1	Biochemical Characterization of the First Haloalkane Dehalogenase
2	from the Cold-Adapted Bacterium
3	
4	Ivana Drienovska ¹ , Eva Chovancova ¹ , Tana Koudelakova ¹ , Jiri Damborsky ¹ , Radka Chaloupkova ^{1*}
5	
6	Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic
7	Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00
8	Brno, Czech Republic ¹
9	
10	*Corresponding author. Mailing address: Loschmidt Laboratories, Department of Experimental
11	Biology, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
12	Phone: 420-5-4949 3567. Fax: 420-5-4949 6302. E-mail: radka@chemi.muni.cz.
13	
14	
15	Supplementary material
16	

Drotoin		Tomporatura	Dongo	Temperature				
riotein	Source Organism	remperature	Kange	Optimum [°C]				
Accession No. ^a		EGP ^b	GOLD ^c	EGP ^b	GOLD ^c			
YP_268879	Colwellia psychroerythraea 34H	Psychrophilic	Psychrophile	8	8			
YP_066368	Desulfotalea psychrophila LSv54	Psychrophilic	Psychrophile	7	10			
ZP_01736514	Marinobacter sp. ELB17	Psychrophilic	Psychrophile	12-15	12-15			
ZP_01897865	Moritella sp. PE36	Cryophilic	Mesophile	-	-			
ZP_01221858	Photobacterium profundum 3TCK	Psychrophilic	Psychrophile	15	15			
YP_129676	Photobacterium profundum SS9	Psychrophilic	Psychrotolerant	15	15			
YP_580518	Psychrobacter cryohalolentis K5	Psychrophilic	Psychrophile	-	-			
YP_943362	Psychromonas ingrahamii 37	Psychrophilic	Psychrophile	-	-			
ZP_01216824	Psychromonas sp. CNPT3	Psychrophilic	Psychrophile	-	-			
YP_523535	Rhodoferax ferrireducens T118	Mesophilic	Psychrotolerant	25	25			
YP_001365757	Shewanella baltica OS185	Mesophilic	Psychrotolerant	-	4			
YP_002358709	Shewanella baltica OS223	Mesophilic	Psychrotolerant	-	4			
YP_001675030	Shewanella halifaxensis HAW-EB4	Psychrophilic	Psychrophile	10	10			
YP_001093840	Shewanella loihica PV-4	Mesophilic	Psychrophile	-	-			
YP_002312624	Shewanella piezotolerans WP3	Mesophilic	Psychrotolerant	15-20	15 – 20			
YP_001473250; YP_001473516	Shewanella sediminis HAW-EB3	Psychrophilic	Psychrophile	10	10			

1 **Table S1**. Putative haloalkane dehalogenases from psychrophilic organisms

^aAccession number to Protein database of NCBI

3 ^bInformation from the Entrez Genome Project database (3)

4 ^{*c*}Information from the Genomes OnLine Database (1)

2

Figure S1. Quantitative comparison of activity and specificity of DpcA with the known 3 biochemically characterized HLDs using the Principle Component Analysis (PCA) (4). The score 4 5 plots (A+B) represent one-dimensional view and two-dimensional window into the multidimensional space, respectively. Enzymes (objects) with similar properties are collocated in 6 these plots. A loading plot (C) quantifies contributions of original variables to newly created 7 principal components (axes of the score plots). Variables localized further from the origin possess a 8 stronger effect on the principal component than the variables localized closer to the origin of the 9 plot. PCA was carried out as described previously (2). (A) The raw data concerning individual 10 enzymes' specific activities towards thirty substrates were used as data matrix. The depicted t_1 score 11 plot explains 45% of the variance in the primary dataset and shows differences in overall activities 12 13 of individual HLDs. The overall activity of DpcA is average due to exceptionally high as well as poor activities with specific substrates. (B) For the comparison of specificity profiles, the raw data 14 were log-transformed and weighted relative to the individual enzymes' activity towards other 15 substrates prior to analysis. Individual substrate specificity groups (SSGs) of HLDs are marked by 16 grey in the t_1/t_2 score plot. DpcA belongs to SSG-IV, together with DbeA, DatA and DmbC. The 17 classification of DpcA into SSG-IV is further supported by the distribution of enzymes along the 18 19 third principle component (*data not shown*). (C) Corresponding p_1/p_2 loading plot enables

- 1 identification of substrates preferentially converted by members of SSG-IV as 1-bromobutane (18),
- 2 1-iodopropane (28) and 1,3-dibromopropane (48) which can be found in the right part of the plot.
- 3 Numbering of the substrates is provided in Table S2.

4

Substrates										
1-chlorobutane (4)	1,2-dichloropropane (67)									
1-chlorohexane (6)	1,2-dibromopropane (72)									
1-bromobutane (18)	2-bromo-1-chloropropane (76)									
1-bromohexane (20)	1,2,3-trichloropropane (80)									
1-iodopropane (28)	bis(2-chloroethyl)ether (111)									
1-iodobutane (29)	chlorocyclohexane (115)									
1-iodohexane (31)	bromocyclohexane (117)									
1,2-dichloroethane (37)	(1-bromomethyl)cyclohexane (119)									
1,3-dichloropropane (38)	1-bromo-2-chloroethane (137)									
1,5-dichloropentane (40)	chlorocyclopentane (138)									
1,2-dibromoethane (47)	4-bromobutyronitrile (141)									
1,3-dibromopropane (48)	1,2,3-tribromopropane (154)									
1-bromo-3-chloropropane (52)	1,2-dibromo-3-chloropropane (155)									
1,3-diiodopropane (54)	3-chloro-2-methylpropene (209)									
2-iodobutane (64)	2,3-dichloropropene (225)									

Table S2. Thirty halogenated substrates used for HLD substrate specificity testing.

1	Table S3. Com	parison of amino	acid composition	n of DpcA with	biochemically	characterized HLDs
---	---------------	------------------	------------------	----------------	---------------	--------------------

2 from mesophilic organisms.

F	A	Ami	no a	cid	con	ipos	ition	[%]													
Enzyme	Accession no.	A	С	D	Е	F	G	Н	Ι	K	L	Μ	N	Р	Q	R	S	Т	V	W	Y
DpcA	YP_580518	7	1	9	4	5	8	3	5	4	9	2	4	8	5	6	5	6	5	2	3
DatA	BAJ23993	9	0	5	6	6	7	3	5	3	12	0	4	7	5	7	5	6	6	2	2
DbjA	BAC46352	15	1	4	8	6	7	4	5	2	9	2	1	8	3	8	5	4	6	1	3
DhaA	AAC15838	8	1	6	8	5	7	4	6	3	10	2	3	10	1	6	3	3	7	3	3
DhlA	P22643	10	1	8	6	7	6	2	5	4	9	4	3	7	4	5	4	5	5	2	4
DhmA	CAC41377	11	0	7	4	4	7	3	5	2	9	1	2	10	3	9	5	4	7	3	4
DmbA	AAK46969	8	0	6	7	4	9	3	6	2	8	3	3	7	4	8	5	3	7	3	3
DmbB	NP_216812	11	0	7	4	5	9	4	4	2	9	1	1	10	3	8	4	5	7	3	4
DmbC	NP_216349	10	1	6	5	6	7	3	6	2	8	3	2	8	2	10	5	4	7	2	3
DmlA	Q98C03	12	1	7	5	5	6	3	5	3	10	2	2	9	4	7	5	3	6	1	2
DppA	ZP_01908831	10	1	7	6	7	11	2	3	2	9	4	1	9	3	6	3	4	7	2	2
DrbA	CAM90600	11	2	7	4	3	6	3	6	3	10	3	3	7	2	9	8	5	5	2	2
Jann2620	YP_510562	13	0	7	6	4	7	2	7	1	8	3	4	8	4	5	4	7	6	2	2
LinB	BAA03443	12	1	7	7	4	8	2	7	2	9	3	2	7	3	8	4	3	4	3	3
Sav4779	NP_825956	12	0	7	6	3	9	4	5	2	10	3	1	7	1	7	5	4	6	3	2
Mean ^b	-	11	1	7	6	5	8	3	5	2	9	2	2	8	3	7	5	4	6	2	3
Min ^b	-	8	0	4	4	3	6	2	3	1	8	0	1	7	1	5	3	3	4	1	2
Max ^b	-	15	2	8	8	7	11	4	7	4	12	4	4	10	5	10	8	7	7	3	4

^aAccession number in the Protein Database of NCBI

4 ^bData relates to HLDs from mesophilic organisms (without DpcA)

Figure S2. Steady-state kinetics of haloalkane dehalogenase DpcA with 1-bromobutane (A) and
1,3-dibromopropane (B). Red curve represents non-linear fit of Hill equation to the experimentally
observed data.

1 References

2 1.	Liolios,	K.,	I. M.	Chen,	K.]	Mavromatis.	Ν.	Tavernarakis	. P.	. Hugenholtz	2, V	. M.	Markov	vitz.
------	----------	-----	-------	-------	-------------	-------------	----	--------------	------	--------------	------	------	--------	-------

- 3 N. C. Kyrpides. 2010. The Genomes On Line Database (GOLD) in 2009: status of genomic and
- 4 metagenomic projects and their associated metadata. Nucleic Acids Res. 38:346-354.
- 5 2. Koudelakova, T., E. Chovancova, J. Brezovsky, M. Monincova, A. Fortova, J. Jarkovsky, J.
- 6 **Damborsky.** 2011. Substrate specificity of haloalkane dehalogenases. Biochem. J. **435:**345-354.
- 7 3. Sayers, E. W., T. Barrett, D. A. Benson, E. Bolton, S. H. Bryant, K. Canese, V. Chetvernin,
- 8 D. M. Church, M. DiCuccio, S. Federhen, M. Feolo, L. Y. Geer, W. Helmberg, Y. Kapustin, D.
- 9 Landsman, D. J. Lipman, Z. Lu, T. L. Madden, T. Madej, D. R. Maglott, A. Marchler-Bauer,
- 10 V. Miller, I. Mizrachi, J. Ostell, A. Panchenko, K. D. Pruitt, G. D. Schuler, E. Sequeira, S. T.
- 11 Sherry, M. Shumway, K. Sirotkin, D. Slotta, A. Souvorov, G. Starchenko, T. A. Tatusova, L.
- 12 Wagner, Y. Wang, W. J. Wilbur, E. Yaschenko, J. Ye. 2010. Database resources of the National
- 13 Center for Biotechnology Information. Nucleic Acids Res. **38:5**-16.
- 4. Wold, S., K. Esbensen, P. Geladi. 1987. Principal Component Analysis. Chemometr. Intell.
 Lab. 2:37–52.