## **Supplementary Figure 1**



**Interaction between domain 1A and the N-terminal domain in ToMV-Hel.** The structures are shown as surface representations superpositioned on ribbon diagrams. The helicase core and the N-terminal domain are colored magenta and blue, respectively. The residues in one of the domains that interact with those in the other domain are shown as stick models and are labeled. The figure was created using pyMol (http://pymol.org/pymol).

| Number | Name              | Sequence $(5' \rightarrow 3')$                    |
|--------|-------------------|---------------------------------------------------|
| 1      | NcoI-L666-F       | GCG <u>CCATGG</u> CCTCATACACTAGGAGCGAGGAG         |
| 2      | NcoI-V802-F       | GCG <u>CCATGG</u> CCGTATATTCTGATATGGCTAAACTC      |
| 3      | PstI-stop-V801-R  | GCG <u>CTGCAG</u> TTATACCGACTCAGAACTCACAGCC       |
| 4      | PstI-stop-Q1116-R | GCG <u>CTGCAG</u> TTATTGAGTACCTGCATCTACTTTGTAC    |
| 5      | NcoI-G699-F       | GCG <u>CCATGG</u> CCGGCCCTCTTAAAGTTCAACAAATG      |
| 6      | PstI-stop-A732-R  | GCG <u>CTGCAG</u> TTAGGCTGTATCTTTTAGGATCTTCAC     |
| 7      | SpeI-G699-F       | GCG <u>ACTAGT</u> AAAAATGGGCCCTCTTAAAGTTCAACAAATG |
| 8      | SalI-stop-A732-R  | GCG <u>GTCGAC</u> TTAGGCTGTATCTTTTAGGATCTTCAC     |

Supplementary Table 2. Oligonucleotides used in this study.

Restriction sites are underlined.

| No. | PDB No.       | Z score <sup>a</sup> | RMSD <sup>b</sup> | LALI <sup>c</sup> | NRES <sup>d</sup> | Number of    | Comment                                    | Ref |
|-----|---------------|----------------------|-------------------|-------------------|-------------------|--------------|--------------------------------------------|-----|
|     |               |                      |                   |                   |                   | identical    |                                            |     |
|     |               |                      |                   |                   |                   | residues (%) | -                                          |     |
| 1   | <u>2gk7-A</u> | 21.2                 | 3.3               | 284               | 596               | 14           | Upf1/SO <sub>4</sub> <sup>2</sup> complex  | 2   |
| 2   | <u>1uaa-B</u> | 18.8                 | 2.9               | 248               | 633               | 17           | Rep/DNA complex                            | 3   |
| 3   | <u>2gk6-A</u> | 18.6                 | 3.2               | 281               | 602               | 15           | Upf1/ADP complex                           | 2   |
| 4   | <u>2is4-B</u> | 18.5                 | 3.1               | 251               | 632               | 14           | UvrD/AMPPNP complex                        | 4   |
| 5   | <u>1pjr-A</u> | 18.5                 | 3.3               | 251               | 623               | 17           | Free PcrA                                  | 5   |
| 6   | <u>2gk6-B</u> | 18.5                 | 3.2               | 282               | 602               | 15           | Upf1/ADP complex                           | 2   |
| 7   | <u>2is4-A</u> | 18.4                 | 3.1               | 248               | 646               | 15           | UvrD/AMPPNP complex                        | 4   |
| 8   | <u>2is1-A</u> | 18.1                 | 2.9               | 248               | 649               | 15           | UvrD/SO <sub>4</sub> <sup>2</sup> complex  | 4   |
| 9   | <u>2is1-B</u> | 18.0                 | 2.9               | 247               | 624               | 15           | UvrD/SO <sub>4</sub> <sup>2</sup> complex  | 4   |
| 10  | <u>2xzp-A</u> | 17.9                 | 3.1               | 287               | 621               | 14           | Free Upf1(ΔCH)                             | 6   |
| 11  | <u>2is2-B</u> | 17.8                 | 3.0               | 245               | 642               | 15           | UvrD NTP-free                              | 4   |
| 12  | <u>2xzo-A</u> | 17.7                 | 3.7               | 287               | 613               | 15           | Upf1(ΔCH)/RNA/ADP·AlF <sub>4</sub> complex | 6   |
| 13  | <u>2gjk-A</u> | 17.6                 | 3.4               | 284               | 614               | 14           | Upf1/AMPPNP complex                        | 2   |
| 14  | <u>2wjy-A</u> | 17.4                 | 3.3               | 287               | 773               | 14           | Upf1/Upf2 complex                          | 7   |
| 15  | <u>2is6-A</u> | 17.4                 | 3.1               | 248               | 654               | 15           | UvrD/ADP·MgF <sub>3</sub> complex          | 4   |
| 16  | <u>2wjv-A</u> | 16.2                 | 3.4               | 287               | 772               | 14           | Upf1/Upf2 complex                          | 7   |
| 17  | 2xzl-A        | 16.2                 | 3.5               | 281               | 756               | 14           | Upf1/RNA/ADP·AlF <sub>4</sub> complex      | 6   |
| 18  | <u>3gpl-B</u> | 15.2                 | 3.7               | 234               | 516               | 16           | RecD2/ADPNP/ssDNA complex                  | 8   |
| 19  | <u>3gpl-A</u> | 15.2                 | 3.7               | 235               | 516               | 16           | RecD2/ADPNP/ssDNA complex                  | 8   |
| 20  | <u>3lfu-A</u> | 15.1                 | 3.1               | 246               | 633               | 15           | UvrD/SO <sub>4</sub> <sup>2-</sup> complex | 9   |
| 21  | <u>lqhg-A</u> | 15.1                 | 3.2               | 251               | 622               | 17           | Pcr/ATP complex                            | 10  |
| 22  | <u>3pjr-A</u> | 15.0                 | 2.8               | 250               | 646               | 17           | PcrA/ATP/DNA complex                       | 11  |
| 23  | <u>1uaa-A</u> | 15.0                 | 3.0               | 248               | 636               | 16           | Rep/DNA complex                            | 3   |
| 24  | <u>2wjv-B</u> | 14.7                 | 3.3               | 284               | 768               | 14           | Upf1/Upf2 complex                          | 7   |
| 25  | <u>2is2-A</u> | 14.7                 | 3.1               | 246               | 642               | 15           | UvrD NTP-free                              | 4   |
| 26  | <u>3e1s-A</u> | 14.7                 | 3.2               | 225               | 517               | 16           | RecD2                                      | 12  |
| 27  | <u>2is6-B</u> | 14.2                 | 3.1               | 248               | 652               | 15           | UvrD/ADP·MgF <sub>3</sub> complex          | 4   |
| 28  | <u>3gp8-A</u> | 13.7                 | 3.5               | 231               | 551               | 16           | RecD2/ADPNP/ssDNA complex                  | 8   |
| 29  | <u>1w36-D</u> | 13.6                 | 4.1               | 230               | 538               | 15           | RecD2 in RecBCD/DNA complex                | 13  |

## Supplementary Table3 Comparison of ToMV-Hel core structure with those of other SF1 helicases performed by the DALI server <sup>1</sup>.

| 30 | <u>1w36-G</u> | 13.5 | 4.0 | 228 | 538  | 15 | RecD2 in RecBCD/DNA complex                     | 13 |
|----|---------------|------|-----|-----|------|----|-------------------------------------------------|----|
| 31 | <u>3k70-G</u> | 13.5 | 4.2 | 229 | 547  | 16 | RecD2/DNA comp                                  | 12 |
| 32 | <u>3k70-D</u> | 12.8 | 4.1 | 228 | 547  | 16 | RecD2/DNA comp                                  | 12 |
| 33 | <u>3k70-B</u> | 12.0 | 3.7 | 248 | 1155 | 18 | RecD2/DNA comp                                  | 12 |
| 34 | <u>3k70-E</u> | 11.9 | 3.7 | 248 | 1155 | 18 | RecD2/DNA comp                                  | 12 |
| 35 | <u>3rc3-A</u> | 11.9 | 3.6 | 210 | 607  | 17 | Suv3/RNA complex                                |    |
| 36 | <u>3i5y-A</u> | 11.9 | 5.4 | 168 | 509  | 7  | Mss116p (DEAS-box)                              | 14 |
| 37 | <u>2p6r-A</u> | 11.9 | 4.0 | 212 | 683  | 15 | SF2 helicase                                    | 15 |
| 38 | 1w36-B        | 11.7 | 3.7 | 246 | 1158 | 18 | RecD2 in RecBCD/DNA complex                     | 13 |
| 39 | <u>2pjr-F</u> | 11.7 | 2.9 | 194 | 544  | 16 | PcrA/SO <sub>4</sub> <sup>2-</sup> /DNA complex | 11 |
| 40 | <u>2pjr-A</u> | 11.7 | 3.0 | 195 | 542  | 16 | PcrA/SO <sub>4</sub> <sup>2-</sup> /DNA complex | 11 |
| 41 | 1w36-E        | 11.7 | 3.7 | 247 | 1158 | 18 | RecD2 in RecBCD/DNA complex                     | 13 |
| 42 | <u>3g0h-A</u> | 11.7 | 3.7 | 219 | 408  | 14 | DDX19 (DEXD/H-box)                              | 16 |
| 43 | <u>3fht-A</u> | 11.7 | 3.8 | 217 | 392  | 14 | Dbp5/AMPPNP/RNA complex                         | 17 |
| 44 | <u>3rc8-A</u> | 11.6 | 3.8 | 206 | 609  | 17 | Suv3/RNA complex                                |    |
| 45 | <u>3fht-B</u> | 11.6 | 3.8 | 218 | 387  | 14 | Dbp5/AMPPNP/RNA complex                         | 17 |
| 46 | <u>2p6n-B</u> | 11.5 | 2.5 | 116 | 158  | 10 | DDX41 (DEAD-box)                                | 18 |
| 47 | <u>2p6n-A</u> | 11.4 | 2.6 | 116 | 160  | 10 | DDX41 (DEAD-box)                                | 18 |
| 48 | <u>3rrn-A</u> | 11.4 | 3.9 | 219 | 389  | 13 | DEAD-box                                        | 19 |
| 49 | <u>3pex-A</u> | 11.4 | 3.9 | 219 | 389  | 13 | D90Dbp5(L327V)/InsP6/Gle1(H337R)                | 19 |
|    |               |      |     |     |      |    | /ADP complex                                    |    |
| 50 | <u>2va8-A</u> | 11.4 | 4.4 | 212 | 693  | 9  | Hel308                                          | 20 |

Rows highlighted by yellow, blue, and green contain Uvr/Rep-type, Upf1-like, and Pif1-like SF1 helicases, respectively.

<sup>a</sup>The Z score is composed of several evaluations, including rmsd and the number of residues matched.

A score less than 2.0 means that the two structures do not significantly match, while a score greater

than 10.0 shows a very strong match.

<sup>b</sup>Root-mean-square deviation of the three-dimensional alignment.

<sup>c</sup>Number of residues in the matched structure.

<sup>d</sup>Number of aligned residues.

## References

- Holm, L. & Rosenstrom, P. Dali server: conservation mapping in 3D. Nucleic Acids Res 38, W545-9 (2010).
- 2. Cheng, Z., Muhlrad, D., Lim, M.K., Parker, R. & Song, H. Structural and functional insights into the human Upf1 helicase core. *EMBO J* **26**, 253-64 (2007).
- Korolev, S., Hsieh, J., Gauss, G.H., Lohman, T.M. & Waksman, G. Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. *Cell* 90, 635-47 (1997).
- 4. Lee, J.Y. & Yang, W. UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke. *Cell* **127**, 1349-60 (2006).
- Subramanya, H.S., Bird, L.E., Brannigan, J.A. & Wigley, D.B. Crystal structure of a DExx box DNA helicase. *Nature* 384, 379-83 (1996).
- Chakrabarti, S., Jayachandran, U., Bonneau, F., Fiorini, F., Basquin, C., Domcke, S., Le Hir, H. & Conti, E. Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2. *Mol Cell* 41, 693-703 (2011).
- Clerici, M., Mourão, A., Gutsche, I., Gehring, N.H., Hentze, M.W., Kulozik, A., Kadlec, J., Sattler, M. & Cusack, S. Unusual bipartite mode of interaction between the nonsense-mediated decay factors, UPF1 and UPF2. *EMBO J* 28, 2293-306 (2009).
- Saikrishnan, K., Powell, B., Cook, N.J., Webb, M.R. & Wigley, D.B. Mechanistic basis of 5'-3' translocation in SF1B helicases. *Cell* 137, 849-59 (2009).
- Jia, H., Korolev, S., Niedziela-Majka, A., Maluf, N.K., Gauss, G.H., Myong, S., Ha, T., Waksman, G. & Lohman, T.M. Rotations of the 2B Sub-domain of E. coli UvrD Helicase/Translocase Coupled to Nucleotide and DNA Binding. *J Mol Biol* 411, 633-48 (2011).
- Soultanas, P., Dillingham, M.S., Velankar, S.S. & Wigley, D.B. DNA binding mediates conformational changes and metal ion coordination in the active site of PcrA helicase. *J Mol Biol* 290, 137-48 (1999).
- Velankar, S.S., Soultanas, P., Dillingham, M.S., Subramanya, H.S. & Wigley, D.B. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. *Cell* 97, 75-84 (1999).
- Saikrishnan, K., Griffiths, S.P., Cook, N., Court, R. & Wigley, D.B. DNA binding to RecD: role of the 1B domain in SF1B helicase activity. *EMBO J* 27, 2222-9 (2008).
- Singleton, M.R., Dillingham, M.S., Gaudier, M., Kowalczykowski, S.C. & Wigley, D.B.
  Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks.

Nature 432, 187-93 (2004).

- Del Campo, M. & Lambowitz, A.M. Structure of the Yeast DEAD box protein Mss116p reveals two wedges that crimp RNA. *Mol Cell* 35, 598-609 (2009).
- 15. Büttner, K., Nehring, S. & Hopfner, K.P. Structural basis for DNA duplex separation by a superfamily-2 helicase. *Nat Struct Mol Biol* **14**, 647-52 (2007).
- Collins, R., Karlberg, T., Lehtiö, L., Schütz, P., van den Berg, S., Dahlgren, L.G., Hammarström, M., Weigelt, J. & Schüler, H. The DEXD/H-box RNA helicase DDX19 is regulated by an {alpha}-helical switch. *J Biol Chem* 284, 10296-300 (2009).
- von Moeller, H., Basquin, C. & Conti, E. The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner. Nat Struct Mol Biol 16, 247-54 (2009).
- Schutz, P., Karlberg, T., van den Berg, S., Collins, R., Lehtio, L., Högbom, M., Holmberg-Schiavone, L., Tempel, W., Park, H.W., Hammarström, M., Moche, M., Thorsell, A.G. & Schüler, H. Comparative structural analysis of human DEAD-box RNA helicases. *PLoS One* 5, e12791 (2010).
- Montpetit, B., Thomsen, N.D., Helmke, K.J., Seeliger, M.A., Berger, J.M. & Weis, K. A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export. *Nature* 472, 238-42 (2011).
- Richards, J.D., Johnson, K.A., Liu, H., McRobbie, A.M., McMahon, S., Oke, M., Carter, L., Naismith, J.H. & White, M.F. Structure of the DNA repair helicase hel308 reveals DNA binding and autoinhibitory domains. *J Biol Chem* 283, 5118-26 (2008).