	Recombination	Computationally predicted	count per window	[4]				
	hotspots	hotspots of recombination						
		using linkage disequilibrium						
		among SNPs						
	Decode female/	Sex-specific recombination in	rate per window	[1]				
	Decode male	female or male germline						
	Genome	Motif associated with	ratio	[6]				
	instability 13-mer	recruiting crossover events at	observed/expected	[7]				
	frequency	recombination hotspots and	frequency per					
		cluster at NAHR breakpoints	window					
Natural	Gene content	Protein coding genes likely	fraction of bases per	[5]				
selection		reflect local natural selection	window					
		pressure						
	Most conserved	Regions likely to contain	count per window	[8]				
	element density	functional elements and reflect						
		local natural selection pressure						

Reference List

- Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA et al. (2002) A highresolution recombination map of the human genome. Nat Genet 31: 241-247. 10.1038/ng917 [doi];ng917 [pii].
- 2. Jurka J (1997) Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci U S A 94: 1872-1877.

- 3. Cost GJ, Feng Q, Jacquier A, Boeke JD (2002) Human L1 element target-primed reverse transcription in vitro. Embo J 21: 5899-5910.
- Myers S, Bottolo L, Freeman C, McVean G, Donnelly P (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310: 321-324. 310/5746/321 [pii];10.1126/science.1117196 [doi].
- Kvikstad EM, Makova KD (2010) The (r)evolution of SINE versus LINE distributions in primate genomes: sex chromosomes are important. Genome Res 20: 600-613. gr.099044.109 [pii];10.1101/gr.099044.109 [doi].
- Myers S, Freeman C, Auton A, Donnelly P, McVean G (2008) A common sequence motif associated with recombination hot spots and genome instability in humans. Nat Genet 40: 1124-1129. 10.1038/ng.213 [doi].
- McVean G (2010) What drives recombination hotspots to repeat DNA in humans? Philos Trans R Soc Lond B Biol Sci 365: 1213-1218. 365/1544/1213 [pii];10.1098/rstb.2009.0299 [doi].
- Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M et al. (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15: 1034-1050. gr.3715005 [pii];10.1101/gr.3715005 [doi].