

В

Α

FIG S1. Them5 gene appeared later in evolution but shares similar structure with Them4. (A) Stylized representation of hThem4 and hThem5 genes. Genomic (upper panel) and exon-intron structure and mRNA cartoon representation (lower panel) of hThem4 and hThem5 genes (4HBT - 4-hydroxybenzoyl-CoA thioesterase domain, MTS - mitochondrial targeting sequence). (B) Philogenetic tree of Them4 and Them5 orthologs in different species. Them4 othologs are found in lower eukaryotes, such as yeasts and chordata (Them4 orthologs upper group); Them5 orthologs, however, are present only in mammals (lower group).

123 123 123 123	123	123	77	117	108	108	117	63	104	66	62
			 E		 ല്ല	 E	 8	: H3	 8	 g	: T
	RC LON	RCIEI	FLEI	HSF-I	1 - J 2	ESL-1	EF-1	REVTI	MLD	INIVER	SIKI
RLFT RLFT RLFT RLFT RLFT RLFT	RLFT IRTFT	RLFT	BLET	LOLFT	LOOFT	LOOPT	NOLFT	TRLFT	(RLFT	ARLET	RLFT
DKGDC DKQDU GKDDU DQGDU	DKSDU	DKSDI	-KEDO	OMSOA	OMSKA	OMSKA	RLSQ	-QGD1	RUREF	IQAKA	IQSKI
AVSSI ETASI EVSS(AVSSI	AVAS	SANSI	TTTS	MKEE	KKEE	KKEE(VEEEI	Ì	UPPVI	ISKL	LSKL
PFGL PFGL PFGL	PEGL	PLDL	/PGGL	DPKL	DSKF	/DSKF	DPKL		9X	LGGIY	regvy
RGLKI QGLKI RGFKI QGLKI	QGLKI	QGFKI	RGLK	KTHFI	QTLF	QTHFU	KTYFI		VHYII	IKHA.	LKYAT
	IHQ	IHU	IHQ	JIODF	LOEF	LOEF	CSEDF				
	NR	NR	NA	TPTE	NPTR.	NPPQ.	RSTO	Ì	Ë	55	22
SN TKS	STRS	SFRS	SFKS	SYKR	SHRC	PSYRC	SYKR	XLKPR	SYNA	SYNR	SYNR
N INT	D IKL	URV	DIKL	MKRL	UKRM	MKRL	DERL	DVKL	UKRI	MRKL	DRRI
		DST	EDG	DGS	DGS	DGS	DGS	VSNGK	SGT	VKTGP	KQKGP
				Ì						ETYEN	EGGGI
	TK	ΓK	 N	E	B	EC	E	LE	N2	TUTU	CEAET
FLEK) FLEK) FLEK) FLEK] FLEK]	FLEK LOEK	FLEKT	FLEK	FMKKC	FMKK	FMKKC	FMKK	LKREJ	YMEGS	VNAQC	NNSQ(
SLYCE SLYCE SLYCE SMYCE	DI VQE	SLYHE	R Y E E	L FDO	L FDO	LFDO	L FDO	EI FNO	IL VNK	UL ADH	AL VEH
STW05 TW05 TW05	PDML	PDML	PDMM	KDLRI	KDLRI	KDLRI	KDLKI	KTSM	KNLLI	PEMRI	PEMMI
		NASUG	NASOS	NESUN	TUS di	TU S di	SDS DS	NEAUS	TTUS	SUSAN	22200
YALPI YALPI YALPI YULPI YALPI	YALPI YAUPI	YALP	YALP	CSVP	YALP	YALP	UALEN	MYLP	YGVD	FSOP	FSLP
	TGLKD	KKSKIN	LKD	VILKD	JIRKD	WCKD	JIHKO	DPND	EAPRO	SQLOD	WPRD
LPEK CPEK CVEK CVEK	CLEK	COEM		SSEE	SSEK	SSEE	STEK	IVDVI	FYSQ	UTFS	Ī
MFSRF LVARF PVSRI LVSRF	LVSRF	LVSRF		ELRSF	ARRLF	TRRLF	ARRLF	M	YTAP R	SAISL	
STES STES STES STES	SUTS	SMES		EPRP	RPGA	RPEA	DLOP		SLPCS	INPI	
SAFGS SAFGS SAFGS SAFGS SAFGS	SAFGS	SAFG	Ì	RLPG	PAF	PAF	PRLSP	Ì	ONLHE	ASLKI	
LUPA VHLA LTSA LTSA	TULT TULT	LFNPA		PVGR			REGA	-	-PROO	MR	
RILPH CLLPH RILPO HVLPH	QULPH	HLLPF	ļ	ALCLF	AT	AT	ALRGF	ļ		ł	
LEAP VRSP LGAP PGVP	FGGP	PGAT		RTLG	RTLG	RTLG	RSIU		VKGI		
HHRGI RHKAI HHRGI HHRVI HHRVI	OHRAI OHRVI	HHGTI		CAARI	CAMRI	CAMRI	CTAGI		CARL]	Ì	
ARLG ARLV ARLG ARLG ARLS	NVRLG VGRLS	WILG		-MLRS	MLRN-	-MLRS	-MLRS		MLRS		
CFQVJ SFQGV GFPVJ CVOAJ	GFOAL	GFQAJ								Ì	
MIRF MLRT MIRK MIRF MIRF	MIRP	MLRR	ł	ļ			ł	ł		ł	ł
	 }		ອຸ								
			mesti			sus		ja 1			in
us us us ullis			ad a	sus	su.	vegi		tens	tevis		ririd
sapie acchi cabe	pus melar	su	elphi	sapie	uscul	s_nor	aurus	a_vec	us_18		igro
Mus m Squus Squus	is_lu poda_	taur	Nonod	Homo	m sur	Sattu	Sos t	stell	Xenop	rerio	don_n
EMS] Lithi 075 B	Can	Bog	1 060	EM4 1	EM4 1	EM4 1	EM4 1	matos	EM4 2	niol	traot
28 TH 10 TH 1 Cal	50889 77 Å1	04120	01372.	76 TH	TH CI	TH OY	TH_TH	37_Ne.	72_TH	16 Da	39_Te
09000 VIDE VIDE VIDE VIDE VIDE VIDE	XP_85 D2HBC	XP_60	XP_OC	Q5T1C	Q3 UU1	05661	A1A4I	A7395	Q6GLF	ALL2F	Q4RIE

 \triangleleft

247	248	247	247	247	247	247	248	: 193	240	: 230	230	: 237	. 188	222	222	214
-PQ-	SOEQ-	SSPQ-	SP	1-0-1	5PQ	5PQ	SSRQ-		SLT	LT	LT-	SST	/QARK	1	FG	WARC
3 3 3 1 	EQ8	EES	EDS	3 3 1 	EES	KE	EDS	EEE	AK2	EKF	DKF	EK2	KEAV		LGSI	TCLETE
																.PRREF
OLOLE-	OLOLE-	OLQLE-	OLPLE-	QLQLE-	OLOLE-	-ILPLE-	ONHLE-	OLELE-	KLNP	KLDP	KLDP	KLDP	EIN	KLCP	SIK	PVRRMI
SSGVEL	SSGVFI	SSGVEL	SSGVFL	SSGVFL	CSGIFL	CSGVEF	ASGTFI	VSGVFI	ATSLFI	ATALF I	ATALE 1	ATGLF 1	ATALE 1	ATALF 1	ATVLEV	ATAARS
DTVYAK	DTVYAK	KTVYAK	RTVYAK	DIVYAR	DTVYAK	DTVYAK	DTVYAK	WLFAK	KTLYSE	XTLYTE	KTLHTQ	KTLYSE	SILVAT	SMLHTE	SKVYTE	ALHTE
HERDO	OSRDK (LHSRDO1	USRDKI	CERDO	OSRDO	OBRDO	CORRDO	OBPDO	NOEVDEI	OS IDEI	OSTDE1	rRSVDE1	KEADG:	RSHDD:	TETDES	TISSDG
YMSCIA	YMSCIP	YMSCIP	TNSCVT	YNSCVI	YMSCIP	YMSCIP	TLSCVI	FLSCIP	FUSON	FVSCTI	FUSCTI	FLSCIN	YSFAEL	FTSCQ1	FITCKU	FVSCOV
TODORI	IDDORL	IDDORL	I DOGEI	IDDORL	TODORT	IDDORL	TEDORM	NNHOOI	VEGREF	IDGREL	IDGREL	LDGREL	WGREW	IDGREW	IDGRET	TEGRET
VEVDE	DIQUER	DIEVER	SCLLER	IVEVER	WHWER	IVDVER	INNVER	WELEK	ISQLDE	ISQLOX	ISOLOR	ISQLDE	DSKIDH	SKVER	ICALDR	SSLDE.
NUV MI	SLAVLI	SLWWI	RVDGLS	SLAVLY	SLAVLD	SLAVLD	SLAVLD	SVALL	SUVMIN	SWWW	avvvvs	SWW II	STULL	CUVIII	HIIVNE	STVLLE
UL IPUD	NL IFVG	NL IEVG	KXVQII	NLIPLG	NL IPVG	NL IEVG	NLIFLG	NL IEVG	RPIFLO	KP IPLL	KP IPLL	RPVPLC	VSLPLN	NP IFLG	SPVELG	SPIPLG
NIRFR	NIKFR	INTREE	MVRFK	SIRFK	NIRFR	MIRFR	FUIRER	NIKFR	NENYK	NITYK	NIDYE	MINER	SINYE	TVD YES	NTNYR	NINYR
LFULS	LFULSI	LLUQSI	LFULS	LFULS	LFIUSI	P. P. S.	LLUVN	LFUIN	VINDAN	AMJAN	UMBAN	UMDAN	AVUAN	UMDAN	SVUAN	VMMAN
LAGEG	TLACEG	7LAGQG	TLACEG	TLACEG	TLACEG	TLACEG	ALSCEG	/LSCHG	IMAGGT	ISEG-V	SEG-I	GGW	IASGRR	/YLCGG	SYLSGP	WLSGP
FSKTU	VSKTAN	FSKIDY	FSKT01	FSKTAN	FSKT01	FSKTM	FSKTAN	FSKTUN	VGMCAI	TGTCAI	AGMCAR	LGSCT-	CGILT	TGAGON	TGTLAC	TGAHDJ
AMMDET	ALMDET	AMMDEA	AMMDET	AIMDET	TMMDET	AMMDET	ALIDET	ALVDET	TMIDAT	TIDUT	TIDIT	TMIDIA	TLLDIG	TNIDST	TNIDTV	TMIDTV
IGGSLA.	IGGSLA.	IGGSLA.	IGGSLA.	IGGSLA.	IGGSLA	IGGSLA.	IGGSLA.	GGALV.	GGAIN'	IGGAIA'	IGGAIA'	IGGAMA'	IGGAMA'	IGGCIA.	IGGAIA'	GGATA
PP GF AF	AP GF AF	PECFAE	SPGCAR	ap gf af	AP GF AF	AP GF AF	VP GF VE	AP GF AF	PP GF IH	VP GF VE	MP GF VE	VPGLLE	P ACHUT	PPGFTE	AP CHVI	PPGFVB
SVLEG	PYLEG	PYLEC	PYLEG	PYLEG	PYLEG	PYLEG	PYLEC	PYLEC	PYLEC	LHLOG	LHLOG	P VL QG	PYTEC	PYLEC	HLLEG	HLLEG
CLFQPG	CLFQP0	CLFQP6	CLFQP6	CLFQPG	CLFQP0	CLFQP6	CLFQPG	CLFQP6	CLFQG	SLFQGG	CLFQGG	CLFQG0	GWVQCC	CLFQP6	CLFQF6	GILCAC
DEKSV	SERKSV	D-KKSV	REKEN	SEKKSV	SEKKSI	KKKSI	SECKSI	NKKKSV	EERMV	TUS	VERRIV	ERTV	SEEKLH	VERRMV	EDICI	AQKCVI
T GP7	IFHPS	IGFHPF	TTHT	IFHPS	IGFHPS	IGFHPS	IF OPS	I FUP &	I UNY SM	MIN YNKU	MP YNKA	I RUND	INVIKS	MI YNKA	APFINKE	LEDNSL
CFEVV	NGYEY V	QCYEYV	QUEYU	QCYEVU	QCYEYV	QCYEYV	QCYEYV	QCYEW	GFEYV.	GFEYA.	GFEYA.	GFEYV	CMFEMA	CFEVC.	TFEWV.	LAFEVV.
о Ю	о 	о С	00	о С	о С	g 	00 	g 	J U	5 	10 	5 	 GK	8 	ч Эр	ЧĊ СУ
				ulus				tica								

XP_001916075_Equua_caballis XP_003715399_orycolagua_cunicul XP_850899_canis_lupus D2EB07_Ailuropoda_melanoleuca XP_604120_D80_staurus D2ED01372090_Mondelphis_domestic G301013_THEMA_Hus_musculus G301013_THEMA_Hus_musculus G301013_THEMA_Hus_musculus G301013_THEMA_Has_musculus A1411_THEMA_B0s_taurus A1411_THEMA_B0s_taurus A1411_THEMA_B0s_taurus A1411_THEMA_B0s_taurus A1411_THEMA_B0s_taurus A1411_THEMA_B0s_taurus A1411_THEMA_B0s_taurus A1411_THEMA_P0s_taurus A1411_THEMA_P0s_ta 08N108 THEMS Homo sapiens 09C0J0 THEMS Mus musculus Thems callithrix jacchus

	• CH 1 C C S C C C C C C C C C C C C C C C C							• •	F	1
THEMD HOMO SAPIENS	30 TECIVADECE	A L L L L L L L L L L L L L L L L L L L						L N O N O		
THEM5_Ailuropoda_melanoleuca	38 TDSLVSRFCI	LENTGLKDYA	VPNASWC		VHELOEK	MUDDEME		HNSN.		
THEM5 Bos taurus	38 MESLVSRFC(QEMKKSKNYA	LPNASW C	GPDMLSL	XHEFLER	TKTSGW	VRV PS F	RSNR	•	IHU
THEM4_Bos_taurus	38	TDKVIHKDWA	LPNPSW3	SKDLKLL	FDQFMKK	CEDGSWE	<u>S</u> RL P SY	KRRS	Ĕ	TQESEDF
THEM4_Rattus_norvegicus	29;	SEEVVCKDYA	LPNPSW	TKDLRLL	FDQFMKK	CED GSD ME	KRLPSY	RQNP	Д	PQALQEF
THEM4_Mus_musculus	29	SEKVIRKDYA	L <mark>P N P S W</mark> J	TKDLRLL	FDQFMK	CEDGSWE	K R M P S H	IRQNP	E	TRAIQEF
THEM4_Homo_sapiens	38	SDEVILKDCS	V P N P S W	NKDLRLL	EDQFMK	CEDGSWI	KRL PS Y	KRTP	E	TEWIQDE
		Û		000000	2000000	- 7	t			

<mark>ด</mark>ดดบพพพ<mark>พ</mark>

А

000000

200

a

d

0

0

*

►

10	
- 54	- 6
CD (D)	-
	÷.,
	- 5
- 04	. (
a d	0
10	
	- 2
	- 1
0	
a	
5	
0	- 2
	5
_	-
1.00	
വ	Ľ
5	5
- 23	- 22
-	E
- 12	ш
- Fri	E

InEMS_Mus_musculus THEM5_Ailuropoda_melanoleuca THEM4_Bos_taurus THEM4_Rattus_norvegicus THEM4 Mus musculus THEM4_Homo_sapiens THEM5_Bos_taurus

ппкпкк<mark>к</mark>

OOMHDDDZ COOOXXXXX

KKSSGV KSSGV KSSGV

HINN CARE

OXOOUUUU OOOOXXXX HHHHHHH

SCTIAN SCTIAN SCTIAO SCTIAO SCTIAO SCTIAO SCTIAO SCTIAO SCTIAO SCTIAO ΗН XXIII

XXXXXXXX ПОООПИНИ 2224111

VYMDVEV VVLDVDV VVLNVDV VVLNVDV VVLNVDV VVVNSQ1 VVNSQ1 VVNSQ1 VVNSQ1

SLNIR SLNIR SLNIKF SLNIRF SLNER SNENIRF ANLNINF ANLNITY ANLNINT

HAPAN MAPAN MAN MAPAN MA

74 74 59 59 59 59 59

00000

A A AD J J J J J S

•

0000

In In HН . 1

. 1 [±

•	Q	•	Q	•			•
Õ	ы	Ø	വ്	•	•	•	•
д	Q	д	S	н	н	н	H
S	S	S	S	S	Ч	Ч	н
ы	O'	ГЦ	р	S	д	д	S
-	-	-	-		~	~	~
4	4	4	4	3	ã	ã	33
0	0	0	0	0	0	0	2

đ

E Steady-state kinetic constants for hThem5 active site mutants

	Enzyme	Substrate	K _m (µM)	k _{cat} (s⁻¹)	k _{cat} /K _m (M ⁻¹ s ⁻¹)
hThem5	T183A	C18:2	0.6	0.2	3.6x10 ⁵
hThem5	G160A	C18:2	7.6	0.3	4.6x10 ⁴
hThem5	G159A/T183A	C18:2	n.d. [*]	0.1	n.d.

* - not possible to determine Km

FIG S2. Protein sequence and structural analysis of Them4/5 and their orthologs.

(A) ClustalW multiple sequence alignment of Them4/5 and their orthologs in other species used for ConSurf computational analysis (http://consurf.tau.ac.il/). The alignment shows conserved residues (highlighted in dark-grey and grey). Also note the lack of conservation in mitochondrial targeting sequences (N-terminal part of the sequences) between Them4 and Them5 orthologous groups. (B) ClustalW multiple sequence alignment of selected Them5 and Them4 sequences (without predicted MTS). Conserved residues are boxed in red, secondary structure elements in the Δ 34Them5 and Δ 36Them4 crystal structures are indicated at the top and bottom of the alignment, respectively. The first residues present in the crystallographic models are highlighted with open arrows. Disordered stretches with no electron density, not included in the models, are shown in yellow shading; mutations used in this study are highlighted with red triangles (dimerization) and a red asterisk (enzymatically inactive). (C) Cartoon representation of superimposed crystal structures of Δ 34Them5 (blue and orange) and Δ 36Them4 (gray, transparent). N- and C-terminal residues in the Δ 34Them5 structure are labeled, and disordered stretches not included in the model are shown as dotted lines. (D) Cartoon representation of the putative Δ 36Them4 active site. Homodimer subunits are shown in cyan and gray, residues expected to be involved in catalysis and substrate recognition displayed as sticks (atom colors). (E) Steady-state kinetic constants for hThem5 active site mutants in the hydrolysis reaction with linoleyl-CoA, obtained at 37°C, pH 7.5. T183A mutant displays reduced turnover and k_{cat} (due to the interferes with catalysis), G160A mutant has reduced turnover and k_{cat} (due to the sterical interference in the active site), and G159A/T183A mutant has no activity.

FIG S3. Generation of Them5 knockout mice. (A) Presence of mThem5 genomic DNA in BAC clone was verified by PCR of individual exons (cloned mThem5 cDNA is positive control). BAC clone was used as PCR template for generating left and right homology region of targeting vector. (B) Transcript structure of mTHEM5 gene in mice. White areas represent untranslated regions (Ensembl database). (C) Targeted mThem5 allele. A targeting vector was generated that contains a 3.7-kb 5' homology region, an IRES/lacZ/neo cassette, and a 5-kb 3' homology region. A genomic DNA fragment of about 1.3 kb, including the ATG start codon in exon 1 and the full sequence of exon2, is deleted in the targeting vector. The targeting vector was linearized with Notl and electroporated into 129/Ola ES cells. (D) Screening of ES cell clones was performed by Southern blotting. DNA was digested with EcoRV and probed with an external probe (sequence 16980-17663). An internal probe was then used on Ndel digested DNA (sequence 9652-10154) for further characterization of ES cell clones positive for homologous recombination. Correctly targeted ES cells (highlighted in red) were used to generate chimeras. Male chimeras were mated with wild-type C57BL/6 females to obtain Them5^{+/-} mice, which were intercrossed to produce Them5 homozygous mutants. (E) Progeny were genotyped for the presence of a targeted allele by multiplex PCR. The following primers were used for genotyping: P1-as 5'-GCA GCA GGC TGA ACT GAC TGA GG-3'; P2/KO-s 5'- GCT GCC TCG TCC TGC AGT TCA TTC-3"; P3/WT-s 5'-CAG GCG GCT GGA TTA AAC TAC C-3'. One reaction amplifies a 500-bp fragment from the targeted allele and the second reaction amplifies a 330-bp fragment from the wild-type allele.

WT

m/z

m/z

m/z

KO

WT

m/z

HET

999.1

1000

970.1

975

941.1

950

925

HET

1600

1500

D

FIG S4. Mass spectrometry analysis of phospholipid composition. Lipid extracts were prepared from Them5 WT (upper panel), HET (middle) and KO (lower) mouse liver mitochondria and analyzed by mass spectrometry in the positive mode [6]. (A) Detailed species composition in the cardiolipin region, analyzed by MS in the positive mode. The lipid profile shows limited, predominantly quantitative differences in the CL profile between Them5 WT (top panel) and KO (bottom panel) liver mitochondria. P – palmitoyl, S – stearoyl, O – oleoyl, L – lineoyl, A – arachidoyl. (B) Species composition in the MLCL/CL region, as analyzed by MS in positive mode. P – palmitoyl, S – stearoyl, A – arachidoyl. (C) Increase in major monolysocardiolipin (MLCL) over cardiolipin (CL) levels upon Them5 ablation. (D) Total spectra analysis of WT and KO samples without major changes between WT and KO. (E) Species composition in the phospholipid region does not show major differences between WT (top) and KO (bottom) samples. Representative MS profiles are shown. PE – phosphatidylethanolamine, PC – phosphatidylcholine, PI – phosphatidylinositol.

Α

Liver weight relative to body weight, %

scale bar 3 μm

FIG S5. Loss of Them5 leads to fatty liver development and changes in mitochondria morphology. (A-B) Effect of Them5 loss on fatty liver development, reflected in (A) increased liver weights in Them5 HET and KO mice, as compared to WT littermates (n=8-12), and (B) progressive development of liver steatosis in Them5 HET and KO mice. Hematoxylin-eosin staining (top) and Oil Red O staining (bottom) of liver sections from 7-month-old mice (right). (C) Representative electron micrographs of liver cells with 3D reconstructed mitochondria (male mice 3-4 months of age, fasted). (D) Increased mitochondria volume in *Them5^{-/-}* and *Them5^{+/-}* hepatocytes of fasted mice, compared to WT controls (min. 15 mitochondria per cell/mouse were reconstructed, 3 cells/per mouse, n=2).