Supporting Information for:

Merging Visible Light Photocatalysis and Transition Metal Catalysis in the Copper-Catalyzed Trifluoromethylation of Boronic Acids with CF₃I

Yingda Ye and Melanie S. Sanford*

Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109

General Procedures

NMR spectra were obtained on a Varian MR400 (400 MHz for ¹H; 377 MHz for ¹⁹F; 100 MHz for ¹³C), a Varian vnmrs 500 (500MHz for ¹H), or a Varian vnmrs 700 (700MHz for ¹H; 175 MHz for ¹³C) spectrometer. ¹H and ¹³C chemical shifts are reported in parts per million (ppm) relative to TMS, with the residual solvent peak used as an internal reference. ¹⁹F NMR spectra are referenced based on the internal standard 1,3,5-trifluorobenzene, which appears at –107.40 ppm. ¹H and ¹⁹F multiplicities are reported as follows: singlet (s), doublet (d), triplet (t), doublet of doublets (dd), doublet of triplets (dt) and multiplet (m). Kugelrohr distillations were performed on a Buchi Glass Oven B-580 Kugelrohr.

Materials and Methods

CuOAc was obtained from Strem Chemical. Aryl boronic acids were obtained from Frontier Scientific. 1,3,5-Trifluorobenzene, 4-(trifluoromethyl)benzonitrile, and iodobenzotrifluoride were obtained from Oakwood Products. 4-Fluorobenzotrifluoride and 4-(trifluoromethyl)pyridine were obtained from Matrix Scientific. Trifluorotoluene was obtained from Acros. Potassium carbonate was obtained from Fisher Scientific. CF₃SO₂Na, and 4-(trifluoromethyl)anisole were obtained from SynQuest Laboratories. $Ru(bpy)_3Cl_2 \cdot 6H_2O$, $Ru(phen)_3Cl_2$, CF₃SO₂Cl, 1.4bis(trifluoromethyl)benzene, 4-(trifluoromethyl)phenol, estrone and dry DMF, DMA, DMSO, 1,4dioxane, diglyme and NMP were obtained from Sigma Aldrich. All syntheses were conducted using standard Schlenk techniques or in a nitrogen atmosphere glovebox unless otherwise stated.

Experimental Details

Preparation of CF₃I Stock Solution

DMF (20 mL) was added to a Schlenk graduated cylinder under nitrogen (see picture below for apparatus). The vessel and solvent were weighed. Next, CF_3I was bubbled through the DMF solution using a long needle until the total volume of the solution reached approximately 25 mL. The vessel was sealed weighed again. The concentration of the CF_3I stock solution was then calculated based on the mass of CF_3I added and the total volume of the solution.

Solvent Screening for Trifluoromethylation of Aryl Boronic Acids

In a glovebox, substrate **1** (9.9 mg, 0.05 mmol, 1 equiv), CuOAc (1.2 mg, 0.01 mmol, 0.2 equiv), Ru(bpy)₃Cl₂•6H₂O (0.37 mg, 0.0005 mmol, 0.01 equiv), and K₂CO₃ (6.9 mg, 0.05 mmol, 1 equiv) were weighed into a 4 mL vial. CF₃I (0.25 mmol, 5 equiv) was added to the reaction vial as a stock solution in reaction solvent. Additional solvent was added to make the total amount of solvent 0.3 mL. The vial was sealed with a Teflon-lined cap, removed from the glove box, and placed in an oil bath at 60 °C with two 26 W compact fluorescent light bulbs (one on either side of the vial approximately 5 cm away). The reaction mixture was allowed to stir for 12 h. The resulting red solution was cooled to room temperature and diluted with CH₂Cl₂ (2 mL). 1,3,5-trifluorobenzene and naphthalene (0.05 mmol, 1 equiv) were added as internal standards, and the reaction was analyzed by ¹⁹F NMR spectroscopy and GC. The yields of **1a** are listed in **Table S1**.

Entry	Solvent	Yield of 1a
1	1,4-Dioxane	7%
2	Diglyme	21%
3	NMP	65%
4	DMA	72%
5	DMSO	73%
6	DMF	76%

Table S1. Solvent Screen for Reaction Between 1 and CF₃I

Reactivity of Aryl Boronic Acid under MacMillan's Reaction Conditions¹

In a glovebox, substrate **1** (9.9 mg, 0.05 mmol, 1 equiv), Ru(phen)₃Cl₂ (0.36 mg, 0.0005 mmol, 0.01 equiv), and K₂HPO₄ (26.1 mg, 0.15 mmol, 3 equiv) were weighed into a 4 mL vial. MeCN (0.4 mL) was added. The vial was fitted with a screw cap containing a silicone septum and removed from the glove box. The CF₃SO₂Cl (10.64 μ L, 2 equiv) was added by syringe, and the vial was sealed with parafilm and placed in a water bath at room temperature with two 26 W compact fluorescent light bulbs (one on either side of the vial approximately 5 cm away). The reaction mixture was allowed to stir for 24 h. The reaction was quenched with water (1 mL) and extracted with ethyl acetate (2 x 1 mL) and CH₂Cl₂ (1 x 1 mL). The combined organic layers were dried over MgSO₄. 1,3,5-trifluorobenzene and naphthalene (0.05 mmol, 1 equiv) were added as internal standards, and the reaction was analyzed by ¹H NMR and ¹⁹F NMR spectroscopy. The starting material **1** was recovered in nearly quantitative yield, and trifluoromethylated product **1a** was formed in less than 2% yield.

Reactivity of Aryl Boronic Acid under Baran's Reaction Conditions²

To a solution of substrate **1** (49.5 mg, 0.25 mmol, 1.0 equiv) and sodium trifluoromethylsulfinate (117 mg, 0.75 mmol, 3.0 equiv) in dichloromethane (1 mL) and water (0.4 mL) at 0 °C was slowly added tert-butylhydroperoxide (70% solution in water, 0.17 mL, 1.25 mmol, 5.0 equiv) with vigorous stirring. The reaction was warmed to room temperature and stirred for 24 h. The resulting solution was partitioned between dichloromethane (2 mL) and saturated sodium bicarbonate (2 mL). The organic layer was separated, and the aqueous layer was extracted with dichloromethane (3 × 2 mL). The combined organic layers were dried over MgSO₄. 1,3,5-trifluorobenzene and naphthalene (0.25 mmol, 1 equiv) were added as internal standards, and the reaction was analyzed by ¹⁹F NMR spectroscopy and GCMS. No trifluoromethylated product was observed. 4-Hydroxybiphenyl was formed in 75% yield.

Standard Procedure for Trifluoromethylation of Aryl Boronic Acids

In a glovebox, the boronic acid substrate 1 (0.25 mmol, 1 equiv), CuOAc (6 mg, 0.05 mmol, 0.2 equiv), Ru(bpy)₃Cl₂•6H₂O (1.85 mg, 0.0025 mmol, 0.01 equiv), and K₂CO₃ (35 mg, 0.25 mmol, 1 equiv) were weighed into a 20 mL vial. CF₃I (1.25 mmol, 5 equiv) was added to the reaction vial as a stock solution in DMF. Additional DMF was added to make the total volume 1.5 mL. The vial was sealed with a Teflon-lined cap, removed from the glove box, and placed in an oil bath at 60 °C with two 26 W compact fluorescent light bulbs (one on either side of the vial approximately 5 cm away). The reaction mixture was allowed to stir for 12 h. The resulting red solution was cooled to room temperature. 1,3,5-Trifluorobenzene (0.25 mmol, 1 equiv) was added as an internal standard, and the reaction was analyzed by ¹⁹F NMR spectroscopy. GCMS analysis was performed on a Shimadzu GCMS-QP2010 plus gas chromatograph mass spectrometer. The products were separated on a 30 m length by 0.25 mm id, RESTEK XTI-5 column coated with a 0.25 µm film. Helium was employed as the carrier gas, with a constant column flow of 1.5 mL/min. The injector temperature was held constant at 250 °C, and hold for 3 min.

The reaction was performed on a 0.25 mmol scale using the standard procedure. The trifluoromethylated product **1a** was formed in 80% yield. The product showed a ¹⁹F NMR signal at -62.4 ppm in DCE (lit. -62.4 ppm in CDCl₃).³ The identity of the product was further confirmed by GCMS analysis, where the product peak was observed at 15.28 min.

This reaction of substrate **1** was also conducted on a 5 mmol scale. For the 5 mmol scale reaction, substrate **1** (0.99 g, 5 mmol, 1 equiv), CuOAc (122 mg, 1 mmol, 0.2 equiv), K₂CO₃ (0.69 g, 5 mmol, 1 equiv), Ru(bpy)₃Cl₂•6H₂O (37.4 mg, 0.05 mmol, 0.01 equiv), CF₃I (25 mmol, 5 equiv) and DMF (30 mL) were used. The reaction was conducted in a 250 mL round bottom flask, and the yield was determined to be 82% by ¹⁹F NMR spectroscopy. The reaction mixture was then diluted with Et₂O (50 mL), and the resulting mixture was washed with water (3 x 50 mL) and brine (1 x 50 mL) and then dried over magnesium sulfate. The solvent was removed by rotary evaporation, and the product was purified by column chromatography on silica gel using pentane as the eluent. Compound **1a** was obtained as white crystalline solid (776 mg, 70% yield, mp = 64.0-64.4 °C). The ¹H, ¹³C and ¹⁹F NMR spectroscopic data were identical to that reported previously in the literature.³

Mass spectrum of product peak (15.28 min) from GCMS of Cu/Ru-catalyzed reaction between [1,1'-biphenyl]-4-ylboronic acid and CF₃I

The reaction was performed on a 0.25 mmol scale using the standard procedure. The ¹⁹F NMR spectral data for **2a** matched that of an authentic sample (Acros, s, –62.3 ppm). The trifluoromethylated product was formed in 70% yield. The identity of the product was further confirmed by GCMS analysis, where the product peak was observed at 3.64 min.

¹⁹F NMR spectrum of crude reaction mixture for Cu/Ru-catalyzed reaction of phenylboronic acid with CF₃I (internal standard = 1,3,5-trifluorobenzene at –107.4 ppm)

Mass spectrum of product peak (3.64 min) from GCMS of Cu/Ru-catalyzed reaction between phenylboronic acid and CF₃I

The reaction was performed on a 0.25 mmol scale using the standard procedure. The ¹⁹F NMR spectral data for **3a** matched that of an authentic sample (SynQuest Labs, s, –61.0 ppm). The trifluoromethylated product was formed in 84% yield. The identity of the product was further confirmed by GCMS analysis, where the product peak was observed at 10.28 min.

¹⁹F NMR spectrum of crude reaction mixture for Cu/Ru-catalyzed reaction of (4methoxyphenyl)boronic acid with CF_3I (internal standard = 1,3,5-trifluorobenzene at -107.4

The reaction was performed on a 0.25 mmol scale using the standard procedure. The trifluoromethylated product **4a** was formed in 86% yield. The product showed a ¹⁹F NMR signal at –61.8 ppm in DCE (lit. –62.2 ppm in $CDCl_3$).⁴ The identity of the product was further confirmed by GCMS analysis, where the product peak was observed at 11.30 min.

This reaction of substrate **4** was also conducted on a 1 mmol scale. For the 1 mmol scale reaction, substrate **4** (178 mg, 1 mmol, 1 equiv), CuOAc (24 mg, 0.2 mmol, 0.2 equiv), K₂CO₃ (138 mg, 1 mmol, 1 equiv), Ru(bpy)₃Cl₂•6H₂O (7.4 mg, 0.01 mmol, 0.01 equiv), CF₃I (5 mmol, 5 equiv) and DMF (6 mL) were used. The reaction was conducted in a 25 mL round bottom flask. The reaction mixture was then diluted with Et₂O (40 mL), and the resulting mixture was washed with water (2 x 40 mL), saturated aqueous CaCl₂ (1 x 40 mL), and brine (1 x 40 mL) and then dried over magnesium sulfate. The solvent was removed by rotary evaporation at 0 °C, and the product was purified by Kugelrohr distillation at 80 °C at 10 mm Hg. The isolated product **4a** (145 mg, 72% yield) was 96% pure, and contained traces (4%) of the corresponding protodeboronation byproduct *tert*-butylbenzene, which was not easily separable by chromatography on silica gel. The ¹H, ¹³C and ¹⁹F NMR spectroscopic data were identical to that reported previously in the literature.⁴

Mass spectrum of product peak (11.30 min) from GCMS of Cu/Ru-catalyzed reaction between (4-(tert-butyl)phenyl)boronic acid and CF₃I

The reaction was performed on a 0.25 mmol scale using 50 mol % of CuOAc (15 mg, 0.125 mmol, 0.5 equiv) under otherwise identical conditions to the standard procedure. The ¹⁹F NMR spectral data for **5a** matched that of an authentic sample (Aldrich, s, –62.8 ppm). The trifluoromethylated product was formed in 64% yield. The identity of the product was further confirmed by GCMS analysis, where the product peak was observed at 3.56 min.

¹⁹F NMR spectrum of crude reaction mixture for Cu/Ru-catalyzed reaction of (4-(trifluoromethyl)phenyl)boronic acid with CF_3I (internal standard = 1,3,5-trifluorobenzene at –

Mass spectrum of product peak (3.56 min) from GCMS of Cu/Ru-catalyzed reaction between (4-(trifluoromethyl)phenyl)boronic acid and CF₃I

The reaction was performed on a 0.25 mmol scale using the standard procedure. The ¹⁹F NMR spectral data for **6a** matched that of an authentic sample (Oakwood, s, –63.1 ppm). The trifluoromethylated product was formed in 84% yield. The identity of the product was further confirmed by GCMS analysis, where the product peak was observed at 10.37 min.

This reaction of substrate **6** was also conducted on a 1 mmol scale. For the 1 mmol scale reaction, substrate **6** (147 mg, 1 mmol, 1 equiv), CuOAc (24 mg, 0.2 mmol, 0.2 equiv), K₂CO₃ (138 mg, 1 mmol, 1 equiv), Ru(bpy)₃Cl₂•6H₂O (7.4 mg, 0.01 mmol, 0.01 equiv), CF₃I (5 mmol, 5 equiv) and DMF (6 mL) were used. The reaction was conducted in a 25 mL round bottom flask. The reaction mixture was then diluted with Et₂O (40 mL), and the resulting mixture was washed with water (2 x 40 mL), saturated aqueous CaCl₂ (1 x 40 mL), and brine (1 x 40 mL) and then dried over magnesium sulfate. The solvent was removed by rotary evaporation at 0 °C, and the product was purified by Kugelrohr distillation at 90 °C at 10 mm Hg. The isolated product **6a** (112 mg, 65% yield) was 97% pure, and contained traces (3%) of the corresponding protodeboronation byproduct benzonitrile. If necessary, the protodeboronation product can be completely removed by subsequent column chromatographic purification on silica gel using 2% diethyl ether in pentane as the eluent. After this second purification, compound **6a** was obtained as a white solid (89 mg, 52% yield). The ¹H, ¹³C and ¹⁹F NMR spectroscopic data were identical to the authentic sample.

Mass spectrum of product peak (10.37 min) from GCMS of Cu/Ru-catalyzed reaction between (4-(cyano)phenyl)boronic acid and CF_3I

The reaction was performed on a 0.25 mmol scale using the standard procedure. The ¹⁹F NMR spectral data for **7a** matched that of an authentic sample (Oakwood, s, –62.5 ppm). The trifluoromethylated product was formed in 73% yield. The identity of the product was further confirmed by GCMS analysis, where the product peak was observed at 11.49 min.

This reaction of substrate **7** was also conducted on a 1 mmol scale. For the 1 mmol scale reaction, substrate **7** (248 mg, 1 mmol, 1 equiv), CuOAc (24 mg, 0.2 mmol, 0.2 equiv), K₂CO₃ (138 mg, 1 mmol, 1 equiv), Ru(bpy)₃Cl₂•6H₂O (7.4 mg, 0.01 mmol, 0.01 equiv), CF₃I (5 mmol, 5 equiv) and DMF (6 mL) were used. The reaction was conducted in a 25 mL round bottom flask. The reaction mixture was then diluted with Et₂O (40 mL), and the resulting mixture was washed with water (2 x 40 mL), saturated aqueous CaCl₂ (1 x 40 mL), and brine (1 x 40 mL) and then dried over magnesium sulfate. The solvent was removed by rotary evaporation at 0 °C, and the product was purified by Kugelrohr distillation at 100 °C at 10 mm Hg. The isolated product **7a** (174 mg, 64% yield) was 96% pure, and contained traces (4%) of the corresponding protodeboronation byproduct iodobenzene, which was not easily separable by chromatography on silica gel. The ¹H, ¹³C and ¹⁹F NMR spectroscopic data were identical to the authentic sample.

Mass spectrum of product peak (11.49 min) from GCMS of Cu/Ru-catalyzed reaction between (4-(iodo)phenyl)boronic acid and CF₃I

The reaction was performed on a 0.25 mmol scale using the standard procedure. The ¹⁹F NMR spectral data for **8a** matched that of an authentic sample (Matrix Scientific, s, 3F, –61.6 ppm; m, 1F, –107.5 ppm). The trifluoromethylated product was formed in 93% yield. The identity of the product was further confirmed by GCMS analysis, where the product peak was observed at 3.42 min.

¹⁹F NMR spectrum of crude reaction mixture for Cu/Ru-catalyzed reaction of (4-(fluoro)phenyl)boronic acid with CF₃I (internal standard = 1,3,5-trifluorobenzene at -107.4 ppm)

Mass spectrum of product peak (3.42 min) from GCMS of Cu/Ru-catalyzed reaction between (4-(fluoro)phenyl)boronic acid and CF₃I

The reaction was performed on a 0.25 mmol scale using the standard procedure. The trifluoromethylated product **9a** was formed in 57% yield. The product showed a ¹⁹F NMR signal at –59.3 ppm in DCE (lit. –59.72 ppm in CDCl₃).³ The identity of the product was further confirmed by GCMS analysis, where the product peak was observed at 13.51 min.

This reaction of substrate **9** was also conducted on a 1 mmol scale. For the 1 mmol scale reaction, substrate **9** (172 mg, 1 mmol, 1 equiv), CuOAc (24 mg, 0.2 mmol, 0.2 equiv), K₂CO₃ (138 mg, 1 mmol, 1 equiv), Ru(bpy)₃Cl₂•6H₂O (7.4 mg, 0.01 mmol, 0.01 equiv), CF₃I (5 mmol, 5 equiv) and DMF (6 mL) were used. The reaction was conducted in a 25 mL round bottom flask. The reaction mixture was then diluted with Et₂O (40 mL), and the resulting mixture was washed with water (2 x 40 mL), saturated aqueous CaCl₂ (1 x 40 mL), and brine (1 x 40 mL) and then dried over magnesium sulfate. The solvent was removed by rotary evaporation at 0 °C, and the product was purified by Kugelrohr distillation at 120 °C at 10 mm Hg. Compound **9a** was obtained as a 5:1 mixture with the protodeboronation product naphthalene (103 mg in total, 46% yield for **9a**). Subsequent purification of this sample by column chromatography on silica gel using pentane as the eluent afforded **9a** was obtained as a pure clear liquid (79 mg, 40% yield). The ¹H, ¹³C and ¹⁹F NMR spectroscopic data were identical to that reported previously in the literature.³

Mass spectrum of product peak (13.51 min) from GCMS of Cu/Ru-catalyzed reaction between naphthalen-1-ylboronic acid and CF₃I

The reaction was performed on a 0.25 mmol scale using 50 mol % of CuOAc (15 mg, 0.125 mmol, 0.5 equiv) under otherwise identical conditions to the standard procedure. The trifluoromethylated product **10a** was formed in 45% yield. The product showed a ¹⁹F NMR signal at –53.2 ppm in DCE (lit. –55.0 ppm in CDCl₃).^{5a} The identity of the product was further confirmed by GCMS analysis, where the product peak was observed at 11.45 min.

This reaction of substrate **10** was also conducted on a 1 mmol scale. For the 1 mmol scale reaction, substrate **10** (164 mg, 1 mmol, 1 equiv), CuOAc (60 mg, 0.5 mmol, 0.5 equiv), K₂CO₃ (138 mg, 1 mmol, 1 equiv), Ru(bpy)₃Cl₂•6H₂O (7.4 mg, 0.01 mmol, 0.01 equiv), CF₃I (5 mmol, 5 equiv) and DMF (6 mL) were used. The reaction was conducted in a 25 mL round bottom flask. The reaction mixture was then diluted with Et₂O (40 mL), and the resulting mixture was washed with water (2 x 40 mL), saturated aqueous CaCl₂ (1 x 40 mL), and brine (1 x 40 mL) and then dried over magnesium sulfate. The solvent was removed by rotary evaporation at 0 °C, and the product was purified by Kugelrohr distillation at 90 °C at 10 mm Hg. Compound **10a** was obtained as a 1:1 mixture with the inseparable protodeboronation product mesitylene as a clear liquid (119 mg in total, 39% yield for **10a**). The ¹H, ¹³C and ¹⁹F NMR spectroscopic data were identical to that reported previously in the literature.^{5b}

Mass spectrum of product peak (11.45 min) from GCMS of Cu/Ru-catalyzed reaction between mesitylboronic acid and CF₃I

The reaction was performed on a 0.25 mmol scale using the standard procedure. The trifluoromethylated product **11a** was formed in 70% yield. The product showed a ¹⁹F NMR signal at –62.7 ppm in DCE (lit. –63.0 ppm in CDCl₃).⁴ The identity of the product was further confirmed by GCMS analysis, where the product peak was observed at 11.68 min.

This reaction of substrate 11 was also conducted on a 1 mmol scale. For the 1 mmol scale reaction, substrate 11 (164 mg, 1 mmol, 1 equiv), CuOAc (24 mg, 0.2 mmol, 0.2 equiv), K₂CO₃ (138 mg, 1 mmol, 1 equiv), Ru(bpy)₃Cl₂•6H₂O (7.4 mg, 0.01 mmol, 0.01 equiv), CF₃I (5 mmol, 5 equiv) and DMF (6 mL) were used. The reaction was conducted in a 25 mL round bottom flask. The reaction mixture was then diluted with Et₂O (40 mL), and the resulting mixture was washed with water (2 x 40 mL), saturated aqueous CaCl₂ (1 x 40 mL), and brine (1 x 40 mL) and then dried over magnesium sulfate. The solvent was removed by rotary evaporation at 0 °C, and the product was purified by Kugelrohr distillation at 100 °C at 10 mm Hg. The isolated product 11a (120.0 mg, 64% yield) was 95% pure, and contained traces (5%) of the corresponding protodeboronation byproduct acetophenone, which was not easily separable by chromatography on silica gel. The ¹H, ¹³C and ¹⁹F NMR spectroscopic data were identical to that reported previously in the literature.⁴

Mass spectrum of product peak (11.68 min) from GCMS of Cu/Ru-catalyzed reaction between (4-acetylphenyl)boronic acid and CF₃I

The reaction was performed on a 0.25 mmol scale using 50 mol % of CuOAc (15 mg, 0.125 mmol, 0.5 equiv) under otherwise identical conditions. The trifluoromethylated product **12a** was formed in 74% yield. The product showed a ¹⁹F NMR signal at –62.8 ppm in DCE (lit. –62.7 ppm in CDCl₃).⁶ The identity of the product was further confirmed by GCMS analysis, where the product peak was observed at 10.18 min.

This reaction of substrate **12** was also conducted on a 1 mmol scale. For the 1 mmol scale reaction, substrate **12** (150 mg, 1 mmol, 1 equiv), CuOAc (60 mg, 0.5 mmol, 0.5 equiv), K₂CO₃ (138 mg, 1 mmol, 1 equiv), Ru(bpy)₃Cl₂•6H₂O (7.4 mg, 0.01 mmol, 0.01 equiv), CF₃I (5 mmol, 5 equiv) and DMF (6 mL) were used. The reaction was conducted in a 25 mL round bottom flask. The reaction mixture was then diluted with Et₂O (40 mL), and the resulting mixture was washed with water (2 x 40 mL), saturated aqueous CaCl₂ (1 x 40 mL), and brine (1 x 40 mL) and then dried over magnesium sulfate. The solvent was removed by rotary evaporation at 0 °C, and the product was purified by Kugelrohr distillation at 100 °C at 10 mm Hg. The isolated product **12a** (110.0 mg, 63% yield) was 95% pure, and contained traces (5%) of the corresponding protodeboronation byproduct benzaldehyde, which was not easily separable by chromatography on silica gel. The ¹H, ¹³C and ¹⁹F NMR spectroscopic data were identical to that reported previously in the literature.⁶

Mass spectrum of product peak (10.18 min) from GCMS of Cu/Ru-catalyzed reaction between (4-formylphenyl)boronic acid and CF₃I

The reaction was performed on a 0.25 mmol scale using the standard procedure. The trifluoromethylated product **13a** was formed in 67% yield. The product showed a ¹⁹F NMR signal at –63.5 ppm in DCE (lit. –62.3 ppm in $CDCl_3$).⁷ The identity of the product was further confirmed by GCMS analysis, where the product peak was observed at 15.48 min.

This reaction of substrate **13** was also conducted on a 1 mmol scale. For the 1 mmol scale reaction, substrate **13** (179 mg, 1 mmol, 1 equiv), CuOAc (24 mg, 0.2 mmol, 0.2 equiv), K_2CO_3 (138 mg, 1 mmol, 1 equiv), Ru(bpy)₃Cl₂•6H₂O (7.4 mg, 0.01 mmol, 0.01 equiv), CF₃I (5 mmol, 5 equiv) and DMF (6 mL) were used. The reaction was conducted in a 25 mL round bottom flask. The reaction mixture was then diluted with Et₂O (40 mL), and the resulting mixture was washed with water (2 x 40 mL), saturated aqueous CaCl₂ (1 x 40 mL), and brine (1 x 40 mL) and then dried over magnesium sulfate. The solvent was removed by rotary evaporation at 0 °C, and the product was purified by Kugelrohr distillation at 150 °C at 10 mm Hg. The isolated product **13a** (121.0 mg, 60% yield) was 95% pure, and contained traces (5%) of the corresponding protodeboronation byproduct *N*-phenylacetamide, which was not easily separable by chromatography on silica gel. The ¹H, ¹³C and ¹⁹F NMR spectroscopic data were identical to that reported previously in the literature.⁷

Mass spectrum of product peak (15.48 min) from GCMS of Cu/Ru-catalyzed reaction between (4-acetamidophenyl)boronic acid and CF₃I

The reaction was performed on a 0.25 mmol scale using the standard procedure. The trifluoromethylated product **14a** was formed in 86% yield. The product showed a ¹⁹F NMR signal at –62.7 ppm in DCE (lit. –62.9 ppm in CDCl₃).⁴ The identity of the product was further confirmed by GCMS analysis, where the product peak was observed at 11.93 min.

This reaction of substrate 14 was also conducted on a 1 mmol scale. For the 1 mmol scale reaction, substrate 14 (180 mg, 1 mmol, 1 equiv), CuOAc (24 mg, 0.2 mmol, 0.2 equiv), K₂CO₃ (138 mg, 1 mmol, 1 equiv), Ru(bpy)₃Cl₂•6H₂O (7.4 mg, 0.01 mmol, 0.01 equiv), CF₃I (5 mmol, 5 equiv) and DMF (6 mL) were used. The reaction was conducted in a 25 mL round bottom flask. The reaction mixture was then diluted with Et₂O (40 mL), and the resulting mixture was washed with water (2 x 40 mL), saturated aqueous CaCl₂ (1 x 40 mL), and brine (1 x 40 mL) and then dried over magnesium sulfate. The solvent was removed by rotary evaporation at 0 °C, and the product was purified by Kugelrohr distillation at 100 °C at 10 mm Hg. The isolated product 14a (139.0 mg, 68% yield) was 95% pure, and contained traces (5%) of the corresponding protodeboronation byproduct methyl benzoate, which was not easily separable by chromatography on silica gel. The ¹H, ¹³C and ¹⁹F NMR spectroscopic data were identical to that reported previously in the literature.⁴

The reaction was performed on a 0.25 mmol scale using 10 mol % of CuOAc (3 mg, 0.025 mmol, 0.1 equiv) under otherwise identical conditions. The ¹⁹F NMR spectral data for **15a** matched that of an authentic sample (Matrix Scientific, s, –60.7 ppm). The trifluoromethylated product was formed in 50% yield. The identity of the product was further confirmed by GCMS analysis, where the product peak was observed at 11.90 min.

This reaction of substrate **15** was also conducted on a 1 mmol scale. For the 1 mmol scale reaction, substrate **15** (138 mg, 1 mmol, 1 equiv), CuOAc (12 mg, 0.1 mmol, 0.1 equiv), K₂CO₃ (138 mg, 1 mmol, 1 equiv), Ru(bpy)₃Cl₂•6H₂O (7.4 mg, 0.01 mmol, 0.01 equiv), CF₃I (5 mmol, 5 equiv) and DMF (6 mL) were used. The reaction was conducted in a 25 mL round bottom flask. The reaction mixture was then diluted with Et₂O (40 mL), and the resulting mixture was washed with water (2 x 40 mL), saturated aqueous CaCl₂ (1 x 40 mL), and brine (1 x 40 mL) and then dried over magnesium sulfate. The solvent was removed by rotary evaporation at 0 °C, and the product was purified by Kugelrohr distillation at 110 °C at 10 mm Hg. Compound **15a** was obtained as a 10:1 mixture with the inseparable protodeboronation product phenol as a clear liquid (69.0 mg in total, 40% yield for **15a**). The ¹H, ¹³C and ¹⁹F NMR spectroscopic data were identical to the authentic sample.

Mass spectrum of product peak (11.90 min) from GCMS of Cu/Ru-catalyzed reaction between (4-hydroxyphenyl)boronic acid and CF₃I

The reaction was performed on a 0.25 mmol scale using 50 mol % of CuOAc (15 mg, 0.125 mmol, 0.5 equiv) and 3 equivalent of CF₃I (0.75 mmol, 3 equiv) under otherwise identical conditions. The ¹⁹F NMR spectral data for **16a** matched that of an authentic sample (Matrix Scientific, s, –64.6 ppm). The trifluoromethylated product was formed in 64% yield. The identity of the product was further confirmed by GCMS analysis, where the product peak was observed at 3.94 min. The mass spectrum of the product is provided in the spectral data below.

¹⁹F NMR spectrum of crude reaction mixture for Cu/Ru-catalyzed reaction of pyridin-4-ylboronic acid with CF₃I (internal standard = 1,3,5-trifluorobenzene at –107.4 ppm)

Mass spectrum of product peak (3.94 min) from GCMS of Cu/Ru-catalyzed reaction between pyridin-4-ylboronic acid and CF₃I

The reaction was performed on a 0.25 mmol scale using the standard procedure. The ¹⁹F NMR spectral data for **17a** matched that of an authentic sample (Matrix Scientific, s, –61.1 ppm). The trifluoromethylated product was formed in 66% yield. The identity of the product was further confirmed by GCMS analysis, where the product peak was observed at 8.63 min. The mass spectrum of the product is provided in the spectral data below.

¹⁹F NMR spectrum of crude reaction mixture for Cu/Ru-catalyzed reaction of (6-methoxypyridin-3-yl)boronic acid with CF₃I (internal standard = 1,3,5-trifluorobenzene at –107.4 ppm)

Mass spectrum of product peak (8.63 min) from GCMS of Cu/Ru-catalyzed reaction between (6methoxypyridin-3-yl)boronic acid and CF₃I

The reaction was performed on a 0.25 mmol scale using the standard procedure. The trifluoromethylated product **18a** was formed in 70% yield. The product showed a ¹⁹F NMR signal at –61.4 ppm in DCE (lit. –61.4 ppm in CDCl₃).⁶ The identity of the product was further confirmed by GCMS analysis, where the product peak was observed at 13.28 min. The mass spectrum of the product is provided in the spectral data below.

This reaction of substrate **18** was also conducted on a 1 mmol scale. For the 1 mmol scale reaction, substrate **18** (173 mg, 1 mmol, 1 equiv), CuOAc (24 mg, 0.2 mmol, 0.2 equiv), K₂CO₃ (138 mg, 1 mmol, 1 equiv), Ru(bpy)₃Cl₂•6H₂O (7.4 mg, 0.01 mmol, 0.01 equiv), CF₃I (5 mmol, 5 equiv) and DMF (6 mL) were used. The reaction was conducted in a 25 mL round bottom flask. The reaction mixture was then diluted with Et₂O (40 mL), and the resulting mixture was washed with water (2 x 40 mL), saturated aqueous CaCl₂ (1 x 40 mL), and brine (1 x 40 mL) and then dried over magnesium sulfate. The solvent was removed by rotary evaporation at 0 °C, and the product was purified by Kugelrohr distillation at 130 °C at 10 mm Hg. The isolated product **18a** (132.0 mg, 67% yield) was 96% pure, and contained traces (4%) of the corresponding protodeboronation byproduct quinoline. Subsequent purification of this sample by column chromatography on silica gel using 2% diethyl ether in pentane as the eluent afforded **18a** as a white solid (108 mg, 55% yield). The ¹H, ¹³C and ¹⁹F NMR spectroscopic data were identical to that reported previously in the literature.⁶

Mass spectrum of product peak (13.28 min) from GCMS of Cu/Ru-catalyzed reaction between quinolin-3-ylboronic acid and CF₃I

The reaction was performed on a 0.25 mmol scale using 50 mol % of CuOAc (15 mg, 0.125 mmol, 0.5 equiv) at 70 °C under otherwise identical conditions. The trifluoromethylated product **19a** was formed in 44% yield. The product showed a ¹⁹F NMR signal at –63.6 ppm in DCE (lit. –64.8 ppm in CD₃CN).⁸ The identity of the product was further confirmed by GCMS analysis. The GC oven temperature program was as follows: 30 °C hold 6 min, ramp 20 °C/min to 250 °C, and hold for 3 min. The product peak was observed at 2.08 min. The mass spectrum of the product is provided in the spectral data below.

¹⁹F NMR spectrum of crude reaction mixture for Cu/Ru-catalyzed reaction of furan-2-ylboronic acid with CF₃I (internal standard = 1,3,5-trifluorobenzene at –107.4 ppm)

Mass spectrum of product peak (2.08 min) from GCMS of Cu/Ru-catalyzed reaction between furan-2-ylboronic acid and CF₃I

The reaction was performed on a 0.25 mmol scale using 10 mol % of CuOAc (3 mg, 0.025 mmol, 0.1 equiv) at 40 °C under otherwise identical conditions. The trifluoromethylated product **20a** was formed in 72% yield. The product showed a ¹⁹F NMR signal at –64.4 ppm in DCE (lit. – 64.8 ppm in CDCl₃).⁴ The identity of the product was further confirmed by GCMS analysis, where the product peak was observed at 10.52 min. The mass spectrum of the product is provided in the spectral data below.

This reaction of substrate **20** was also conducted on a 1 mmol scale. For the 1 mmol scale reaction, substrate **20** (162 mg, 1 mmol, 1 equiv), CuOAc (12 mg, 0.1 mmol, 0.1 equiv), K₂CO₃ (138 mg, 1 mmol, 1 equiv), Ru(bpy)₃Cl₂•6H₂O (7.4 mg, 0.01 mmol, 0.01 equiv), CF₃I (5 mmol, 5 equiv) and DMF (6 mL) were used. The reaction was conducted in a 100 mL round bottom flask. The reaction mixture was then diluted with Et₂O (40 mL), and the resulting mixture was washed with water (2 x 40 mL), saturated aqueous CaCl₂ (1 x 40 mL), and brine (1 x 40 mL) and then dried over magnesium sulfate. The solvent was removed by rotary evaporation at 0 °C, and the product was purified by column chromatography on aluminum oxide using pentane as the eluent. Compound **20a** was isolated as a clear liquid (104.0 mg, 56% yield). The ¹H, ¹³C and ¹⁹F NMR spectroscopic data were identical to that reported previously in the literature.⁴

Mass spectrum of product peak (10.52 min) from GCMS of Cu/Ru-catalyzed reaction between benzofuran-2-ylboronic acid and CF₃I

The reaction was performed on a 0.25 mmol scale using 5 mol % of CuOAc (1.5 mg, 0.0125 mmol, 0.05 equiv) under otherwise identical conditions. The trifluoromethylated product **21a** was formed in 54% yield. The product showed a ¹⁹F NMR signal at –54.5 ppm in DCE (lit. –55.1 ppm in CDCl₃).⁹ The identity of the product was further confirmed by GCMS analysis, where the product peak was observed at 3.43 min. The mass spectrum of the product is provided in the spectral data below.

Mass spectrum of product peak (3.43 min) from GCMS of Cu/Ru-catalyzed reaction between thiophen-2-ylboronic acid and CF₃I

Estrone boronic acid was prepared according to literature procedure.^{10,11} The reaction was performed on a 0.25 mmol scale using 50 mol % of CuOAc (6 mg, 0.125 mmol, 0.5 equiv) under otherwise identical conditions. The trifluoromethylated product **22a** was formed in 87% yield by ¹⁹F NMR spectroscopy. The reaction mixture was then diluted with ethyl acetate (20 mL), and the resulting mixture was washed with brine (3 x 30 mL) and then dried over magnesium sulfate. The solvent was removed by rotary evaporation, and the product was purified by column chromatography on silica gel using ethyl acetate/hexane 1:9 as the eluent. Compound **22a** was obtained as white crystalline solid (65.0 mg, 80% yield, mp = 146.4-147.8 °C). ¹H NMR (CDCl₃, 25 °C): δ 7.40-7.38 (m, 2H), 7.36-7.33 (m, 1H), 2.98-2.93 (m, 2H), 2.52 (dd, *J* = 19.1, 9.0 Hz, 1H), 2.47-2.42 (m, 1H), 2.37-2.30 (m, 1H), 2.20-1.96 (m, 4H), 1.70-1.44 (m, 6H), 0.92 (s, 3H). ¹³C NMR (¹H decoupled, CDCl₃, 25 °C): δ 220.59, 143.86, 137.39, 128.24 (q, *J* = 31.8 Hz), 125.92, 125.86 (q, *J* = 4.1 Hz), 124.48 (q, *J* = 272.3 Hz), 122.59 (q, *J* = 3.6 Hz), 50.63, 48.02, 44.58, 37.96, 35.95, 31.66, 29.43, 26.34, 25.76, 21.72, 13.94. ¹⁹F NMR (CDCl₃, 25 °C): δ -62.46 (s, 3F). HRMS EI (m/z): [M]⁺ calcd for C₁₉H₂₁F₃O, 322.1545; measured, 322.1542.

Possible Mechanism for Cu/Ru-Catalyzed Trifluoromethylation with Redox Values

Although the redox values of the Cu and Ru species under our exact reaction conditions are not available, the proposed mechanism is consistent with the redox values reported in the literature.

Figure S1. Redox potentials for proposed catalytic intermediates

Reported potentials of Ru and Cu are in aqueous solution vs SCE.^{12,13} Reported potential of CF_3I is in DMF vs SCE.¹⁴

Control Reactions of Trifluoromethylation of Aryl Boronic Acids^[a]

The control reactions were performed on 0.05 mmol scale under otherwise identical conditions.

Entry	Product	Yield	Without Cu cat	Without Ru cat	Without light
1	CF ₃	80%	3%	3%	1%
2	(1a) CF ₃	70%	5%	0%	0%
3	(2a) CF ₃ MeO	84%	5%	1%	0%
4	(3a) CF ₃	86%	2%	1%	3%
5 ^b	(4a) E-C	64%	2%	11%	2%
6	(5a) CF ₃	84%	1%	22%	2%
7	NC (6a)	73%	2%	13%	8%
8	(7a) CF ₃	93%	1%	20%	4%
9	(8a)	57%	6%	2%	0%
10 ^b	(9a)	45%	4%	4%	0%
	(10a) CF ₃				
11	0 (11a) CF ₃	70%	4%	14%	0%
12 ^b	O H (12a)	74%	4%	5%	2%

Entry	Product	Yield	Without Cu cat	Without Ru cat	Without light
13	O N H (13a)	67%	4%	5%	1%
14	O (14a)	86%	4%	15%	2%
15 ^c	HO (15a)	50%	3%	1%	0%
16 ^{b,d}	CF ₃ N_(16a)	64%	2%	21%	3%
17	MeO N (17a) CF ₃	66%	2%	10%	1%
18	(18a)	70%	5%	34%	13%
19 ^{c,e}	(19a)	48%	7%	2%	0%
20 ^{c,f}	(20a)	72%	23%	15%	1%
21 ^g	(21a)	54%	17%	7%	0%
22 ^b		87%	0%	29%	1%
F	(22a)				

^[a] General conditions: substrate (0.05 mmol, 1 equiv), CF_3I (5 equiv), [Cu] (0.2 equiv), $Ru(bpy)_3Cl_2 \cdot 6H_2O$ (0.01 equiv), K_2CO_3 (1 equiv), DMF (0.17 M in substrate), 60 °C, 12 h, 26 W compact fluorescent light bulb. ¹⁹F NMR yield. ^[b] 0.5 equiv of CuOAc. ^[c] 0.1 equiv of CuOAc. ^[d] 3 equiv of CF_3I. ^[e] Reaction run at 70 °C. ^[f] Reaction run at 40 °C. ^[g] 0.05 equiv of CuOAc.

In a glovebox, substrate 1 (49.5 mg, 0.25 mmol, 1 eguiv), CuOAc (15.3 mg, 0.125 mmol, 0.5 equiv), Ru(bpy)₃Cl₂•6H₂O (1.85 mg, 0.0025 mmol, 0.01 equiv) and K₂CO₃ (35 mg, 0.25 mmol, 1 equiv) were weighed into a 20 mL vial. DMF (1.5 mL) and then C₄F₉I (215 μL, 1.25 mmol, 5 equiv) were added. The vial was sealed with a Teflon-lined cap, removed from the glove box and placed in a clear oil bath at 60 °C with two 26 W compact fluorescent light bulbs (one on either side of the vial about 5 cm away). The reaction mixture was allowed to stir for 12 h. The resulting red reaction mixture was cooled to room temperature and diluted with CH₂Cl₂ (2 mL). 1,3,5-Trifluorobenzene (0.25 mmol, 1 equiv) was added as an internal standard, and the yield was determined to be 82% by ¹⁹F NMR spectroscopy. The reaction mixture was then diluted with Et₂O (20 mL), and the resulting mixture was washed with water (3 x 20 mL) and brine (1 x 20 mL) and then dried over magnesium sulfate. The solvent was removed by rotary evaporation, and the product was purified by column chromatography on silica gel using hexane as the eluent. Compound **1b** was obtained as white crystalline solid (62.0 mg, 67% yield, mp = 50.8-51.6 °C). ¹H NMR (CDCl₃, 25 °C): δ 7.72 (d, J = 8.0 Hz, 2H), 7.66 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H), 7.49 (t, J = 8.0 Hz, 2H), 7.42 (t, J = 8.0 Hz, 1H). ¹³C NMR (¹H decoupled, CDCl₃, 25 °C): δ 145.07, 139.79, 129.15, 128.41, 127.70 (t, *J* = 24.7 Hz), 127.47 (2 carbons), 127.45, 127.40, 118-109 (multiple peaks, perfluoroalkyl chain). ¹³C NMR (¹⁹F decoupled, CDCl₃, 25 °C): δ 145.07 (m), 139.79 (m), 129.15 (dd, J = 161.8, 7.6 Hz), 128.42 (dt, J = 160.8, 7.8 Hz), 127.72 (t, J = 7.8 Hz), 128-126 (multiple overlapping peaks), 117.67, 116.06 (m), 110.51, 109.15.¹⁹F NMR (CDCl₃, 25 °C): δ –81.03 (t, J = 9.4 Hz, 3F), –110.82 (t, J = 13.2 Hz, 2F), – 122.70 (m, 2F), -125.57 (m, 2F). HRMS EI (m/z): [M]⁺ calcd for C₁₆H₉F₉, 372.0561; measured, 372.0551.

In a glovebox, substrate 1 (49.5 mg, 0.25 mmol, 1 equiv), CuOAc (30.6 mg, 0.25 mmol, 1 equiv), Ru(bpy)₃Cl₂•6H₂O (1.85 mg, 0.0025 mmol, 0.01 equiv) and K₂CO₃ (35 mg, 0.25 mmol, 1 equiv) and C₁₀F₂₁I (193.8 mg, 0.3 mmol, 1.2 equiv) were weighed into a 20 mL vial. DMF (1.5 mL) was added. The vial was sealed with a Teflon-lined cap, removed from the glove box, and placed in a clear oil bath at 60 °C with two 26 W compact fluorescent light bulbs (one on either side of the vial about 5 cm away). The reaction mixture was allowed to stir for 12 h. The resulting red reaction mixture was cooled to room temperature and diluted with CH₂Cl₂ (2 mL). 1,3,5-Trifluorobenzene (0.25 mmol, 1 equiv) was added as an internal standard, and the yield was determined to be 80% by ¹⁹F NMR spectroscopy. The reaction mixture was then diluted with Et₂O (20 mL), and the resulting mixture was washed with water (3 x 20 mL) and brine (1 x 20 mL) and then dried over magnesium sulfate. The solvent was removed by rotary evaporation, and the product was purified by column chromatography on silica gel using hexane as the eluent. Compound 1c was obtained as white crystalline solid (119.0 mg, 71% yield, mp = 91.4-94.8 °C). ¹H NMR (CDCl₃, 25 °C): δ 7.72 (d, J = 8.0 Hz, 2H), 7.66 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 7.5 Hz, 2H), 7.48 (t, J = 8.0 Hz, 2H), 7.42 (t, J = 7.5 Hz, 1H). ¹³C NMR (¹H decoupled, $CDCI_3$, 25 °C): δ 145.08, 139.82, 129.15, 128.41, 127.87 (t, J = 24.8 Hz), 127.52, 127.46 (2 carbons), 127.42, 118-108 (multiple peaks, perfluoroalkyl chain). ¹³C NMR (¹⁹F decoupled, $CDCl_{3}$, 25 °C): δ 145.08 (m), 139.82 (m), 129.15 (dd, J = 161.8, 7.8 Hz), 128.41 (dt, J = 160.8, 7.3 Hz), 127.86 (t, J = 7.9 Hz), 128-126 (multiple overlapping peaks), 117.29, 116.21, 111.57, 111.08, 111.04, 110.96, 110.86, 110.34, 108.55. ¹⁹F NMR (CDCl₃, 25 °C): δ –80.88 (t, J = 9.4 Hz, 3F), -110.61 (t, J = 14.1 Hz, 2F), -121.25 (m, 2F), -121.80 (m, 8F), -121.96 (m, 2F), -122.76 (m, 2F), -126.19 (m, 2F). HRMS EI (m/z): [M]⁺ calcd for C₂₂H₉F₂₁, 672.0369; found, 672.0361.

NMR Spectra of New Compounds

¹³C NMR (¹⁹F decoupled, CDCl₃, 25 °C):

NMR Spectra of Isolated Products (Previously Reported Compounds)

¹⁹F NMR

2.05

0.09

¹³C NMR

Sample Name:											
Data Collecto Ga.Chem.LS	ad on: A.UMich.edu-vni	mrs400									
Archive dire	ctory:										
Sample direct	tory:										
FidFile: YY-	6-17-F-acetyl-	P									
Pulse Sequence	e: FLUORINE (s	2pul)									
Solvent: cdcl:	3										
Data collected	d on: Mar 22 2	012									
Operator: yin	gdaye										
Relax. delay	1.000 sec										
Pulse 30.0 de	agrees										
Acq. time 0.	734 sec										
l6 repetition	/ HZ										
OBSERVE F19,	375.9372972 M	Hz									
DATA PROCESSI	NG										
Line broaden:	ing 0.5 Hz										
FT size 13107	2										
Total time 0 n	nin 31 sec										
									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,, ,
20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	ppm

¹⁹F NMR

Sample Name:		
Data Collected on:		
Ga.Chem.LSA.UMich.edu-vnmrs400		
Archive directory:		
Sample directory:		
FidFile: YY-6-17-quinoline-F		
Pulse Sequence: FLUORINE (s2pul)		
Solvent: cdcl3		
Data collected on: Apr 6 2012		
Operator: yingdaye		
Relax, delay 1.000 sec		
Pulse 30.0 degrees		
Acg. time 0.734 sec		
Width 89285 7 Hz		
16 repetitions		
OBSERVE F19 375 9372972 MHz		
DATA PROCESSING		
Line broadening 0.5 Hz		
FT size 131072		
Total time 0 min 31 sec		

											huuh
20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	ppm

¹³C NMR

¥¥-5-195-4-2-H Sample Name: Data Collected on: Te-vnmrs500 Archive directory: Sample directory: FidFile: YY-5-195-4-2-H Pulse Sequence: PROTON (s2pul) Solvent: cdcl3 Data collected on: Feb 13 2012 тетр. 25.0 С / 298.1 К Operator: yingdaye Relax. delay 0.500 sec Pulse 45.0 degrees Acq. time 3.500 sec Width 8012.8 Hz 16 repetitions OBSERVE H1, 500.0931695 MHZ DATA PROCESSING Line broadening 0.3 Hz FT size 6536 Total time 1 min 12 sec MA 8 7 6 5 4 3 2 1 0 ppm ¹⁹F NMR

20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	ppm
Relax. dela Pulse 30.0 Acq. time (Width 108.7 16 repetiti OBSERVE F19 DATA PROCESS Line broade FT size 1310 Total time (y 1.000 sec degrees .603 sec kHz .0ns ., 470.5577223 UNG .0ning 1.5 Hz .72 .0 min 29 sec	MHZ									
Temp. 25.0 Operator: yi	C / 298.1 K .ngdaye			ĺ							
Pulse Sequer Solvent: cdc Data collect	ce: FLUORINE 13 ed on: Feb 13	(s2pul) 2012		-62.456							
FidFile: YY	-5-195-4-2-F										
Sample dire	ctory:										
Te-vnmrs Archive dir	i00 rectory:										
Sample Name											
Sample Name											
¥¥-5-195-4-2	-F										

¹³C NMR

References

(1) Nagib, D. A.; MacMillan, D. W. C. *Nature* **2011**, *480*, 224.

(2) Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple, I. B.; Su, S.; Blackmond, D. G.; Baran, P. S. *Proc. Natl. Acad. Sci. USA* **2011**, *108*, 14411.

(3) Xu, J.; Luo, D. F.; Xiao, B.; Liu, J.; Gong, T. J.; Fu, Y.; Liu, L. *Chem. Commun.* **2011**, *47*, 4300.

(4) Chu, L.; Qing, F. L. *Org. Lett.* **2010**, *12*, 5060.

(5) (a) Stavber, S.; Zupan, M. *J. Org. Chem.* **1983**, *48*, 2223. (b)Li, Y.; Chen, T.; Wang, H.; Zhang, R.; Jin, K.; Wang, X.; Duan, C. Synlett **2011**, *12*, 1713.

(6) Zhang, C.-P.; Cai, J.; Zhou, C.-B.; Wang, X.-P.; Zheng, X.; Gu, Y.-C.; Xiao, J.-C. *Chem. Commun.* **2011**, *47*, 9516.

(7) Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. *Angew. Chem., Int. Ed.* **2011**, *50*, 3793.

(8) Naumann, D.; Kischkewitz, J. J. Fluorine Chem. **1990**, 46, 265.

(9) Knauber, T.; Arikan, F.; Röschenthaler, G.-V.; Gooßen, L. J. *Chem. Eur. J.* **2011**, *17*, 2689.

(10) Furuya, T.; Strom, A. E.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 1662.

(11) Ahmed, V.; Liu, Y.; Silvestro, C.; Taylor, S. D. Bioorg. Med. Chem. 2006, 14, 8564.

(12) Campagna, S.; Puntoriero, F.; Nastasi, F.; Bergamini, G.; Balzani, V. *Top. Curr. Chem.* **2007**, *280*, 117.

(13) *Inorganic Chemistry, 3rd ed.;* Housecroft, C. E.; Sharpe, A. G.; Pearson Education: Harlow, England, 2008.

(14) (a) Andrieux, C. P.; Gelis, L.; Médebielle, M.; Pinson, J.; Saveant, J. M. *J. Am. Chem. Soc.* **1990**, *112*, 3509. (b) Bonesi, S. M; Erra-Balsells, R. *J. Chem. Soc., Perkin Trans.* 2 **2000**, 1583.