
Rate of extinction of the fittest genotype in the slow ratchet regime. Stochastic fluctuations
of the fittest class can approximately be described by a diffusion equation:

∂tp(x, t) = −∂x [D1(x)p(x, t)] + ∂2
x [D2(x)p(x, t)] (1)

where p(x) is the probability distribution of the nose occupancy, x = N−1nk? being defined as the fraction
of the population in the ”top bin” k?. Diffusive ”drift” is represented by D2(x) = x(1−x)/2N and effect
of selection acting in the top bin is represented by D1(x) = ŝx(1 − x/x?), where x? = e−U/s is the
equilibrium nose occupancy, , where ŝ = γs and γ is a ”phenomenological” parameter introduced by
Haigh (1978). Both x = 1 (fixation) and x = 0 (extinction) are absorbing boundary conditions (Jain,
2008; Stephan and Kim, 2002). The density function for fixation/extinction time ϕ(t;x) satisfies the
backward Kolmogorov equation

∂tϕ(t;x) = D1(x)∂xϕ(t;x) +D2(x)∂2
xϕ(t;x) (2)

where t is the time interval between initial state x and fixation or extinction. The mean time to fixa-
tion/extinction starting at x = y at t = 0 is given by t̄(y) =

∫∞
0
tϕ(t; y)dt, which satisfies

−1 = D1(y)∂y t̄(y) +D2(y)∂2
y t̄(y). (3)

Using the integrating factor ϕ(x) = e
∫ x
0
dz

D1(z)

D2(z) , yields for the mean time to extinction of the fittest class:

t̄(x?) =

∫ x?

0

dy
1

ϕ(y)

∫ 1

y

dζ
ϕ(ζ)

D2(ζ)
, (4)

where
ϕ(x) = (1− ζ)

2Nŝ(1−x?)
x? e

2Nŝζ
x? , (5)

The second integral in the limit Ns� 1 can be approximated as

2N

∫ 1

y

dζ
(1− ζ)

2Nŝ(1−x?)
x? e

2Nŝζ
x?

ζ(1− ζ)
≈ 2N

∫ 1

y

dζ
e

2Nŝx?

(
2ζ
x?
− ζ

2

x2?

)
ζ

(6)

and for small x, ϕ(x) approximates to

ϕ(x) ≈ e2Nŝx?

(
2ζ
x?
− ζ

2

x2?

)
(7)

Using the above approximations and α = Nŝx?, n? = Nx? and changing the variables, η = y/x?− 1, z =
ζ/x? − 1 yields:

t̄(x?) ≈ 2nk?

∫ 0

−1

dηeαη
2

∫ 1/?−1

η

dz
e−αz

2

1 + z
(8)

For α� 1 the integral the second integral can be readily approximated yielding

t̄(x?) ≈ 2nk?

√
π

4α

∫ 0

−1

dηeαη
2 [
erf(
√
αβ)− erf(

√
αη)
]

(9)

where β = 1
k?
−1. Using η2 = 1− θ2/α allows the evaluation of the integral in the α� 1 limit and yields

t̄(x?) ≈ nk?
√
πα−3/2eα. (10)
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Assuming an exponential distribution for time of extinction of the fittest class, the rate of extinction
is given by r− = 1/t̄(x?). Replacing α = γsnk? yields:

r− ≈ e−γsnk?γs
√
γsnk?/π (11)

which we use to arrive at Eq. (11) of the main text.
This standard calculation of extinction probability has glossed over the non-trivial ”many-body”

element of the problem: the fact that the strength of selection acting on the fittest genotype is defined
relative to the population mean, which depends on the deviations from the steady state for all other,
less-fit, genotypes. The latter in turn depends on the history of the dynamics in the top fitness ”bin”. As
in all of the previous work, we deal with this problem here by introducing a phenomenological parameter
γ, known as the ”Haigh factor” (Gordo and Charlesworth, 2000a,b; Haigh, 1978; Stephan and
Kim, 2002). However, unlike earlier work we shall not assume this factor to be a constant and determine
its λ-dependence numerically (see discussion of the slow ratchet regime in the main text). An analytic
method for describing the effect of history dependence on the fluctuations of the top bin goes beyond
the scope of the present work and will be described in a separate publication (Neher and Shraiman,
submitted).

Asymptotic expressions for εc The matching condition used to determine εc in the fast-ratchet
regime can be rewritten as follows.

1

σ
√
εk?

= Ne−λ(1−2λ)+ k?
2 log 1−ε

ε Jk?(2α). (12)

In the limit of α � 1, the zero of the Bessel function is approximately at k? + 1 ≈ α and the Bessel

function at k? evaluates to roughly ∼ k2/3
? (Abramowitz 9.3.33 and 9.1.27). Hence we have

λ(1− 2ε)− λ
√
ε(1− ε) log

1− ε
ε

= logNs (13)

where we have neglected powers to the 1
6 and O(1) factors inside the logarithm. In the limit ε� 1 (but

λ2ε� 1), the matching simplifies to

1− 2ε+
√
ε log ε = λ−1 logNs (14)

which simplifies further to √
ε log ε ≈ λ−1 log(Ns)− 1 = −2z (15)

where we defined z for convenience. This can be solved for ε:

εc =
z2

W (−z)2
≈ z2

(log(z)− log(− log(z)))2
(16)

where W (x) is the −1 branch of Lambert’s W-function, i.e. the solutions of W (x)eW (x) = x. The linear
correction in Eq. 14 can be incorporated iteratively.

εi+1 =
(z + εi)

2

W (−z + εi)2
. (17)

This iteration converges for small C and ε. At larger C, the branch of the W (x) function is lost. The
result ε2 obtained after the first iteration, starting with Eq. 16, is also shown in Fig. S1 as dashed red
line.
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Figure S1. Dynamic mutation-selection balance. The figure shows εc for many combinations of U , s
and N as a function of s

U logNs, while the color codes for εcU
2s−2. If εcU

2s−2 � 1, εc is solely a
function of s

U logNs and is well described by the numerical solution of Eq. 6 in Main text, shown as a
black line. The asymptotic approximations for large εc (Eq. 19) and small εc (Eq. 16) are shown as
green and red lines, respectively. The dashed lines correspond to the more accurate version mentioned
in the main text.

The other limit that is amenable to analytic calculations is the limit ε→ 1/2. To this end, we define
δ = 1

2 − ε and expand the right hand side of Eq. 14

1− 2ε−
√
ε(1− ε) log

1− ε
ε

=
4

3
δ3 +

44

15
δ5 +O(δ7) = λ−1 logNs. (18)

From this, we find

ε ≈ 1

2
−
(

3

4λ
log(Ns)

)1/3

. (19)

This expression is compared to simulation results in Fig. S1. The term proportional to δ5 can again be
included by iteration and the result is shown as the dashed green line in Fig. S1.

Convergence to the dynamic mutation-selection balance state. In the main text we discuss
the possibility that ε itself depends on the absolute fitness. As the simplest model of this dependence
here we consider the case of ε(k) = k/L which may be thought of as a ”genome” of length L, that for
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Figure S2. Evolution of the beneficial mutation fraction in the model with ε(k) = k/L. The figure
shows time evolution of ε towards ec for populations which start above or below the absolute fitness (i.e.
average number of mutations k̄ per genome) corresponding to the dynamic balance state which is
realized when ε(k) at the nose of the distribution is at εc. The rate of convergence depends on the
population parameters Ns, λ. Fluctuations around εc arise from the stochastic nature of the dynamic
balance state.

k = 0 cannot be improved in fitness, but allows for a k/L fraction of compensatory mutations, once
k > 0. Dependence of beneficial mutation fraction on absolute fitness is parameterized by L here set to
103, so that differences in ε within any population are relatively small as λ/L << 1. Figure S2 presents
the result of numerical simulations for this model, for different values of λ and different population sizes
(see Methods section of the main text for the description of the numerical method). We ran simulations
starting with populations in the high (k − 0) and low (k = L) fitness states and observed the dynamics
of population averaged fitness k̄ decrease or increase with time eventually approaching a statistically
steady state. This asymptotic state is characterized by average ε close to εc appropriate for the given
population parameters. This convergence is evident in Figure S2 which displays the time dependence of
population averaged ε normalized to εc(N,λ). Asymptotic value of the ε/εc(N,λ) deviates slightly from
unity because of the residual variation of ε within the population in the equilibrium state. The rate of
evolution towards dynamic balance slows down as the population approaches its εc, which is expected as
the v → 0 as ε→ εc.

Mutational Meltdown. While the focus of our analysis has been on understanding the properties of
the dynamic balance state, we have in the main text of the paper also discussed the global condition
for its stability: the monotonic increase in the beneficial mutation rate (i.e. ε) with decreasing absolute
fitness. That discussion however assumed constant population size, which may not be a good assumption
once the absolute fitness falls below certain threshold. Declining absolute population fitness can lead to a
reduction in population size, speeding Muller’s ratchet and leading to further declines in absolute fitness
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and eventual extinction, a process is known as “mutational meltdown.” We now consider the conditions
under which the dynamic equilibrium state allows a population to avoid this mutational meltdown.

To address this question, we must first specify the relationship between absolute fitness and changes
in population size. This depends on the details of the population dynamics, and a variety of different
models are plausible. Here we use the framework proposed by Lynch et al. (1993), in which the average
number of offspring of an individual is Rw, where R is the average fecundity of a mutation-free individual
and w is its absolute fitness. In our model an individual with ` deleterious mutations has w = (1 − s)`.
The population then melts down when the average individual produces less than one offspring, which
occurs when

R(1− s)¯̀
< 1. (20)

To connect this condition to our analysis of the dynamic equilibrium state, we next need to specify the
relationship between ε and absolute fitness. This depends on the specific model of back and compensatory
mutations. Here we assume that ε increases linearly with the number of deleterious mutations,

ε =
c`

L
, (21)

where c represents the average number of back or compensatory mutations available per deleterious
mutation and L represents the total number of potentially deleterious sites.

Given these assumptions, our dynamic equilibrium state must satisfy

εc <
c

L

lnR

ln(1− s)−1
≈ c lnR

sL
(22)

in order to avoid mutational meltdown. We can simply apply our analysis as described above to compute
εc; if the resulting value is greater than this critical value given the relevant values of R, s, and L, the
dynamic equilibrium will not be stable due to reductions in population size, and meltdown will occur.
We note however that since εc is bounded above by 1

2 , meltdown can only occur for sufficiently strong
selection, sL > 2 lnR. At the same time, stronger selection tends to reduce εc. Thus meltdown will
typically be a concern only for a specific range of intermediate selection strengths.

The assumptions we made about population dynamics and the linear relationship between ε and
absolute fitness are of course arbitrary. Recent work by Silander et al. (2007) has argued that in fact ε
increases faster than linearly with `. In this case, mutational meltdown will be less likely than we have
suggested above (i.e. larger εc is required for meltdown). The alternative scenario where ε increases
less than linearly with ` is also possible in principle, in which case mutational meltdown becomes more
probable, though this scenario seems implausible given that back-mutation rates should increase linearly
with `.

References

Gordo, I., and B. Charlesworth, 2000a The degeneration of asexual haploid populations and the
speed of muller’s ratchet. Genetics 154: 1379–1387.

Gordo, I., and B. Charlesworth, 2000b On the speed of muller’s ratchet. Genetics 156: 2137–2140.

Haigh, J., 1978 The accumulation of deleterious genes in a population. Theor. Popul. Biol. 14: 251–26.

Jain, K., 2008 Loss of least-loaded class in asexual populations due to drift and epistasis. Genetics
179(4): 2125–34.

Lynch, M., R. Burger, D. Butcher, and W. Gabriel, 1993 The mutational meltdown in asexual
populations. J. Hered. 84: 339–344.

Goyal et al. 6SI



Silander, O., O. Tenaillon, and L. Chao, 2007 Understanding the evolutionary fate of finite popu-
lations: the dynamics of mutational effects. PLoS Biol. 5: e94.

Stephan, W., and Y. Kim, 2002 Recent Applications of Diffusion Theory to Population Genetics.
Oxford University Press, Oxford, UK, 72–93.

Goyal et al. 7SI


