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In this supplementary material we derive a simple variance estimator for an empirical Bayes
estimator. Recall that in an empirical Bayes analysis based on a log-linear model, we obtain
an estimate of the average log policy effect by averaging unit-specific log rate ratios:
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We wish to obtain a confidence interval for exp ∆̄, the average policy effect. For simplicity
suppose that each unit had one observation collected before and one after the policy change:

∆̂i = log
yAi
µ̂Ai

= log yAi − log µ̂Ai

Recall that the post-policy predicted values µ̂Ai are based on a mixed model:

∆̂i = log yAi − (xAi β̂
? + zAi γ̂i + logNA

i )

To construct a confidence interval for the average log rate ratio, we must estimate its variance:
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The covariance terms in this expression are necessary because ∆̂i and ∆̂i′ (i 6= i′) share
common fixed effects, which implies that Cov[∆̂i, ∆̂i′ ] 6= 0:
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To calculate the covariance between the fixed and random effects, we derive a simple estimator
for the random effects. According to Breslow and Clayton [14] γ̂ is the solution to:

D−1γ −
n∑
i=1

zTi (yi − µi)
φV (µi)g′(µi)

= 0

In a log-linear model g(µi) = log µi and V (µi) = µi, so V (µi)g
′(µi) = 1. If we assume that

φ = 1, then the system reduces to:

D−1γ −
n∑
i=1

zTi (yi − µi) = 0

Therefore γ̂i = DzTi (yi− µ̂i). Note that γi must be iteratively estimated because µ̂i depends
on γ̂i:

γ̂
(k)
i = DzTi (yi − exp(xiβ̂

? + ziγ̂
(k−1)
i + logNi))

We use a one-step estimator for γi and assume that γ̂
(0)
i = 0:

γ̂
(1)
i = DzTi (yi − exp(xiβ̂

? + logNi))

Recall that γi is estimated using the data observed before the policy change:

γ̂
(1)
i = D(zBi )T (yBi − exp(xBi β̂

? + logNB
i ))

We use a Taylor series expansion of exp(xBi β̂
?) to obtain an estimator for γi that is linear

in β̂?:

γ̂
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? + logNB
i )− exp(xBi β

? + logNB
i )xBi (β̂? − β?))

With the linearized one-step estimator we return to our earlier covariance calculations:

Cov[β̂?, γ̂i′ ] ≈ Cov[β̂?, γ̂
(1)
i′ ]

= −Cov[β̂?, exp(xBi′β
? + logNB

i′ )xBi′ β̂
?]zBi′D

= − exp(xBi′β
? + logNB

i′ )Σ(xBi′ )
TzBi′D
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?, β̂?]
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? + logNB

i )D(zBi )TxBi Σ

Therefore the covariance between two unit-specific log rate ratios is:

Cov[∆̂i, ∆̂i′ ] ≈ xAi Σ(xAi′ )
T − exp(xBi′β

? + logNB
i′ )xAi Σ(xBi′ )

TzBi′D(zAi′ )
T

− exp(xBi β
? + logNB

i )zAi D(zBi )TxBi Σ(xAi′ )
T + zAi D(zAi′ )

T
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Estimation requires consistent estimates of β?, Σ, and D, which are typically available from
standard mixed effects regression output.

To construct a confidence interval for the average log rate ratio, we must also calculate the
variance of each unit-specific log rate ratio:

Var[∆̂i] = Var[log Y A
i − (xAi β̂

? + zAi γ̂i + logNA
i )]

= Var[log Y A
i ] + Var[xAi β̂

? + zAi γ̂i + logNA
i ]

− 2Cov[log Y A
i , x

A
i β̂

? + zAi γ̂i + logNA
i ]

= Var[log Y A
i ] + Var[xAi β̂

?] + Var[zAi γ̂i]

+ 2Cov[xAi β̂
?, zAi γ̂i]− 2Cov[log Y A

i , x
A
i β̂

? + zAi γ̂i + logNA
i ]

= Var[log Y A
i ] + xAi Σ(xAi )T + zAi D(zAi )T

+ 2xAi Cov[β̂?, γ̂i](z
A
i )T − 2Cov[log Y A

i , x
A
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? + zAi γ̂i + logNA
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We use a Taylor series expansion of log yAi to calculate Var(log Y A
i ):

Var[log Y A
i ] ≈ Var[log E[Y A

i ] + (Y A
i − E[Y A

i ])/E[Y A
i ]]

= Var[Y A
i ]/(E[Y A

i ])2

= exp(−2(xAi β
? + zAi D(zAi )T/2 + logNA

i ))Var[Y A
i ]

We do not directly model Var[Y A
i ], but we estimate it based on a model for Var[Y B

i ]. Recall
the hierarchical model for the data observed before the policy change:

Y B
i | γi ∼ P (exp(xBi β

? + zBi γi + logNB
i ))

γi ∼ N2(0,D)

According to the conditional variance formula:

Var[Y B
i ] = Eγ[VarY [Y B

i | γi]] + Varγ[EY [Y B
i | γi]]

= Eγ[exp(xBi β
? + zBi γi + logNB

i )]

+ Varγ[exp(xBi β
? + zBi γi + logNB

i )]

= exp(xBi β
? + logNB

i )Eγ[exp(zBi γi)]

+ exp(2(xBi β
? + logNB

i ))Varγ[exp(zBi γi)]

We use the moment generating function for a Normal random variable:

Eγ[exp(zBi γi)] = exp(zBi Eγ[γi] + zBi Varγ[γi](z
B
i )T/2)

= exp(zBi D(zBi )T/2)

Varγ[exp(zBi γi)] = Eγ[(exp(zBi γi))
2]− (Eγ[exp(zBi γi)])

2

= exp(2zBi Eγ[γi] + 2zBi Varγ[γi](z
B
i )T )− (exp(zBi D(zBi )T/2))2

= exp(zBi D(zBi )T )(exp(zBi D(zBi )T )− 1)
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With these expressions we return to our earlier variance calculation:

Var[Y B
i ] = exp(xBi β

? + zBi D(zBi )T/2 + logNB
i )

+ exp(2(xBi β
? + zBi D(zBi )T/2 + logNB

i ))(exp(zBi D(zBi )T )− 1)

= exp(xBi β
? + zBi D(zBi )T/2 + logNB

i )

× [1 + (exp(zBi D(zBi )T )− 1) exp(xBi β
? + zBi D(zBi )T/2 + logNB

i )]

≡ E[Y B
i ](1 + φE[Y B

i ])

We recognize this as the standard variance for an over-dispersed Poisson random variable,
where the dispersion parameter φ = exp(zBi D(zBi )T )− 1. Based on this model for Var[Y B

i ]
we obtain:

Var[log Y A
i ] ≈ exp(−(xAi β

? + zAi D(zAi )T/2 + logNA
i ))

× [1 + (exp(zAi D(zAi )T )− 1) exp(xAi β
? + zAi D(zAi )T/2 + logNA

i )]

≡ (1 + φE[Y A
i ])/E[Y A

i ]

It remains to calculate the covariance between log Y A
i and µ̂Ai :

Cov[log Y A
i , µ̂

A
i ] = Eγ[Cov[log Y A

i , x
A
i β̂

? + zAi γ̂i + logNA
i | β?,γi]]

+ Covγ[E[log Y A
i | β?,γi], E[xAi β̂

? + zAi γ̂i + logNA
i | β?,γi]]

≈ 0 + Covγ[x
A
i β

? + zAi γi + logNA
i , x

A
i β

? + zAi γi + logNA
i ]

= zAi D(zAi )T

Therefore the variance of each unit-specific log rate ratio is:

Var[∆̂i] ≈ Var[log Y A
i ] + xAi Σ(xAi )T − zAi D(zAi )T

− 2 exp(xBi β
? + logNB

i )xAi Σ(xBi )TzBi D(zAi )T

Estimation requires consistent estimates of β?, Σ, and D.

Hence a (1− α)% confidence interval for the average policy effect is:
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]
To derive this confidence interval we assumed that each study unit had one observation col-
lected before and one after the policy change. In practice multiple observations are collected
before and after the policy change, as in our case study. In this case a simple approach is to
substitute x̄Bi , x̄Ai , z̄Bi , z̄Ai , N̄B

i , and N̄A
i for xBi , xAi , zBi , zAi , NB

i , and NA
i , respectively.
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